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Abstract: The paper is devoted to the problem of the local existence for a solution to a nonlinear wave
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1. Introduction Setting

Many researchers investigate how the different terms that make up the PDE affect
the existence of the solution and its stability and determine whether the solution exists
in general with respect to time. The terms vary according to the physical phenomenon
being studied and the modeled problem. The linear memory term is considered among the
most famous terms, which effect studied problems. It often establishes the existence of the
solution under some conditions. Researchers have recently turned to studying this term
nonlinearly and choose the initial idea in a way that allows them to rewrite it in terms of
fractional derivative.

To begin with, let t ∈ (0, ∞), x ∈ Rn, u = u(x, t). We look at the following Cauchy
problem with a nonlinear memory term utt − ∆xu + (t + 1)r|u|m−1ut =

t∫
0
(t− s)−v |u|pds

u(t = 0, x) = g(x), ut(t = 0, x) = h(x),
(1)

where u is the unknown real-valued function, n > 0, m > 1, p > 1, r, v ∈ Ω = (0, 1),
and g(x), h(x) are the initial data. Many previous studies considered similar problems
and obtained results indicating the existence of a solution at a specific point, followed by
an explosion and nonexistence of the solution from a certain order, which is called the
exponent. Here, we mention the most important works directly related to our model (1)
containing the nonlinear memory term.

Taking m = 1 and r = 0 in (1), we obtain for t ∈ (0, ∞), x ∈ Rn, the model utt − ∆xu + ut =
t∫

0
(t− s)−v |u|pds

u(t = 0, x) = g(x), ut(t = 0, x) = h(x) .
(2)
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In [1], D’Abbicco showed the existence and the blow-up of the weak solution, and he
proposed as a critical exponent

p(n, v) = max
{

pv(n); 1
v

}
where pv(n) = 1 + 2(2−v)

(n−2(1−v))+
,

where (−2(1−v) + n)+ = max{(−2(1−v) + n); 0}.
For r = 0 and m > 1, we obtain the model utt − ∆xu + |u|m−1ut =

t∫
0
(t− s)−v |u|pds

u(t = 0, x) = g(x), ut(t = 0, x) = h(x).
(3)

A wave equation with structural damping and nonlinear memory was considered in [2];
the question of the existence of global solutions was proved, and in the subcritical case,
the nonexistence of solutions for suitable arbitrarily small data was established. These two
results improved the works [3,4], where a critical exponent was obtained.

In [5], the authors considered problem (1), where the coefficient of the frictional
damping term is given by

a0 = (1 + |x|2)
−α
2 (1 + t)−β, (4)

in which 0 < a0, 0 ≤ β, 1 > α + β. A blow-up result under certain positive data in Rn

was obtained. Besides, the local existence in the energy space was also studied. In [6],
Berbiche and Hakem showed the blow-up and local existence of a solution for this problem
if p > m > 1. They proved that if h and g satisfy certain conditions and

n ≤ min

{
2(m+(1−v)p)

p−1+(1−v)(m−1) ; 2(1+(2−v)p)(
(p−1)(2−v)

p−m −1+v
)
(p−1)

}
or p <

1
v

,

then the weak solution does not exist.
For m = 1 and r ∈ Ω, we have the model utt − ∆xu + (t + 1)rut =

t∫
0
(t− s)−v |u|pds

u(t = 0, x) = g(x), ut(t = 0, x) = h(x).

In a similar study [7], it was proved that if g and h satisfy some conditions (we only take
the case when r ∈ Ω) and that

p
p− 1

> inf
d>0

max


nd
2 + 1

1−v + d
;

√√√√ nd
2 + 1

(1−v)(1− r)
+

(
1−v− (1− r) nd

2
2(1−v)(1− r)

)2

−
1−v− (1− r) nd

2
2(1−v)(1− r)

,

then a weak solution does not exist globally in time.
In [8], the authors considered a related problem “Semilinear wave equation with a

nonlinear memory term” and studied the blow-up dynamic by using an iteration argument.
The memory term used was the Riemann–Liouville fractional integral. In [9], Andrade and
Tuan studied a problem named nonautonomous damped wave equation with a nonlinear
memory term. The question of the well-posedness and spatial regularity of the problem
was treated owing to the the theory of evolution process and sectorial operators. Models
involving a linear kernel are not new and arise in heat conduction and linear viscoelasticity
theory; we mention the works [10–17] and references therein.

In our model, we focus on (1) with m > 1 and r ∈ Ω, thus extending the existing
results. Also, we discuss the system in the unbounded domain Rn, which makes the study
more valuable from the application point of view. Toward this end, we used the method of
Fourier transform combined with some techniques from fractional calculus. Mathematical
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models, consisting of nonlinear memory, are used to describe many phenomena in physics,
chemistry, biology, and a number of other sciences. Such models arise in the study of
wave processes in gas dynamics and nonlinear acoustics, in the description of waves in
shallow water, hydromagnetic waves in cold plasma, ion-acoustic waves in cold plasma,
electromagnetic waves in ferromagnets, and in a number of other applications. Thus,
nonlinear wave equations play an important role in the study of wave processes in media
with a nonlinear memory and make it possible to analytically describe these processes.

Mathematical models, consisting of generalized terms of damping and interaction
between them, are used to describe many phenomena in various fields including physics,
chemistry, and biology. Such models arise from many applications such as wave processes
in gas dynamics and nonlinear acoustics, description of waves in shallow water, hydro-
magnetics waves in cold plasma, ion-acoustic waves in cold plasma, and electromagnetic
waves in ferromagnetic. This is indeed our case; for researchers working in this field who
want to learn something new and not easy, it is extremely an interesting section of modern
science, including engineering and new physical principles.

The paper is organized as follows. In the next section, we list some preliminaries
and the main problem. By using these tools, we prove the local existence to the system in
Section 3. Finally, Section 4 is devoted to the blow-up results, see Theorem 8, which ensure
the nonexistence of global solutions.

2. Preliminaries, Materials, and Methods

In this section, we recall some preliminary material, which is needed for this work.

Definition 1. (Sobolev space) The (Hs) norm of a function g ∈ (Rn,R), denoted by ‖g‖Hs , is

‖g‖Hs =

[∫
R

(
1 + |ξ|2

)s
|ĝ|2dξ

] 1
2
,

where ĝ is the well known Fourier transform variable of g. If ‖g‖Hs < ∞, then g ∈ Hs.

Definition 2. The Xs norm of a function u ∈ ([0, ∞)×Rn,R), denoted by ‖u‖Xs is

‖u‖Xs = sup
0≤t≤T

(‖u(t)‖Hs + ‖ut(t)‖Hs−1),

where 0 < T < ∞. If ‖u‖Xs < ∞, then u ∈ Xs.

Theorem 1 ((Leibniz Integral Rule) [8]). For −∞ < a(x) < b(x) < +∞,

d
dx

 b(x)∫
a(x)

f dt

 = f (b(x), x) · d
dx

b(x)− f (a(x), x) · d
dx

a(x).

Theorem 2 ([8]). For any n-dimensional function u(t0) ∈ Hs, if s > n/2, then there exists C > 0
so that

‖u(t0)‖L∞ ≤ C‖u(t0)‖Hs .

Theorem 3 ((Gronwall’s Inequality) [18]). Let f (t) be a nonnegative and continuous function
on [0, T] satisfying, for all 0 ≤ t ≤ T,

f (t) ≤
t∫

0

f (s)ds.

Then, f (t) = 0 for all 0 ≤ t ≤ T.
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Theorem 4 ((Banach Contraction-Mapping Principle) [19]). Let (X, d) be a complete metric
space and G : X → X a map such that there exists 0 ≤ θ < 1 satisfying d(G(x), G(ξ)) ≤ θd(x, ξ)
for all x, ξ ∈ X. Then, there is a unique point x0 ∈ X such that G(x0) = x0.

Lemma 1 ([19]). For any s ∈ (1, 2) and p ∈ (1,+∞) ∩ (s− 1,+∞), we have for a nonnegative
function f ∈ L∞(Rn) ∩ Hs−1(Rn); then, f p ∈ Hs−1(Rn), and there exists C > 0 such that

‖ f p‖Hs−1(Rn) ≤ C‖ f ‖p−1
L∞(Rn)

‖u(t0)‖Hs−1(Rn).

We now state some results from fractional derivative calculus that will be used in the
last section. As in [20], the operator Dα

0|t is a the fractional derivative operator of order α,
defined by

Dα
0|tu = dt J1−α

0|t u,

and J1−α
0|t represents the fractional integral of order 1− α, given by

J1−α
0|t u(t) = 1

Γ(1−α)

t∫
0

u(s)
(t−s)α ds f or u ∈ C(R).

Proposition 1 ([20]). Let g, h ∈ C[0, T]. If Dα
t|Th(t) and Dα

0|tg(t) exist and belong to C[0, T],
then

t∫
0

g(s)Dα
s|Th(s)ds =

t∫
0

h(s)Dα
0|sg(s)ds,

for all 0 ≤ t ≤ T.

Proposition 2 (see [19]). For all u ∈ Lq(0, T), q ≥ 1, and 0 < t < T, we have(
Dα

0|t ◦ Jα
0|t

)
(u) = u. (5)

Moreover, for all u ∈ Cl [0, T], T > 0, the following rule holds

(−1)ldl
tD

α
t|Tu(t) = Dα+l

t|T u(t) f or (l, α) ∈ N×Ω. (6)

Corollary 1 ([21]). If ϕ(t) =
(
1− t

T
)β

+, t ≥ 0, T > 0, β� 1, then

Dα+i
t|T ϕ(t) = CT−β(T − t)β−α−i

+ α ∈ Ω i = 0, 1, 2, (7)

(
Dα+i

t|T ϕ
)
(0) = CT−α−i α ∈ Ω i = 0, 1, 2. (8)

Here, we demonstrate that the local solution to the problem (1) exists and is unique.
To see that, let us first introduce the next Cauchy problem{

utt − ∆xu = F(u),
u(t = 0, x) = g(x), ut(t = 0, x) = h(x).

(9)

Due to the nonlinearity of F(u), it is difficult to provide a closed-form formula for the
solution. However, under certain conditions one can show the existence of this solution.

2.1. Solving the Wave Equation

Let us first start by solving the wave equation with a source term, by using the Fourier
Transform. Then, we deduce some properties and estimations satisfied by the solution to
the problem (9).
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Lemma 2 (The homogeneous case). If

û0 =

{
ĝ cos(|ξ|t) + ĥ

|ξ| sin(|ξ|t) |ξ| 6= 0
ĥt + ĝ |ξ| = 0,

(10)

then u0 solves the Equation (9) for F ≡ 0.

Proof. The Fourier transform of the homogeneous wave equation gives us

ûtt + |ξ|2û = 0. (11)

This is an ordinary differential equation of second order, which has the characteristic
equation

r2 + |ξ|2 = 0. (12)

Thus, the solution can be written as

û = A cos(|ξ|t) + B sin(|ξ|t).

Using the initial data, we obtain

û(ξ, 0) = A cos(|ξ|0) + B sin(|ξ|0) = ĝ,

yielding A = ĝ. Also, we have

ût(ξ, 0) = −|ξ|A sin(|ξ|0) + |ξ|B cos(|ξ|0) = ĥ,

and so
|ξ|B = ĥ.

If |ξ| 6= 0, we obtain B = ĥ
|ξ| ; hence,

û = ĝ cos(|ξ|t) + ĥ
|ξ| sin(|ξ|t) for |ξ| 6= 0.

If ξ = 0, then the Equation (11) yields ûtt = 0. Using the initial conditions, we deduce

ûtt = ĥt + ĝ for |ξ| = 0 .

Lemma 3 (Duhamels Principle). Suppose w =
t∫

0
v(x, t− s, s)ds, where v solves

{
vtt − ∆xv = 0
v(t = 0, x, s) = 0, vt(t = 0, x, s) = F(x, s);

then, w solves Equation (9) as the particular solution to h ≡ g ≡ 0.

Proof. By substituting w into Equation (9) and using the Leibniz integral Rule in Theorem 1,
we obtain

wtt − ∆xw = ∂t

v(t = 0, x, s) +
t∫

0

v(x, t− s, s)ds

− t∫
0

∆xv(x, t− s, s)ds

= v(x, t− s, s)|s=t +

t∫
0

[vtt(x, t− s, s)− ∆xv(x, t− s, s)ds]ds

= v(x, 0, s)| = F(x, t).
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Lemma 2, with g ≡ 0 and h = F(x, s) gives, for v in Lemma 3, the following resuls

v̂(ξ, t− s, s) =

{
F̂(ξ,s)
|ξ| sin(|ξ|(t− s)) |ξ| 6= 0

F̂(ξ, s)(t− s) |ξ| = 0.

By employing Lemma 3 and (11), we obtain, if we take u0 as in Lemma 2 and w as in
Lemma 3, that u = u0 + w solves Equation (9).

2.2. The Well-Posedness of the Wave Equation

In this subsection, we show some estimations for the solution, which are used later.

Theorem 5. Let u be the solution to Equation (9). Then, the following inequality holds:

‖u(t)‖Hs < ‖g‖Hs + ‖h‖Hs−1 +

t∫
0

‖F(τ)‖Hs−1 dτ, (13)

for all t ∈ [0,+∞).

Proof. We have from the (Hs) norm definition

‖u(t)‖Hs =

[∫
R

(
1 + |ξ|2

)s
|û(t)|2dξ

] 1
2

=

[∫
ξ 6=0

(
1 + |ξ|2

)s
|û(t)|2dξ +

∫
ξ=0

(
1 + |ξ|2

)s
|û(t)|2dξ

] 1
2

=

∫
ξ 6=0

(
1 + |ξ|2

)s
∣∣∣∣∣∣ĝ cos(|ξ|t) + ĥ

|ξ| sin(|ξ|t) +
t∫

0

F̂(ξ, τ)

|ξ| sin(|ξ|(t− τ))dτ

∣∣∣∣∣∣
2

dξ


1
2

<

∫
ξ 6=0

(
1 + |ξ|2

)s
∣∣∣∣∣ĝ cos(|ξ|t) + ĥ

|ξ| sin(|ξ|t)
∣∣∣∣∣
2

dξ

 1
2

+

∫
ξ 6=0

(
1 + |ξ|2

)s
∣∣∣∣∣∣

t∫
0

F̂(ξ, τ)

|ξ| sin(|ξ|(t− τ))dτ

∣∣∣∣∣∣
2

dξ


1
2

<

[∫
ξ 6=0

(
1 + |ξ|2

)s
|ĝ|2dξ

] 1
2

+

[∫
ξ 6=0

(
1 + |ξ|2

)s∣∣∣ĥ∣∣∣2dξ

] 1
2

+

∫
ξ 6=0

(
1 + |ξ|2

)s
t∫

0

∣∣F̂(ξ, τ)
∣∣2dτdξ

 1
2

< ‖g‖Hs +

[∫
ξ 6=0

(
1 + |ξ|2

)s−1(
1 + |ξ|2

)∣∣∣ĥ∣∣∣2dξ

] 1
2

+

∫
ξ 6=0

(
1 + |ξ|2

)s−1(
1 + |ξ|2

) t∫
0

∣∣F̂(ξ, τ)
∣∣2dτdξ

 1
2

< ‖g‖Hs + ‖h‖Hs−1 +

t∫
0

‖F(τ)‖Hs−1 dτ.
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Theorem 6. Let u be the solution to Equation (9). We have

‖ut(t)‖Hs−1 < ‖g‖Hs + ‖h‖Hs−1 +

t∫
0

‖F(τ)‖Hs−1 dτ, (14)

for all t ∈ [0,+∞).

Proof. As in the above proof, we obtain

‖ut(t)‖Hs−1

=

[∫
ξ∈R

(
1 + |ξ|2

)s−1
|ût(t)|2dξ

] 1
2

=

[∫
ξ 6=0

(
1 + |ξ|2

)s−1
|ût(t)|2dξ +

∫
ξ=0

(
1 + |ξ|2

)s−1
|ût(t)|2dξ

] 1
2

=

∫
ξ 6=0

(
1 + |ξ|2

)s−1

∣∣∣∣∣∣−|ξ|ĝ sin(|ξ|t) + ĥ cos(|ξ|t) +
t∫

0

F̂(ξ, τ) sin(|ξ|(t− τ))dτ

∣∣∣∣∣∣
2

dξ


1
2

<

[∫
ξ 6=0

(
1 + |ξ|2

)s−1
||ξ|ĝ sin(|ξ|t)|2dξ

] 1
2
+

[∫
ξ 6=0

(
1 + |ξ|2

)s−1∣∣∣ĥ cos(|ξ|t)
∣∣∣2dξ

] 1
2

+

∫
ξ 6=0

(
1 + |ξ|2

)s−1
t∫

0

∣∣F̂(ξ, τ) sin(|ξ|(t− τ))
∣∣2dτdξ

 1
2

<

[∫
ξ 6=0

(
1 + |ξ|2

)s |ξ|2

1 + |ξ|2
|ĝ|2dξ

] 1
2

+

[∫
ξ 6=0

(
1 + |ξ|2

)s−1∣∣∣ĥ∣∣∣2dξ

] 1
2

+

∫
ξ 6=0

(
1 + |ξ|2

)s−1
t∫

0

∣∣F̂(ξ, τ)
∣∣2dτdξ

 1
2

< ‖g‖Hs + ‖h‖Hs−1 +

t∫
0

‖F(τ)‖Hs−1 dτ.

Corollary 2. For the solution to Equation (9), we have

‖u‖Xs < ‖g‖Hs + ‖h‖Hs−1 +

T∫
0

‖F(τ)‖Hs−1 dτ. (15)

Proof. We have ‖u‖Xs = sup
0≤t≤T

(‖u(t)‖Hs + ‖ut(t)‖Hs−1). Thus, the result follows from

Theorems 5 and 6.

3. First Main Result: Local Existence

Now, we are ready to prove the existence and the uniqueness result of the local solution
to our problem.

Theorem 7. Let n > 0, s > n
2 + 1, r ∈ (0, 1), and m,p ∈ (1,+∞) ∩ (s− 1,+∞). Then, for

g ∈ Hs(Rn) and h ∈ Hs−1(Rn), problem (1) has a unique solution

u ∈ C([0, T]; Hs(Rn)) ∩ C1
(
[0, T]; Hs−1(Rn)

)
,
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with the positive number T only depending on ‖g‖Hs + ‖h‖Hs−1 .

Proof. The next relation m|u|m−1ut = ∂t

(
|u|m−1u

)
leads us to introduce a new unknown

v satisfying u = vt. Then, we obtain a new problem with a locally Lipschitz nonlinear
memory term

vtt − ∆xv = − b(t)
m |vt|m−1vt +

1
1−v

t∫
0
(t− s)1−v |vt(s, x)|pds

+ 1
m

t∫
0

b′(t)|vt|m−1vtds + 1
m |g|

m−1g(x) + h(x),
(16)

where v(t = 0, x) = 0, vt(t = 0, x) = g(x), and it is easy to check that u ∈ C([0, T]; Hs(Rn))
∩ C1([0, T]; Hs−1(Rn)

)
is the solution to (1), if and only if v is a solution (16) in the class{

v ∈ C([0, T]; Hs(Rn))
vt ∈ C1([0, T]; Hs−1(Rn)

)
, vtt ∈ C1([0, T]; Hs−1(Rn)

)
.

Let us define

XT = C([0, T]; Hs(Rn)) ∩ C1([0, T]; Hs−1(Rn)
)

YT = L∞([0, T]; Hs(Rn)) ∩W1,∞([0, T]; Hs−1(Rn)
)

BT,M =

{
u ∈ YT ; sup

0≤t≤T
(‖u(t, .)‖Hs + ‖ut(t, .)‖Hs−1) ≤ M

}
.

Now, we set that XT,M = BT,M ∩ XT , since XT ⊂ YT and XT,M ⊂ BT,M. Set

F(vt) = −
b(t)
m
|vt|m−1vt +

1
1−v

t∫
0

(t− s)1−v |vt(s, x)|pds

+
1
m

t∫
0

b′(t)|vt|m−1vtds +
1
m
|g|m−1g(x) + h(x).

(17)

Now, we introduce for any w ∈ YT the map Ψ[w] = v, where v ∈ XT is a solution to{
vtt − ∆xv = F(wt) (0, T)×Rn

v(t = 0, x) = 0, vt(t = 0, x) = g(x) x ∈ Rn.
(18)

Our goal is to show that there exists a unique v such that Ψ[v] = v. For that, we start by
showing Ψ is well defined. Indeed, let w ∈ YT,M then Ψ[w] ∈ XT,M for sufficiently small
T > 0. We have from the Corollary 2

‖v‖Hs + ‖vt‖Hs−1 < ‖g‖Hs−1 +

T∫
0

‖F(τ)‖Hs−1 dτ, (19)

and from Lemma 1, since s > n
2 + 1, we obtain



Fractal Fract. 2023, 7, 788 9 of 21

t∫
0

‖F(τ, .)‖Hs−1 dτ

≤ b(t)
m

t∫
0

∥∥∥|wt|m−1wt(τ, x)
∥∥∥

Hs−1
dτ +

1
1−v

t∫
0

t∫
0

(τ − s)1−v∥∥|wt(s, x)|p
∥∥

Hs−1(s)dτds

+
T
m

∥∥∥|g|m−1g(x) + h(x)
∥∥∥

Hs−1
+

1
m

t∫
0

τ∫
0

b′(t)
∥∥∥|wt|m−1wt

∥∥∥
Hs−1

dτds

< T‖wt‖m−1
L∞ sup

0≤t≤T
‖wt‖Hs−1 +

1
1−v

t∫
0

(τ − s)1−v‖wt‖p−1
L∞ sup

0≤t≤T
‖wt‖Hs−1 ds

+ T
(
‖g‖m

Hs + ‖h‖Hs−1
)
+

1
m

t∫
0

τ∫
0

b′(t)‖wt‖m−1
L∞ sup

0≤t≤T
‖wt‖Hs−1 dτds.

(20)

Using the Sobolev embedding in Theorem 2, we find

t∫
0

‖F(τ, .)‖Hs−1 dτ < T sup
0≤t≤T

‖wt‖m
Hs−1 + sup

0≤t≤T
‖wt‖p

Hs−1

t∫
0

(τ − s)1−vds

+ T
(
‖g‖m

Hs + ‖h‖Hs−1
)
+ sup

0≤t≤T
‖wt‖m

Hs−1

t∫
0

b′(t)dt.

Now, let M = 4
(
‖g‖m

Hs + ‖h‖Hs−1
)
; then, we can conclude that

t∫
0

‖F(τ, .)‖Hs−1 dτ ≤ C
(

TMm + T2−v Mp + (1 + T)r Mm + TM,
)

, (21)

and so

sup
0≤t≤T

(‖v‖Hs + ‖vt‖Hs−1) ≤ C
(
‖g‖Hs + TMm + T2−v Mp + (1 + T)r Mm + TM

)
≤ C

(
M + TMm + T2−v Mp + (1 + T)r Mm + TM.

)
.

Therefore, we have
sup

0≤t≤T
(‖v‖Hs + ‖vt‖Hs−1) ≤ CT,M M,

where

CT,M = C
(

1
4
+ TMm−1 + T2−v Mp−1 + (1 + T)r Mm−1 +

T
4

)
.

Now, for a sufficiently small T, we can choose T1 > 0 such that CT,M ≤ 1 for any T ∈ (0, T1].
Hence, Ψ[wt] ∈ XT,M, and thus, Ψ is well defined.

Next, we show that Ψ is a contraction mapping in XT,M. For that, let w1, w2 ∈ YT,M.
Then, Ψ[w1], Ψ[w2] ∈ XT,M. Let v1, v2 be two solutions to Equation (18). Set ṽ = v1 − v2.
Then, ṽ satisfies
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ṽtt − ∆x ṽ = 1
1−v

t∫
0
(t− τ)1−v(|(w1)t(τ, x)|p − |(w2)t(τ, x)|p

)
dτ

+ 1
m

t∫
0

b′(s)
[
|(w1)t(s, x)|m−1(w1)t(s, x)− |(w2)t(s, x)|m−1(w2)t(s, x)

]
ds

+ b(t)
m

[
|(w1)t|

m−1(w1)t − |(w2)t|
m−1(w2)tt, x)

]
ṽ(t = 0, x) = ṽt(t = 0, x) = 0 x ∈ Rn.

(22)

Since wi ∈ YT,M, by Sobolev’s embedding, we conclude that

viinYT,M and ṽ ∈ C([0, T]; Hs(Rn)) ∩ C1([0, T]; Hs−1(Rn)
)
.

Therefore,

‖ṽ(t, .)‖Hs + ‖ṽt(t, .)‖Hs−1

<

t∫
0

s∫
0

(s− τ)1−v∥∥(|(w1)t(τ, x)|p − |(w2)t(τ, x)|p
)∥∥

Hs−1 dτds

+
1
m

t∫
0

s∫
0

b′(s)
∥∥∥[|(w1)t(s, x)|m−1(w1)t(s, x)− |(w2)t(s, x)|m−1(w2)t(s, x)

]∥∥∥
Hs−1

dsdt

+
1
m

t∫
0

b(s)
∥∥∥[|(w1)t(s, x)|m−1(w1)t(s, x)− |(w2)t(s, x)|m−1(w2)t(s, x)

]∥∥∥
Hs−1

dsdt.

(23)

Since |v|l−1v is a C1 function with l > 0, the mean value theorem leads to∣∣∣|v1|l−1v1 − |v2|l−1v2

∣∣∣ ≤ C
(
|v1|l−1 + |v2|l−1

)
|v1 − v2|∣∣∣|v1|l − |v2|l

∣∣∣ ≤ C
(
|v1|l−1 + |v2|l−1

)
|v1 − v2|.

From Sobolev’s inequality ‖ṽ‖L∞ ≤ C‖ṽ‖Hs−1 , it follows that for s > n
2 + 1,

‖ṽ‖Hs + ‖ṽt‖Hs−1

<

t∫
0

(t− τ)1−v
[
‖|(w1)t(τ, x)|‖p−1

Hs−1 + ‖|(w2)t(τ, x)|‖p−1
Hs−1

]
‖|(w1 − w2)t(τ, x)|‖Hs−1 dτ

+
1
m

t∫
0

b′(τ)
[
‖|(w1)t(τ, x)|‖m−1

Hs−1 + ‖|(w2)t(τ, x)|‖m−1
Hs−1

]
‖|(w1 − w2)t(τ, x)|‖Hs−1 dτ

+
1
m

t∫
0

b′(τ)
[
‖|(w1)t(τ, x)|‖m−1

Hs−1 + ‖|(w2)t(τ, x)|‖m−1
Hs−1

]
‖|(w1 − w2)t(τ, x)|‖Hs−1 dτ

<
(

T2−v Mp−1 + (1 + T)r+1Mm−1
)
· sup

0≤t≤T
‖|(w1 − w2)t(t, x)|‖Hs−1 .

(24)

So, there exists a positive C such that

‖[Ψ[w1]−Ψ[w2]](t, .)‖Hs−1

≤ C
(

T2−v Mp−1 + (1 + T)r+1Mm−1
)

sup
0≤t≤T

‖|(w1 − w2)t|‖Hs−1 .
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Fix T ∈ (0, T1] small enough such that C
(

T2−v Mp−1 + (1 + T)r+1Mm−1
)
< 1

2 . Hence,

‖Ψ[w1]−Ψ[w2]‖XT,M
≤ 1

2
‖(w1 − w2)(t, .)‖XT,M

.

Therefore, owing to Banach’s fixed point principle, one can directly conclude the proof of
the unique local solution.

4. Second Main Result: Blowing-Up

Here, the blow-up of the solution to system (1) is established. We start by giving the
following definition regarding the meaning of the solution to (1).

Definition 3. Let T > 0, r ∈ (0, 1), 0 < v < 1, α = 1 − v, b(t) = (t + 1)r, and g ∈
L1

loc(R
n) ∩ Lm

loc(R
n), h ∈ L1

loc(R
n). We call u a weak solution, if u ∈ Lp

(
(0, T), Lp

loc(R
n)
)
∩

Lm((0, T), Lm
loc(R

n)
)
, and it satisfies

Γ(α)
T∫

0

∫
Rn

Jα
0|t
(
|u|p

)
ϕdxdt +

∫
Rn

h(x)ϕ(0, x)dx

−
∫
Rn

g(x)ϕt(0, x)dx +
1
m

∫
Rn

|g|m−1gϕ(0, x)dx

=

T∫
0

∫
Rn

uϕttdxdt− 1
m

T∫
0

∫
Rn

b′(t)|u|m−1uϕdxdt

− 1
m

T∫
0

∫
Rn

b(t)|u|m−1uϕtdxdt−
T∫

0

∫
Rn

u∆x ϕdxdt,

(25)

for nonnegative functions (test)
ϕ ∈ C2([0, T]×Rn),

where
ϕ(T, x) = ϕt(T, x) = 0.

In the sequel, we have g > f and ∃C > 0, where f ≤ Cg, and the nonnegative constant
C is supposed to be independent of T > 0.

Theorem 8. Let n > 0 and 0 < v < 1, and let m > p > 1. Under the following conditions on
the functions (g, h) ∫

Rn
g(x)dx > 0∫

Rn
h(x)dx > 0∫

Rn
|g(x)|m−1g(x)dx > 0,

(26)

and if

p
p− 1

> inf
d>0

max

 nd
2 + 1
α + d

,

√(
B

2A

)2
− C

A
− B

2A

, (27)

with
A = (1−m)(r− 2 + m)(1 + ρ)− α(r− 2 + m)− (1− r)(1−m),

B = m[(2m− 3 + r)(1 + ρ) + α + (1− r)],

C = −m2(1 + ρ),

we have the weak solution in the sense of definition (3) that (1) does not exist globally in t.
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Proof. Seeking a contradiction, assume that u is a nontrivial weak solution to the problem
(1), which exists globally in time. We apply the test function method. For some T > 0, we
choose the test function as follows

ϕ = Dα
t|TΨ = ϕl

1(x)Dα
t|T ϕ2(t), (28)

where ϕ1(x) = Φ
(
|x|2

η

)
and ϕ2(t) =

(
1− t

T
)β

+ with 1 ≤ β and 0 < η, Φ ∈ C∞(R+) is a

cutoff nonincreasing function satisfying

Φ(z) =
{

1 , 0 ≤ z ≤ 1
0 , 2 ≤ z,

with 0 ≤ Φ ≤ 1, and for all z ∈ R, we have |Φ′(z)| ≤ c
1+z for c > 0. Now, we rewrite the

problem of the weak solution as

Γ(α)
T∫

0

∫
Rn

Jα
0|t
(
|u|p

)
Dα

t|TΨdxdt +
∫
Rn

h(x)Dα
t|TΨ(0, x)dx

−
∫
Rn

g(x)∂tDα
t|TΨ(0, x)dx +

1
m

∫
Rn

b(0)|g|m−1gΨ(0, x)dx

=

T∫
0

∫
Rn

u∂2
t Dα

t|TΨdxdt− 1
m

T∫
0

∫
Rn

b′(t)|u|m−1uDα
t|TΨdxdt

− 1
m

T∫
0

∫
Rn

b(t)|u|m−1u∂tDα
t|TΨdxdt−

T∫
0

∫
Rn

u∆xDα
t|TΨdxdt.

(29)

By using the identity (6) in Proposition 2, we obtain

Γ(α)
T∫

0

∫
Rn

Jα
0|t
(
|u|p

)
Dα

t|TΨdxdt +
∫
Rn

h(x)ϕl
1(x)Dα

t|T ϕ2(0)dx

−
∫
Rn

g(x)ϕl
1(x)Dα+1

t|T ϕ2(0)dx +
1
m

∫
Rn

b(0)|g|m−1gϕl
1(x)Dα

t|T ϕ2(0)dx

=

T∫
0

∫
Rn

uϕl
1(x)Dα+2

t|T ϕ2(t)dxdt− 1
m

T∫
0

∫
Rn

b′(t)|u|m−1uϕl
1(x)Dα

t|T ϕ2(t)dxdt

− 1
m

T∫
0

∫
Rn

b(t)|u|m−1uϕl
1(x)Dα+1

t|T ϕ2(t)dxdt−
T∫

0

∫
Rn

u∆x ϕl
1(x)Dα

t|T ϕ2(t)dxdt.

(30)

Applying Corollary 1 yields

Γ(α)
T∫

0

∫
Rn

Jα
0|t
(
|u|p

)
Dα

t|TΨdxdt + CT−α
∫
Rn

h(x)ϕl
1(x)dx

+ CT−α−1
∫
Rn

g(x)ϕl
1(x)dx + CT−α

∫
Rn

|g|m−1g(x)ϕl
1(x)dx

=

T∫
0

∫
Rn

uϕl
1(x)Dα+2

t|T ϕ2(t)dxdt− 1
m

T∫
0

∫
Rn

b′(t)|u|m−1uϕl
1(x)Dα

t|T ϕ2(t)dxdt

− 1
m

T∫
0

∫
Rn

b(t)|u|m−1uϕl
1(x)Dα+1

t|T ϕ2(t)dxdt−
T∫

0

∫
Rn

u∆x ϕl
1(x)Dα

t|T ϕ2(t)dxdt.

(31)
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To simplify the first term of the LHS of (31), we integrate by parts with the use of
Proposition 1 and (5). Thus, we obtain

T∫
0

∫
Rn

Jα
0|t
(
|u|p

)
Dα

t|TΨdxdt =
T∫

0

∫
Rn

Dα
0|T

(
Jα
0|t
(
|u|p

))
Ψdxdt

=

T∫
0

∫
Rn

|u|pΨdxdt.

(32)

Regarding the other terms, we denote by ΩT the support of ϕ1 as

ΩT = sup
{

x ∈ Rn : |x|2 ≤ 2T
}

.

Now, using the Lebesgue dominated convergence theorem, we obtain

lim
T→∞

∫
ΩT

g(x)ϕl
1(x)dx =

∫
Rn

g(x)dx

lim
T→∞

∫
ΩT

|g(x)|m−1g(x)ϕl
1(x)dx =

∫
Rn
|g(x)|m−1g(x)dx

lim
T→∞

∫
ΩT

h(x)ϕl
1(x)dx =

∫
Rn

h(x)dx.

We also have
lim

T→∞
g(x)ϕl

1(x) = g(x)

lim
T→∞

h(x)ϕl
1(x) = h(x)

lim
T→∞

|g(x)|m−1g(x)ϕl
1(x) = |g(x)|m−1g(x).

By assumption, we have (g, h) ∈ Lm
loc(Rn)× L1

loc(Rn) satisfying∫
Rn

g(x)dx > 0∫
Rn

h(x)dx > 0∫
Rn
|g(x)|m−1g(x)dx > 0.

This implies that ∫
Rn

g(x)ϕl
1(x)dx > 0∫

Rn
h(x)ϕl

1(x)dx > 0∫
Rn
|g(x)|m−1g(x)ϕl

1(x)dx > 0,

for T > 0. Now, we deal with the RHS of (31) of the weak formulation of solutions. Using
the identity

∆x ϕl
1 = lϕl−1

1 ∆x ϕ1 + l(l − 1)ϕl−2
1 |∇x ϕ1|

2,

and the fact that 0 ≤ ϕ1 ≤ 1, we obtain∣∣∣lϕl−1
1 ∆x ϕ1 + l(l − 1)ϕl−2

1 |∇x ϕ1|
2
∣∣∣ ≤ Cϕl−2

1

(
|∆x ϕ1|+ |∇x ϕ1|

2
)

.

Thus,

T∫
0

∫
Rn

∣∣∣u∆x ϕl
1(x)Dα

t|T ϕ2(t)
∣∣∣dxdt <

T∫
0

∫
Rn

|u|ϕl−2
1

(
|∆x ϕ1|+ |∇x ϕ1|

2
)

Dα
t|T ϕ2(t)dxdt.
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By applying the triangular inequality, we write the RHS of (31) of the weak formulation of
solutions as

Γ(α)
T∫

0

∫
Rn

|u|pΨdxdt <
T∫

0

∫
Rn

∣∣∣uϕl
1(x)Dα+2

t|T ϕ2(t)
∣∣∣dxdt

+

T∫
0

∫
Rn

∣∣b′(t)∣∣|u|m ϕl
1(x)

∣∣∣Dα
t|T ϕ2(t)

∣∣∣dxdt

+

T∫
0

∫
Rn

|b(t)||u|m ϕl
1(x)

∣∣∣Dα+1
t|T ϕ2(t)

∣∣∣dxdt

+

T∫
0

∫
Rn

|u|ϕl−2
1

(
|∆x ϕ1|+ |∇x ϕ1|2

)
Dα

t|T ϕ2(t)dxdt.

(33)

The ε-Young’s inequality states that, for all A, B, p, q > 0,

AB ≤ εAp + C(ε)Bq pq = q + p.

Now, applying ε-Young’s inequality on the terms of the RHS of (33) yields

T∫
0

∫
Rn

|u|ϕl
1(x)

∣∣∣Dα+2
t|T ϕ2(t)

∣∣∣dxdt

=

T∫
0

∫
Rn

|u|Ψ
1
p Ψ−

1
p ϕl

1(x)
∣∣∣Dα+2

t|T ϕ2(t)
∣∣∣dxdt

< ε

T∫
0

∫
Rn

|u|pΨdxdt + C(ε)
T∫

0

∫
Rn

ϕl
1(x)ϕ

− 1
p−1

2 (t)
∣∣∣Dα+2

t|T ϕ2(t)
∣∣∣ p

p−1 dxdt,

(34)

and

T∫
0

∫
Rn

∣∣b′(t)∣∣|u|m ϕl
1(x)

∣∣∣Dα
t|T ϕ2(t)

∣∣∣dxdt

=

T∫
0

∫
Rn

|u|mΨ
m
p Ψ−

m
p
∣∣b′(t)∣∣ϕl

1(x)
∣∣∣Dα

t|T ϕ2(t)
∣∣∣dxdt

< ε

T∫
0

∫
Rn

|u|pΨdxdt + C(ε)
T∫

0

∫
Rn

ϕl
1(x)ϕ

− m
p−m

2 (t)
∣∣b′(t)∣∣ p

p−m
∣∣∣Dα

t|T ϕ2(t)
∣∣∣ p

p−m dxdt;

(35)

then,

T∫
0

∫
Rn

|b(t)||u|m ϕl
1(x)

∣∣∣Dα+1
t|T ϕ2(t)

∣∣∣dxdt

=

T∫
0

∫
Rn

|u|mΨ
m
p Ψ−

m
p |b(t)|ϕl

1(x)
∣∣∣Dα+1

t|T ϕ2(t)
∣∣∣dxdt

< ε

T∫
0

∫
Rn

|u|pΨdxdt + C(ε)
T∫

0

∫
Rn

ϕl
1(x)ϕ

− m
p−m

2 (t)|b(t)|
p

p−m
∣∣∣Dα+1

t|T ϕ2(t)
∣∣∣ p

p−m dxdt,

(36)
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and

T∫
0

∫
Rn

|u|ϕl−2
1 (x)

(
|∆x ϕ1(x)|+ |∇x ϕ1(x)|2

)
Dα

t|T ϕ2(t)dxdt < ε

T∫
0

∫
Rn

|u|pΨdxdt

+ C(ε)
T∫

0

∫
Rn

ϕ
l− 2p

p−1
1 (x)

(
|∆x ϕ1(x)|

p
p−1 + |∇x ϕ1(x)|2

p
p−1

)
ϕ
− 1

p−1
2 (t)

∣∣∣Dα
t|T ϕ2(t)

∣∣∣ p
p−1 dxdt.

(37)

By choosing an estimation for ε small enough, from (34)–(37) with (33), we obtain

T∫
0

∫
Rn

|u|pΨdxdt < J1 + J2 + J3 + J4, (38)

with

J1 =
T∫
0

∫
Rn

ϕl
1(x)ϕ

− 1
p−1

2 (t)
∣∣∣Dα+2

t|T ϕ2(t)
∣∣∣ p

p−1 dxdt,

J2 =
T∫
0

∫
Rn

ϕl
1(x)ϕ

− m
p−m

2 (t)|b′(t)|
p

p−m
∣∣∣Dα

t|T ϕ2(t)
∣∣∣ p

p−m dxdt,

J3 =
T∫
0

∫
Rn

ϕl
1(x)ϕ

− m
p−m

2 (t)|b(t)|
p

p−m
∣∣∣Dα+1

t|T ϕ2(t)
∣∣∣ p

p−m dxdt,

J4 =
T∫
0

∫
Rn

ϕ
l−2q
1 (x)

(∣∣∆x ϕ1(x)
∣∣q + ∣∣∇x ϕ1(x)

∣∣2q
)

ϕ
− 1

p−1
2 (t)

∣∣∣Dα
t|T ϕ2(t)

∣∣∣qdxdt.

To estimate the integrals J1, J2, J3, and J4, we use the change in the variables ξ = T−
d
2 ,

s = T−1t with (η = T
d
2 ), and d is a positive constant (chosen later). Note that suppϕ1 = ΩTd .

Thus, by Fubini’s Theorem, we obtain

J1 =

 ∫
ΩTd

ϕl
1(x)dx


 T∫

0

ϕ
− 1

p−1
2 (t)

∣∣∣Dα+2
t|T ϕ2(t)

∣∣∣ p
p−1 dt

 = J1
1 J2

1 . (39)

First, we have
J1
1 =

∫
ΩTd

ϕl
1(x)dx = T

nd
2

∫
|ξ|≤2

ϕl
1(ξ)dξ = CT

nd
2 . (40)

Also,

J2
1 =

T∫
0

ϕ
− 1

p−1
2 (t)

∣∣∣Dα+2
t|T ϕ2(t)

∣∣∣ p
p−1 dt

=T1−(α+2)q
1∫

0

(1− s)β−(α+2)qds = CT1−(α+2)q.

(41)

Applying Corollary 1 yields 0 < β− (α + 2)q + nd
2 (α = 1−v), and so the integral J2

1 exists.
Now, by (39)–(41), we obtain

J1 = CT1−(α+2)q+ nd
2 . (42)

For J2, we have

J2 =

 ∫
ΩTd

ϕl
1(x)dx


 T∫

0

ϕ
− m

p−m
2 (t)

∣∣b′(t)∣∣ p
p−m
∣∣∣Dα

t|T ϕ2(t)
∣∣∣ p

p−m dt

 = J1
2 J2

2 . (43)
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It is clear that the estimates for J1
2 coincide with the above estimate for J1

1 .
Since (t + 1)r−1 ∼ b′(t), 0 < r < 1, we obtain

J2
2 =

1∫
0

[
(1 + Ts)r−1

] p
p−m

[1− s]−
βm

p−m T−α
p

p−m (1− s)(β−α)
p

p−m Tds

= T1−α
p

p−m

1∫
0

[1 + Ts]
(r−1)p

p−m (1− s)−α
p

p−m +βds.

(44)

We split the integral
1∫

0
=

T−k∫
0

+
1∫

T−k
into two integrals, where k ∈ (0, 1). By taking β� 1,

we can estimate the first integral as follows

T−k∫
0

[1 + Ts]
(r−1)p

p−m (1− s)β−α
p

p−m ds ≤ CT−k. (45)

For the second integral, we have

[1 + Ts]
(r−1)p

p−m ≤
(

1 + T1−k
) (r−1)p

p−m .

Thus,

1∫
T−k

[Ts + 1]
(r−1)p

p−m (1− s)−α
p

p−m +βds ≤
(

T1−k + 1
) (r−1)p

p−m
1∫

T−k

(1− s)−α
p

p−m +βds

≤ C
(

T1−k + 1
) p(r−1)

p−m .

(46)

Set

k =
(r− 1)p

p(r− 1)− (p−m)
.

Then,

T−k ∼ T(1−k) p(r−1)
p−m ,

and thus

J2 ≤ CT1−α
p

p−m−
p(r−1)

−(p−m)+p(r−1)+
nd
2 . (47)

Now, for J3, we put

J3 =

 ∫
ΩTd

ϕl
1(x)dx


 T∫

0

ϕ
− m

p−m
2 (t)|b(t)|

p
p−m
∣∣∣Dα+1

t|T ϕ2(t)
∣∣∣ p

p−m dt

 = J1
3 J2

3 . (48)

It clear that the estimates for J1
3 coincide with the above estimate for J1

1 .
For J2

3 , we know that b(t) = (t + 1)r is a strictly increasing function for 0 < t < 1 with
0 < r < 1. Then, for all 0 < t < 1, we have b(t) ≤ b(T) = (1 + T)r. Since p−m > 0, we
obtain

b(t)
p

p−m ≤ (T + 1)
rp

p−m .
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So, for a large enough T, we have

J2
3 =

1∫
0

[
(1− s)β

+

]− m
p−m |b(t)|

p
p−m
[
CT−α−1(1− s)β−α−1

] p
p−m ds

≤ (1 + T)
rp

p−m CT1−(α+1) p
p−m

1∫
0

(1− s)β−(α+1) p
p−m ds

≤ CT1−(α+1−r) p
p−m .

(49)

Hence,

J3 ≤ CT1−(α+1−r) p
p−m + nd

2 . (50)

Finally, for J4, we have

J4 =

 ∫
ΩTd

ϕ
l−2q
1 (x)

(
|∆x ϕ1(x)|q + |∇x ϕ1(x)|2q

)
dx


 T∫

0

ϕ
− 1

p−1
2 (t)

∣∣∣Dα
t|T ϕ2(t)

∣∣∣qdt

 = J1
4 J2

4 . (51)

If we choose l such that l − 2q > 0, we see that ϕ
l−2q
1 is bounded, since ϕ1 is bounded. We

have for i = 1, . . . , n

∂xi ϕ1 = ∂xi Φ
(
|x|2

η

)
= 2

η Φ′
(
|x|2

η

)
xi∣∣∇x ϕ1(x)

∣∣2q
=
(

2
η

)2q
∣∣∣∣Φ′( |x|2η

)∣∣∣∣2q
.|x|2q.

Since η = T
d
2 and |Φ′(z)| ≤ c

1+z , we obtain

∫
Rn

|∇x ϕ1(x)|2qdx =

(
2
η

)2q
T

nd
2

∫
|ξ|2≤2

∣∣∣Φ′(|ξ|2)∣∣∣2q(
Td|ξ|2

)q
dξ

≤ CT
nd
2 −dq

∫
|ξ|2≤2

|ξ|2q(
1 + |ξ|2

)2q dξ ≤ C0T
nd
2 −dq.

(52)

We also have the following relation for all i = 1, . . . , n

∂2
xi

ϕ1 = ∂xi

(
2
η Φ′

(
|x|2

η

)
xi

)
= 4

η2 Φ′′
(
|x|2

η

)
x2

i +
2
η Φ′

(
|x|2

η

)
∣∣∆x ϕ1(x)

∣∣q =

∣∣∣∣ 4
η2 Φ′′

(
|x|2

η

)
|x|2 + 2n

η Φ′
(
|x|2

η

)∣∣∣∣q.

Therefore,

∫
Rn

|∆x ϕ1(x)|qdx =
∫

Rn

∣∣∣∣∣ 4
η2 Φ′′

(
|x|2

η

)
|x|2 + 2n

η
Φ′
(
|x|2

η

)∣∣∣∣∣
q

dx.
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Using Minkowski’s inequality with a change of variables, we obtain∫
Rn

|∆x ϕ1(x)|qdx

1/q

≤

4qη
n
2−2q

∫
2≥|ξ|2

∣∣∣Φ′′(|ξ|2)∣∣∣(η|ξ|2
)q

dξ


1/q

+

(2n)qη
n
2−q

∫
2≥|ξ|2|Φ′(|ξ|2)|dξ


1
q

≤
(

4qη
n
2−qC1

) 1
q
+
(
(2n)qη

n
2−qC2

)1/q
≤ Cη

n
2q−1,

where
C1 =

∫
|ξ|2≤2

∣∣∣Φ′′(|ξ|2)∣∣∣(η|ξ|2
)q

dξ C2 =
∫

|ξ|2≤2

∣∣∣Φ′(|ξ|2)∣∣∣dξ.

Thus, ∫
Rn

|∆x ϕ1(x)|
p

p−1 dx ≤ CT
nd
2 −d p

p−1 .

Therefore,

J1
4 ≤ CT

nd
2 −d p

p−1 . (53)

Similarly, we deal with J2
4 .

J2
4 =

1∫
0

(1− s)β−α
p

p−1 ds.T−α
p

p−1+1
= CT−α

p
p−1+1. (54)

We conclude that
J4 ≤ CT−(d+α)

p
p−1+

nd
2 +1. (55)

From (42), (47), (50), and (55) we obtain

T∫
0

∫
Rn

|u|pΨdxdt <C
(

T1−(α+2)q+ nd
2

T1−α
p

p−m−
(r−1)p

p(r−1)−(p−m)
+ nd

2

T1−(α+1−r) p
p−m + nd

2

T−(α+d) p
p−1+

nd
2 +1

)
.

(56)

Our next goal is to make the exponents of T negative. It remains to see that

− (α + d)p
p− 1

+
nd
2

+ 1 < 0, (57)

and

1− αp
p−m

− (r− 1)p
p(r− 1)− (p−m)

+
nd
2

< 0. (58)

By taking (p− 1)q = p, 2ρ = nd from (57), we obtain

1 + ρ < q(α +
2ρ

n
), (59)
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and from (58) with m < p, after some calculations, we obtain

q >

√(
B

2A

)2
− C

A
− B

2A
, (60)

where
A = (1−m)(r + m− 2)(1 + ρ)− α(r + m− 2)− (1− r)(1−m),

B = m[(2m− 3 + r)(1 + ρ) + (1− r) + α],

C = −m2(ρ + 1).

Consequently,

q > max

 1 + ρ

α + 2ρ
n

,

√(
B

2A

)2
− C

A
− B

2A

. (61)

Since ρ = nd
2 and q = p

p−1 , we obtain the condition

p
p− 1

> inf
d>0

max

 nd
2 + 1
α + d

,

√(
B

2A

)2
− C

A
− B

2A

, (62)

and from (56) and (62), we find the estimate

T∫
0

∫
Rn

|u|pΨdxdt < CT−χ, (63)

with χ = χ(p, n, m, r, v). So, by taking the limit as T → ∞, using the dominated conver-
gence Theorem, and the fact that

lim
T→∞

Ψ = 1 f or 0 < t < T,

we conclude that
T∫

0

∫
Rn

|u|pΨdxdt = 0.

This implies that u ≡ 0, which contradicts (26).

5. Conclusions and Relevance of the Work

One of the main achievements of our research is to show the impact of nonlinear
memory on the absence of global solutions even the existence of nonlinear dissipation.
By imposing new appropriate conditions and with the help of Fourier transform and
fractional derivative calculus, we obtained our unusual results, regarding the local in time
existence and blow-up of the solution in finite time.

It is possible to formulate a number of similar problems that are extremely important
from the point of view of practical applications and whose solution requires new methods
in the literature, namely: problems that contain a fractional derivative in the boundary
conditions, with a variable time delay, simplifying the mathematical expression of the
condition (62), and reevaluating problem (1) in the case of r ∈ (−1, 0], see [22–28]. It would
be very interesting if one considered numerical studies of this model, which will be our
next research project.
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