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Abstract: In this study, local fuzzy fractional partial differential equations (LFFPDEs) are considered
using a hybrid local fuzzy fractional approach. Fractal model behavior can be represented using
fuzzy partial differential equations (PDEs) with local fractional derivatives. The current methods
are hybrids of the local fuzzy fractional integral transform and the local fuzzy fractional homotopy
perturbation method (LFFHPM), the local fuzzy fractional Sumudu decomposition method (LFFSDM)
in the sense of local fuzzy fractional derivatives, and the local fuzzy fractional Sumudu variational
iteration method (LFFSVIM); these are applied when solving LFFPDEs. The working procedure
shows how effective solutions for specific LFFPDEs can be obtained using the applied approaches.
Moreover, we present a comparison of the local fuzzy fractional Laplace variational iteration method
(LFFLIM), the local fuzzy fractional series expansion method (LFFSEM), the local fuzzy fractional
variation iteration method (LFFVIM), and the local fuzzy fractional Adomian decomposition method
(LFFADM), which are applied to obtain fuzzy fractional diffusion and wave equations on Cantor
sets. To demonstrate the effectiveness of the used techniques, some examples are given. The results
demonstrate the major advantages of the approaches, which are equally efficient and simple to use in
order to solve fuzzy differential equations with local fractional derivatives.

Keywords: fuzzy numbers; fuzzy fractional derivatives; local fractional derivatives; local fuzzy
fractional partial differential equations; Cantor sets

1. Introduction

The concept of fuzzy theory [1] was originally introduced by Zadeh in 1965; it has
been considered extensively from several different aspects of the theory and its applications,
such as linguistic information systems and approximate reasoning in [2-4], fuzzy decision
making and fuzzy logic in [5,6], fuzzy analysis in [7], and fuzzy topology in [8,9].

Many mathematicians are interested in fuzzy fractional differential equations (FFDEs)
and fuzzy fractional calculus since these theories are helpful in determining uncertainty
influenced by ambiguity and inaccuracy. The concepts of Riemann-Liouville, Caputo-
Hadamard, Caputo-Katugampola, Caputo—-Atangana—-Baleanu, Caputo-Fabrizio deriva-
tives, and Caputo fuzzy fractional integrals and/or derivative operators have been applied
in the majority of articles presented to date on this topic (see [10-22]).

Local fractional calculus has garnered the interest of many scientists due to its efficient
treatment of non-differentiable functions. Local fractional calculus (LFC) represents differ-
ential and integral functions on fractal sets in their generalized form. Recently, physicists
and engineers have appreciated LFC in addition to mathematicians. Fractional calculus is a
generalized version of traditional calculus that examines real-order integrals and deriva-
tives. Particularly when inherent constraints on a system influence its dynamics, these types
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of fractional derivative operators model a wide range of real-world phenomena more accu-
rately. The literature contains a multitude of formulations pertaining to fractional integrals
and derivatives. Due to the nonlocal nature of these formulations, they cannot be used to
investigate the characteristics of local scaling phenomena or local fractional differentiability.
Kolwankar and Gangal [23] introduced the notion of local fractional derivatives a decade
ago; these derivatives show several features of integer-order derivatives. However, they
lose the memory properties implicit to the fractional-order derivatives. The local differential
operators with fractal order have been applied as effective and powerful mathematical
tools to simulate complex real-world problems, communicating physical observations and
geometrical clarifications. The purpose of LFC is to investigate the differential properties
of fractal objects and nowhere differentiable functions. The fractal properties are typically
observed in aquifers, porous media, turbulence, and other phenomena.

The local fractional derivative and calculus theory have recently been introduced
by Yang et al. [24]. This is based on fractal geometry and is the best method for the
characterization of the non-differentiable function defined on Cantor sets by Yang and
Hua [25]. Golmankhaneh et al. [26] used fractional calculus in generalized Newtonian me-
chanics, Maxwell’s equations, and Hamiltonian mechanics. This then led to the emergence
of ordinary differential equations and PDEs relating to this new concept, which became
known as local fractional differential equations (LFDEs) and local fractional PDEs. This
prompted some researchers to use the aforementioned methods to solve this new type
of equation, including the local fractional ADM (LFADM) by Yang et al. [27], the local
fractional homotopy perturbation method (LFHPM) [28], the local fractional variational
iteration method [25], the local fractional variational iteration transform method [29], the
local fractional Laplace decomposition method [30], the Yang-Machado-Baleanu—Cattain
wave method, the fractional sech function method [31], and the fractional sech function
method [32].

In 1993, Watugala [33] introduced the Sumudu transformation, which was thought
to be the first of its kind in this field. This transformation was used to solve problems in
control engineering. For this transformation, we devised a difficult inverse formula [34].
Asiru employed the Sumudu transformation to solve integral equations and systems of
discrete dynamic equations in his studies [35,36]. Belgacem and Karaballi [37] presented a
comprehensive list of functions and properties of the Sumudu transformation.

Recently, scientists and engineers have applied the ADM in order to solve linear,
nonlinear differential, and integral problems ([38—42]). Moreover, some researchers have
considered the ADM with the Sumudu transform. Trushit and Ramakanta [43] used the
Adomian decomposition Sumudu transform method (ADSTM). We investigated the fluctu-
ations in the temperature distribution, efficiency, and efficacy of porous fins for different
fractional orders, porous parameters, and convection parameters. Saadeh et al. [44] pre-
sented the modified double ARA-Sumudu decomposition method for the obtained PDEs.

J.H. He invented the VIM, which was successfully used to solve autonomous
ODEs [45,46]. It has been proven that this methodology works well when dealing with a
variety of issues. Similar to the way in which the Shehu transform method is used to modify
this method, the updated methodology is known as the variational iteration transform
method (VITM). This technique has been used to solve many problems; see [40,47,48].
Recently, many authors have presented the VIM with the Sumudu transform. Prakash
et al. [49] proposed a new computational method that was used to solve the numerically
nonlinear time-fractional Zakharov—-Kuznetsov (FZK) equation in two dimensions. Anac
et al. [50] presented approximations of solutions to random component time-fractional
PDEs with Caputo derivatives using the new Sumudu transform iterative method (SUTIM).

The Laplace variational iteration method (LVIM) is a combination of the Laplace
transform and VIM. Many scientific projects have considered this technique. Bhargava
et al. [51] used the LVIM to obtain series solutions to fractional-order heat equations that
appear in many engineering applications. Nadeem et al. [52] presented a new amendment
to the LVIM for the solution of fourth-order parabolic PDEs with variable coefficients.
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In 2015, Yang et al. [28] and Zhang et al. [53] proposed the LFHPM. To further obtain
the solution for the local fractional Tricomi equation (LFTE), Singh et al. [54] proposed
the local fractional homotopy perturbation Sumudu transform method (LFHPSTM). Fur-
thermore, Zhao et al. [55] used LFHPSTM to look into the local fractional heat conduction
equations in fractal media. Others [56-58] have conducted work based on the application
of LFHPSTM. The present work focuses on using the local fuzzy fractional homotopy
perturbation Sumudu transform method (LFFHPSTM) to solve a few LFFPDEs in the
fractal domain. Numerical simulations based on computers have been carried out in order
to clarify the basic structure of the physical models expressed by LFFPDEs. The local
fractional Sumudu transform (LFST) and the LFHPM as discussed in [59] are combined to
generate the LFHPSTM.

The contributions and novelty of this work can be summarized as follows:

¢ The LFFHPSTM is clearly advantageous in comparison to the local fuzzy fractional
homotopy perturbation method and LFADM as it combines two powerful mathemati-
cal tools to solve nonlinear LFFDEs. The combination of LFFHPM with the local fuzzy
fractional Sumudu transform (LFFST) produces faster computations than LFFHPM;
hence, this combination saves time. Furthermore, without requiring linearization,
perturbation, or discretization, this method provides a convergent series solution. The
LFHPSTM does not involve rounding errors and so consumes less time. Further, by
using He’s polynomials to solve nonlinear terms, this approach can handle nonlinear
LFDEs. The novelty and uniqueness of this work arise from the fact that the hybrid
method used has never been applied to the studied LFFPDEs in the recent past. The
technique has two features: the first is that it decomposes nonlinear terms using He’s
polynomials, and the second is that it produces closed-form series solutions with fast
convergence. Furthermore, the LFFHPSTM does not require the solution of complex
Adomian polynomials. These attributes are decisive in the selection of this method to
solve LFFPDEs.

e  For the purpose of solving linear LFFPDEs, the combination of the ADM and the
Sumudu transform method in the context of the local fractional derivative proves
to be rather successful. Utilizing the series form of the solution proposed by the
algorithm, rapid convergence will occur towards the exact solution. It is evident from
the findings that the LFFSDM produces very accurate solutions with a minimal number
of iterations. Therefore, given the effectiveness and flexibility of the application, as
demonstrated by the provided examples, the work concludes that the LFFSDM can be
used for additional linear LFFPDEs of higher order.

¢ The coupling of the VIM and the Sumudu transform method in the sense of local frac-
tional derivatives has been shown to be highly effective in solving linear and nonlinear
LFFPDEs. The local fuzzy fractional Sumudu variational iteration method (LFFSVIM)
is a user-friendly solution for such problems. This method combines two potent
techniques to obtain exact or approximate solutions to linear-nonlinear LFFPDEs. The
modified LFFSVIM is an alternative algorithm to solve linear-nonlinear LFFPDEs.

¢  The fuzzy diffusion and wave equations defined on Cantor sets under fractal con-
ditions are solved using the LFFLVIM. The method is found to be both useful and
efficient in analytical applications. The LFFSEM, LFFVIM, and LFFADM all provide
solutions to the same set of problems. All four approaches yield similar results; hence,
the LFFLVIM is used as a viable alternative to the more standard technique of obtaining
approximate solutions to linear-nonlinear fuzzy fractional differential equations.

This work is structured as follows. Section 2 is dedicated to providing the necessary
notations and fundamental definitions. In Section 3, we present some LFFPDEs that
are treated using a hybrid local fuzzy fractional approach. In Section 4, we propose the
comparison of some analytical techniques applied to obtain fuzzy fractional diffusion and
wave equations on the Cantor set. Finally, the conclusions end the work.
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2. Preliminaries

The set of fuzzy numbers can be denoted by E!, whereas normal, fuzzy convex,
upper semi-continuous and compactly supported fuzzy sets can be defined on the real
line. For 0 < A < 1, set [p]y = {9 € R|p(®) > A}, and [¢]o = cl{d € R|p(d) > 0}. We
explain [¢], = [Eg,ﬁg] ; consequently, if i € E!, the o-level set [¢], is a closed interval
for all ¢ € [0,1], refs. [7]. Suppose that ,h € E! and k € R, and the addition and scalar
multiplication are defined by

o [p+nlo =1yl + [,

o [kylo = K[yl

The triangular fuzzy number defined as a fuzzy set in E!, is determined by = (a,b,¢) € R
and a < b < c such that EQ =a+ (b—a)oand EQ = ¢ — (c — b)o are the endpoints of
o-level sets for all ¢ € [0, 1]. The support of fuzzy number 1 is given as

sup p(y) = cl{d € R[p(9) > 0},

where cl is the closure of set {# € R|yp(8®) > 0}.

Definition 1 ([60]). Let us consider ¥,i € EL. If there exists a w € E! such that ¢ = h + w,
then w is called the Hukuhara difference of 1, h, and it is denoted using 1 © h. Note that

poh#yp+(—1)h.

The Hausdorff distance between two fuzzy numbers is defined as D : E! x E! — R* U {0}

D(y,h) = sup max{[p, — I, P, — gl
0€[0,1]

where the ¢-level sets of ¢ and i are [¢], = <$g’¢£’) and [h], = (EQ,EQ), respectively.
It is easy to note that D is a metric in E! and (D,E!) is a complete metric space [61].

The o-level set of fuzzy functions ¢ : A C R — E! can be represented by [¢( wle =
[Y(n ) p(no)lpcACRand0< o<1

Definition 2 ([62,63]). For arbitrary fuzzy numbers y,h € El,p = @Q,ﬁg],h = [EQ,EQ], the
quantity D(¢,h) = SUP e 0,1] max{ @Q = Il [, — T} is the distance between 1 and h

e (E!,D) denote a complete metric space,

e Dpowhdw) =D h),VyhweE,

e Dahwde) <D(Y,w)+Dhe), Vi, hwecE,

e D(pah0) <D(0)+D(hO0),vVyh ekl

* D(poy,poh) =o|D(pn),vphecELpeR,

* D(p10Y,p2 @) = |o1 —p2| D(,0), V¢ € EL, p1, 02 € R, with p; - p2 > 0.

Let us consider the definition of the Hukuhara difference (H-difference) in [64]. The
Hukuhara H-difference is proposed as a set w for which ¢ Sep i = w < ¢ = h & w. The
H-difference is unique; however, it does not always exist (a necessary condition for ¢ ©¢y i
to exist is that ¢ contains a translation {c} & & of f).

Definition 3 ([63,64]). The generalized Hukuhara difference between two fuzzy numbers , i € E!
is given as
Dp=nhouw,

l/J@nglzw(:){or(ii)h_w@(_w). 1)
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In terms of the g-level, we obtain [ O¢p 1] = [min{ypy — Iy, P, — ﬁg},max{fg — g, P, —
fip}), and if the H-difference exists, then O h = ©g¢H N; the conditions for the existence of
w=19Seuh € El are

- @

o |wy = —ﬁgand@,:%—ﬁg,v@e[o,l],
Case (i)
with w, increasing, W, decreasing, w, < w,.

w, =9, —hyandw, =9 —h, Yo € [0,1],
Case (ii) { ¢t f e (©)

with w, increasing, W, decreasing, w, < w,.
It is simple to demonstrate that (i) and (ii) are both true provided that w is a crisp number.

Definition 4 ([65]). Assume that (8,0) : D — El and (89,0) € D. We say that  is strongly
generalized Hukuhara differentiable on (8o, 0) (GH-differentiable for short) if there exists an element

%WO,@) € E! such that

(i) forall X > O sufficiently small, 3P (8y + R, 0) O (89, 0), P(S, t) S P(8y — N, ) and
the limits (in the metric D)

lim P(% + X, 0) On P (o, 6) — lim P(00,0) Oy l[J(l90 —N,0) _ ai|
N0+ N NS0+ N 99 ' (Bo0)
or
(ii)  for all X > 0 sufficiently small, 3P (8, 0) O P(% + X, 0), P(% — X, 0) oy (0, 0) and
the limits
P00, 0) SnypBo+R0) . PG —N0)onyp(d,0)
W18, Y = o, Y = 36 (000"
or
(iii) for all R > 0 sufficiently small, 3P (0 + R, 0) S (99, 0), P(dy — N, 0) oy (0, 0) and
the limits
. PG +R0) o Pp((0,0) . (G —N,0)op (9, 0) Iy
ngél—&- N B ng& —N = 9 (008
or
(iv) forall X > 0 sufficiently small, 3P (8o, 0) O Y(% + X, 0), (5, 0) Sy P(d — R, ) and
the limits
(0, 0) Snp(Bo+N0) . P(d,0) S (B —N0) 9y
S N = R = a6 o)

Definition 5 ([64]). Assume that {(8,0) : D — El is a function and set (9,0) = [((9,6;0),
P(0,6;0)] for each o € [0,1]. Then,

(1) If  is gH-differentiable in the first form (i), then ¥ (0,6; o) and (9, 0; ¢) are differentiable
functions and N

d ,0; b .
[aﬂ B [ P (0,0 Q)/alp(ﬂ,G,Q)], @

CL B o0 ou
(2) If ¢ is gH-differentiable in the second form (ii), then {(9,6; 0) and (98, 6; o) are differen-
tiable functions and N

ap]  |9p(8,6;0) 9%(8,6;0) 5
{a&L_ o9 a9 ' ©)
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Definition 6 ([66]). A fuzzy-valued function ¥ of two variables is a rule that assigns to every
ordered pair of real numbers, (8,0), in a set D, a unique fuzzy number denoted by (9, 0). The set
D is the domain of 1 and its range is the set of values that 1 takes on, which is {y(9,0)|(8,0) € D}.
The parametric representation of the fuzzy-valued function ¢ : D — El is expressed by ¢(9,0;0) =
[¥(8,6;0),¥(8,0;0)], forany (8,0) € Dand o € [0,1].

Definition 7 ([66]). A fuzzy-valued function  : [@,¢] — E! is said to be continuous at
6o € [D, 1] if, for every positive ¢, there is 6 > 0 such that D(y(0),P(6y)) < e whenever
|6 — 6o| < 0. If y is continuous for each 6 € [D,{], then we say that  is fuzzy continuous on
(@, £].

Next, we regard cr [@, E] as the space of all continuous fuzzy-valued functions on
(@, £], and we recall the space of all Lebesgue integrable fuzzy functions on the bounded
interval [@, /] C Rby L[, 4], refs. [67].

Definition 8 ([67]). Assume that p(u) € CT[@,¢] N LT [@,]. The fuzzy Riemann—Liouville
integral of fuzzy function ¢ is given as

00 = iy [

u>0, 0<a<l

Let the o-level expression of a fuzzy function ¢ as f(u; 0) = [P(u;0), P(u;0)], for 0 < o < 1.

Definition 9 ([60,67]). Let ¢ € C*[@, €] N LT [@, (] be fuzzy function and 0 < & < 1. Then, ¢
is said to be Caputo gH-differentiable at y when

1 H

Cru —u !

D ;0) = / —1 L;0)du.
o¥(Hi0) = Fa—gy /(7Y V()
Note that, later, we indicate DS (1; 0) using “D*P(1; ).

Theorem 1 ([60]). Let ¢ € C7[@,0)NL7[@,4], uo € (a,b) and 0 < a < 1. Then,
(i) if ¢ is an (i)-differentiable fuzzy function, then

(D8, )w(is) = [(°D%, w0, (D5, )9(ii@)], 0<e<1,

(i)  if ¢ is an (ii)-differentiable fuzzy function, then
(575, ) v = [(°D8, ) PG 0), (D )w(mi0)], 0<e<1.

Local Fractional Calculus
We present the local fractional calculus, refs. [24,27,68] , as follows.

Definition 10. The real-valued function W(®) is known local fractional continuous at ¢ = 9
and is displayed by limg_g, W(8) = W (o) if there exists a relation.

At O = 0y, the real-valued function W(9) is known as local fractional continuous and is
shown by limy_g, W(0) = W () if 3, if there is a relation.

[W(8) — W()| < 68,0 < B < 1 with [0 — 0| < ¢ for e, d € R. In the same
way, W(9) is referred to as local fractional continuous on (71, 2) and is symbolized as
W(8) € Cg(71,72), provided that [W(8) — W(d)| < 6P holds for W € (1, 72).
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Definition 11. Assume that (7y1,72), is the interval and A® = max{ABy, Ab1,A8,,-- -} isa
partition of (y1,72), with (0¢,0e41), € = 0,1,2,...,N — 1,00 = 1,0 = 72 with A, =
Oc+1 — Oc. Then, the local fractional integral of W(8) € Cg(y1,72) is defined as

N-1
B . 1 /72 B _ 1 . B
W) = ——— W(6)(d0)F = ——— 1 W(6)(Abe)P. 6

Y1472 ( ) F(1+’B) " ( )( ) r(l+,3) Aégloggo ( 8)( 5) ( )
Definition 12. The Mittage—Leffler function in fractal media is represented as

omB

Ep(8F) = m;O T +mp)’ 0<p<Ll @)

Definition 13. In fractal media, the trigonometric function is stated as

ing (9P) = 3 glem+p
sing(87) m§0< V' ar@mnp
00 2mf

0

3
I

Definition 14. Assume that W(9) satisfies the condition of local fractional continuity according
to Definition 10. Hence, we have the inverse formula of the local fractional integral described in
Definition 11 as

dPW (%) o DF(W(8) — W(%))
oo O = T

DEW (89) = de (),

where AP(W(8) — W(dp)) = T(B+1)(W(8) — W(d)), and DgW(ﬁo) denote the local
fractional derivative of W(¢) € Cg(71,72) of order B at & = t.

The local fractional partial derivative of W(®,&) € Cg(1,72) of order g was provided
by Yang [24,68] as follows:

oF AP(W(9,¢) — W(8,80))
—W(,¢) = : ==, ve (r,72), 9
agP (€ —Go)P
where AP(W(9,0) — W(8,00) 2T (B+1)(W(8,0) — W(8,60)).

This study makes use of the formulas for local fractional derivatives and local fractional
integrals of a few spatial functionals that are listed in [24,68]: ID)gaW(ﬂ) = aDﬁW(ﬁ), where
a is constant

8 9mp B g(m=1)B
E%Qu+mm>‘ru+m—UM'

8 9mB B §(m+1)B
Hﬁ(r(umﬁ)) Tt mynp "N

where 9P specifies the Cantor function.

3. Local Fuzzy Fractional Partial Differential Equations

In this section, the hybrid fuzzy fractional approach is applied to some local fuzzy
fractional partial differential equations.

3.1. Local Fractional Sumudu Transform

We introduce the following definitions of the local fractional Sumudu transform
(LEST), refs. [59,69].
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Definition 15. The LFST of a function W(0) is given as

LFSs{W(6)} = Wp(z) = (11+5> / Ep(—zPob) Z; V@), 0<p<1.  (0)
Applying the formula above, the inverse LFST is defined as
LPS;l{Wﬁ(z)} =W(), 0<B<1. (11)
Remark 1. LFSﬁ{r(leiiﬁ)} = 2P,

Theorem 2. (Linearity). If LFSg{W(0)} = Wy(z) and LFSg{V (0)} = V(z), we get
LFSg{W(0) + V(6)} = Wg(2) + Vp(2), 0<p<1 (12)

Theorem 3. (Local fractional convolution). If LESg{W(6)} = W(z) and LFSg{V(6)} =
V(z), we obtain

LFSg{W(6) * V(0)} = zPWg(z)Vg(z) with W(8) x V(0) = ﬁ Jo  W(y)V(e —
y)(d8)P.

Theorem 4. If LFSg{W(0)} = Wg(z), then

dPW(9)  Wp(z) — W(0)
Lpsﬁ{ o }_ s
dmﬂww)} 1 l (S ]
LFs,d O 2 g, — W (0) |. (13)
o\ S| = 8 | ToE) — L W)
For m = 2, we obtain
d2PW (6
LFSﬂ{dgzé)} Ziﬁ{wﬁ() W(O)—ZﬁWﬁ(O)}, (14)

where W (z) = LFSg{W(0)}.
Theorem 5. If LFSg{W(6)} = Wg(z), we obtain LFSﬁ{OIé‘B)W(Q)} = zPWpg(z).

Theorem 6. The LEST of some special functions

1
1—azp’

LFSg{a} =a, LFSg{Ep(atP)} = (15)

where a is g constant.

LPSﬁ{ 1+,B } , LFSﬁ{ZakGﬁk} ir(1+kﬂ)ﬂkzﬁk,

k=0 k=0
5 8 azP
LFSg{cosg(ab’)} = 1T 228 LFSg{sing(ab’)} = T a2
B B
. B _ az B _ az
LPSﬁ{Sll’\h/g(ﬂe )} 1228 LFS/g{coshﬁ(ae )} 122
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3.2. Local Fuzzy Fractional Homotopy Perturbation Sumudu Transform Method

We provide the fundamental plan for the LFFHPSTM. The following LFFPDEs are
used to demonstrate the basic steps of the LFFHPSTM.

LW (9,8) & UsW(9,0) DR;W(8,6) = h(9,8), 0<d<1, 0<6<1, (16)

where Lg = Lfﬁ is called the linear local fuzzy fractional differential operator (LFFDO)
of order kg, Up is called the LFFDO of order less than [Lg, Rg indicates the nonlinear local
differential operator in @ and 6 are variables, W (&, §) specifies the unknown local fractional
continuous function, and (9, 0) is called the nowhere differentiable source term.

Furthermore, the fundamental strategy of LFFHPSTM proposes the use of LFFST in
Equation (16)

LFFSs[LgW(9,8)] @ LFFS;[UsW(9,8)] @ LFFSs[RgW(8,6)] = LFFSg[h(9,6)]. (17)

Using the property of LFFST, we have

W (9,2) = Wg(9,0) @ 2PWF(8,0) @ 22PW# (8,0) @ - - @ 2k DEWE-DA (9, 0)

W(9,0) =Y.

& 2P LFFSg[UsW(8,0)] © P LFFSg[RgW(8,0)] & 2P LFFSg [Rgh(9,0)], (18)
where Wg(9,z) = LFFSg[W(9,6)], or

k=1 Zmﬁa’”ﬁW(ﬂ,O)

g © ZPLFFSg[h(8,0)] © 2" LFFSs[Ug(9,0)] © ZFLFFSg[RgW(8,0)]. (19)

m=0

Using Equation (19) and the reverse of LFFST, we obtain

=1 P 9mPW(9,0)

W0 = L g oo © LTS H(PLEESyln(9.0)))
© LFFS;" (PLFFSg[Up(0,6)] @ 2PLFFS,[RW(8,6)]).  (20)

The basic steps include the following. The expansion of W(9,0) takes the place of a power
series of p as

W(8,0) =Y p"PW,(9,0), (21)
n=0
and the nonlinear component is presented as
RgW(8,60) = Zb o"PH,, (W), (22)
n=

where p(9,0) is an embedding variable and H,, (W) is a local fractional He’s polynomial
represented as

1 o"p

_ v P _
H,, (Wo, W1,...,W,) r(nﬁ+l)apnﬁ[Rﬁ<l;)p WZNPO, n=0,1,2,... (23)

Applying the values of W(¢,6) and RgW (48, 6) in Equation (20) yields the following homo-
topy equation:
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k=1 k—1
ome 9"PW(9,0)
np - ’ —1( kB
mgop W, (9,0) m§:0r(1+ DT ® LFFS (z LFFSﬁ[h(ﬁ,Q)])

) @z LFFSg l

Furthermore, comparing the coefficients of the same powers of p yields

[e9)

Y p"FW,(8,0)
n=0

©pPLFFS,! <zk/3LFFS P <U,5 )
n=

o"PH, (W)} ) ) (24)

k—1
g 9mPW(8,0)
0. Wy (8,0) = ’

m=0
p' 1 W, (9,0) = —LFFS;! <zk5LFFSﬁ [Up(Wo(8,0)) @ HO(W)])

® LFFS;! (zkﬁLFFSB (9, 9)])

pF  Wa(8,0) = —LFFS; 1 (ZLEFS,[Us(W1 (8,0) & Hy (W) ) (25)
p% 1 W(9,0) = —LFFS;! (zkﬁLFFSﬁ [Ug(W2(9,6)) @ HZ(W)])

Finally, the local fractional series solution of Equation (16) can be written as

N
W(9,0) = lim Y W,(9,6). (26)

N—o0 =0

Convergence Analysis

We consider the Banach space C[0, 7] of all continuous fuzzy functions on [0, 7] with
the supremum norm. Throughout this section, we consider W(4,6), W, (¢,60) € C[0, T].

Theorem 7. The solution obtained by the LFFHPSTM of fuzzy partial differential Equation (16)
has a unique solution, whenever 0 < ¢ < 1.

Proof. The solution of Equation (16) is of the form W(9,0) = Y>>, p”ﬁwn (9,0). Here,

n—1

k
W(9,0:0) = Y - w®(8,0(0) + LFFS;! {w”ﬁ (LFFSg{h(8,6;0) — UgW(8,6;0) — RgW(8,6;0)}) }

=k

W v 1 f 7 w W

W(0,0:0) = Y W (8,0)(0) + LFFS; {w"f (LFFS{R(9,6;0) ~ UsW(8,6;0) ~ RsW(3,6;0) } ) },
PR

where ¢ € [0,1].
Assume that W(%,0) and Y(8, ) are the distinct solutions of Equation (16); then,

|W(8,6;0) —Y(8,6;0)| = | — LEFS5" [w"P (LFFS5[U(W(9,6;0) — Y(8,6;0))
+R(W(d,0;0) - Y(8,6;0))]l, (27)

[W(,6;0) — Y(8,0;0)| = | — LFFS; ' [w"? (LFFS5[U(W(8,0;0) ~ Y(9,6;0) )
+R(W(,6;0) ~ ¥(8,6;0))]) . 28)
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Applying the convolution theorem,

W(8,6:0) - X(5,6:0)| < [ ([U((6,6:0) - X(8,6:0))|

(0—mn)"

+ IR, 0:0) — (0,601 | "

< [ llw0,0:0) ~ ¥(0,050)]

+al(u0,650) — 2(0,0:0)1D| 2 |,

and

T(6,0;,0) ~F(0,0:0)| < [ (U(W(,0:0) - ¥(8,0,0))

+|R( (0,6:0) ~ 72,601 "

< [[0llW8,6:0) - ¥(0,0:0))

+01(W0,0:0) - T@,0:0)) )|

U is a bounded operator,

(9,6;0)]

|[UW(9,6;0) —Y(8,0;0)| < ulW(9,6;0) —
Y (8,6;0)|

Y
|UW(9,6;0) — Y (9,6;0)| < pulW(9,6;0) —Y

and R satisfies the Lipschitz condition with § > 0 such that

[RW(8,6;0) — X(9,6;0)| < 6|W(8,6;0) —

Y Y
[RW(8,6;0) — Y (8,0 )|<5|W( 0;0) =Y

[W(6,0;0) ~ ¥(0,0:0)| < [ (u+6)[W(0,0;0) ~ V(@, e;e>|\(9’7)"

W0,0:0) - T(0,0:0)| < [0+ 0)[TW(0,0:0) - F0,00)]|

Using the value theorem of integral calculus,

(9,6;0)|MT,
(9,6;0)|MT,

|W(9,6;0) —Y(8,0;0)| < (n+0)[W(9, 9;9) -

Y Y
(W(8,6;0) — Y(8,6;0) < (1 +9) Y

where M = max(6 — )" and 6 € [0, T].
Hence,

where { = (n+6)MT. Then,

implies W(4,0) = Y(8,0) whenever 0 < { < 1. O

dy

71
o

(29)

(30)
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Theorem 8. Assume Y ;o W, — Wif 3¢ € (0,1) such that ||W, | < {||W,_1||n € N.

Proof. For the convergence of sequence {5, (8,6)} of the partial sums of the series (26), we
prove that {S,(8,0)} is a Cauchy sequence in (C[0, 7], ||). As

[1S1+1(8,0;0) = S,,(8,0;0)[| = |W,,11(8,6;0) || < ZI[W,,(8,6;0)l
< IW,_1(8,6;0)]| <--- <T"THWH(8,6;0)|  (31)

and
1S011(8,6;0) — $u(8,6;0) || = [W,11(8,6;0)[| < Z[W.(8,6;0)l
< PIWuo1(8,6;0)| < -+ < T"H[Wo(9,6;0) | (32)
Hence,
n n
15,(8,6;0) =S (8,6; 0 = ), Wi(8,6;0) < ) [Wi(8,6;0)
i=m+1 i=m+1
n—m—1
< C’"”( Y §1>|W0(19/9/’Q)|
i=0
(1-gmm
= C’"“ﬁllwo(ﬂ 8;0)l, nmeN,
and
151(8,0;0) — Sm(8,6;0)|| = H Z Wi(9,6;0) < ) [[Wi(9,6;0)]
m+1 i=m+1

6’”“( > )|Wo(19 0;0)ll
i=0

— ot D W00, mmen
since 0 < ¢ < 1. Hence,

15,:(9,0;0) = 5,,(8,6;0)|| < g ||Wo(19 0;0)ll,

||§n(l9r9;9) Sm(l9 0; Q)|

Wo(9,0;0)].

Moreover, Wy (9, ) is bounded; therefore, ||S,11(8,0) — S, (8,0)|] — 0as m,n — co. Thus,
{Sn(8,0)} is a Cauchy sequence in C[0, 7], and Y,y W, (9, 0) is convergent. [

3.3. Local Fuzzy Fractional Sumudu Decomposition Method

In this section, we present the fuzzy linear operator with a local fractional derivative
as follows,

LgU(8,0) © RgU(9,0) = g(8,0) (33)
where Lg = 2 tr:"ﬁ (m € N*) represents the linear local fuzzy fractional derivative operator
of order mp, R represents the linear local fuzzy fractional derivative operator of order less

than L B and g(19, 6) is a non-differentiable source term. Taking the local fractional Sumudu
transform (denoted by LFFSg) on both sides of Equation (33), we obtain

LFFSg[LgU(8,6)] @ LEFSg [RgU(9,0)] = LFFSg[g(8,6)]. (34)



Fractal Fract. 2023, 7, 851 13 of 41

Applying the prosperity of the local fractional Sumudu transform,

m—1 kv kv
IU(r0) 67 | ppga

U(8,6) = kgoukv o5 T T 5! (W™ (LFFS[g(8,6)])) — LEFS; (u" (LFFS[RGU(8,0)])).  (35)

p

The unknown function U is then divided into infinite series by
n=0

Substituting (36) into (35), we obtain

a G e 9mPW(8,0) -
n;)w"w'e) - mzo[r(wmﬁ) oomp ] @LFFSﬁl(Zkﬁ(LFFSﬁ[gw’Q)D)
o LFFsl;l <zkﬁ (LFFS,S Rg i Wn(ﬁ,e)l ) ) . (37)
n=0

On comparing Equation (37), we obtain

EroemE 9mPW(9,0)
Wow'e)zz{r(umﬁ) 96"

m=0

B
)
W, (8,6) = —LFFS;! (zkﬂ(LPFsﬁ [Uﬁ(wl(ﬂ,e)}))
)

(38)
/3 ’
W;(0,0) = —LFFS;1 (zk’g(LFFSﬁ [Us(W,(8,6))] )
The general form of the local fractional recursive relation is
k-1
gmE "W (9,0) 1k
— 4 - ﬁ
Wo(0,0) EO[F(Hmﬁ) =GB }@LFFSﬁ (z (LFFsﬂ[g(ﬁ,G)])),
W,(8,6) = —LFFS;! (zkﬁ(LPPsﬁ[uﬁ(wn,l(ﬁ,e))])), (39)

where0<v<1l,neN*andm=1,2,3,...

3.4. Local Fuzzy Fractional Sumudu Variational Iteration Method

We consider the following nonlinear fuzzy operator with a local fractional derivative as
LgW(0,0) @ UgW(0,0) @ RgW(8,0) = h(¥,0), (40)

where Lg = aa% specifies the linear local fuzzy fractional differential operator of order 2,
Ug is called the linear local fuzzy fractional derivative operator of order less than in Lg,
Np is represent the nonlinear local fractional operator, and h(%,0) is a non-differentiable
source term. Using the LFFST of Equation (40), we obtain

LFFSg[LgW(8,6)] ® LFFSg[UgW(8,6)] & LFFSg[RgW(8,6)] = LFFSg[h(8,6)]. (41)
Applying the property of the LFFST, we obtain

LFFS5[W(8,0)] = W(8,0) @ W (8,0)uf @ u* LFFS4[h(9,0)]
S uPLFFSg[NgW(8,0) & RgW(9,0)]. (42)
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Using the inverse LFFST of Equation (42) yields

9P
W(9,0) = W(9,0) & WP (6,00 -
® LFFS;! (uzﬁLFFSI; [W(8,6) © NW(8,6) & RgW(9,06)] ) (43)
Taking % of Equation (43), we obtain
PW (0,0 _
# oW, (8,0) & LFFs;! (uZﬁLFFSﬁ [NpW,,(8,0) & RgW,(9,6) & h(9, 9)}) = 0. (44)

The following limit is used to determine the solution
W(9,0) = lim W, (9,0). (45)
9—o00

3.5. Examples

In this part, we present the application of LFFHPSTM for local fuzzy fractional partial
differential equations.

Example 1. We consider the following local fuzzy fractional differential equation on Cantor:

oPW(9,0) 0*PW(0,0)
00F 092h

oW(,0)=0, 6>00€R, 0<p<l, (46)
with the initial condition

W(8,0) = [(2.5+0.50)", (3.5 — 0.50)"] ® sing(8F), (47)
wheren =1,2,3,...

1. Local fuzzy fractional homotopy perturbation Sumudu transform method
Using Equation (46) and the LFFST operator LFFS, we obtain

PW(8,0)
06p

02PW(9,6)

LFFS/g|: 592F

] ® LFPSﬁ[ } = LFFSz(W(9,9)). (48)

Applying the LFFST for the LFFD formula to Equation (48) yields

2
LFFSﬁ[a W(ﬁ,e)} 1

S52F ® 5 [LFFSg(W(8,0)) © W(8,0)] = LFFSg(W(8,0)). (49)

Rearranging the terms in Equation (48) yields

2
LFFSg(W(8,0)) = W(8,0) & zﬁLFFsﬁ(W(ﬂ,G)) S] zﬁLFFSg {agj;gg'e)] (50)
Further simplification on account of Equation (47) reduces Equation (50) to
" Y N 5 2PW (9,6)
LFFSg(W(8,0)) = [(2.5+0.50)", (3.5 — 0.50)"] © sing(8") © zPLFFS(W(¥,0)) © z" LFFSg e | (51)

Using the inverse LFFST of Equation (51), we obtain

B
2
& LFFS;! [zﬁLFPS,3 (aﬂww,e)ﬂ . (52)

W(9,6) = [(25+050)", (3.5 — 050)"] @ sing(8F) & LEFS,, ! [zﬂLPFsﬁ(W(ﬂ, 9))]

B 092p
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[e9)

n=0

p'P
p*F

poF

p"f

p"PW,(8,0) = [(25+0.50)", (3.5 — 0.50)"] ©sing (8F) ® pPLFFS ;! [zﬁLFFS,g (

o

: Wo(ﬂ, 9)

- W1 (8,0)
W (8,0)

- W;5(8,0)

LW, (8,0)

The LFHPM suggests the following homotopy equation:

[e9)

p"ﬁwn(ﬁ,e)ﬂ

n=0

(53)

PP {0 PP W (9,6)}
—1 =0 n 7
pPLFFS, [zﬁLFFSﬁ< = :

Comparing the like powers of p, we obtain
= [(25+0.50)", (3.5 —0.50)"] © sing(¥F)

— LFFS;!

= LFFS;! _zﬁLPFsﬁ(Wo(ﬂ,e)) 5

p ]

09%f

zﬁLFFSﬁ<
i 26 X
2PLFFSg <a (Wlw’e))>

az’g(Wo(&@)))'

— LFFS;!

= LFFS;! _zﬁLFFsﬂ(Wl(ﬁ,G))_ 5

p 9026 ]
% (Wz(M))>'

0928

(54)

— LFFS;!

— -1
= LFFS B

B

ZPLEFS,(W,(8,6)) PLFFS; (

*P(W,_1(8,0))
_ -1 ‘B n—1 7
LFFS [z LFPsﬂ<al92/3 )]

= LFFS;! [zﬁLFFsﬁ(Wn_l(ﬁ,e))] ;

p
After simplification, we get

Wo(9,0) = [(2.5+0.50)", (3.5 — 0.50)"] @ sing (¢F)
26P
T(1+p)
49%P
W, (8,6) = [(2.5+0.50)", (3.5 — 0.50)"] ® sinﬁ(ﬁﬁ)w
863F
T(1+3p)

W1(9,0) = [(2.5+0.50)", (3.5 — 0.50)"] @ sing (9F)

(55)
W5(8,0) = [(2.5+0.50)", (3.5 — 0.50)"] © sing(8F)

IB n
W, (9,0) = [(25+050)", (35 — 0.50)"] © s'mﬂ(lgﬁ)r((lzilﬁ)‘

Consequently, the solution of Equation (46) is as follows:

W(d,0) = [(25+050)", (3.5 — 0.50)"]
. 26F 46% 86% (20P)"
@smﬁ(ﬁﬁ) 1+F(1+ﬁ) + T +28) +F(1+3,3) +...+r(1+nm+...>

 sina(f) S (200"
p(9 )ngor(unﬁ)’

or

W(8,0) = [(2.5+0.50)", (3.5 — 0.50)"] @ sing(8F)Eg(26F). (56)
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2. Local fuzzy fractional Sumudu decomposition method
The subsequent approximations from (39) and (46) are
Uo(8,0) = [(25+0.50)", (3.5 — 0.50)"] © sing(8F)
02U, _1(0,6) (57)
_ -1 1\Y,
Un(8,6) = —LFFS, (wg (LFFS,3 {;ﬁzﬁ —Unl(ﬂ,G)D>, n>1
The subsequent formula (57) yields
Uo(8,0) = [(2.5+0.50)", (3.5 — 0.50)"] © sing(8F)
[9%PUy(8,0) T
Ul(ﬁ/e) = —LFFS (M/S(LFFS‘B _aﬁzﬁ_UO(ﬁle)_)>,
[9%PU; (9,6 1
U,(4,0) = —LFFSy (uﬁ (LFFSﬁ % — Uy(0,0) )), (58)
[0%PTU,(9,0) T
U3(19,0) = —LFFS <Mﬁ(LFFS‘B _MZ‘B_UZ(ﬂ/e)_)>/
The first terms of LFFSDM are given by the equations (58) as
Uo(8,0) = [(25+0.50)", (3.5 — 0.50)"] © sing(8F)
26°
_ ", (35— 0.50)"] © sing(9F)—20—
Uy(8,0) = [(2.5+0.5¢0)", (3.5 — 0.50)"] © sing (¢ )F(l +20)’
; " ) 8 492 (59)
Ux(8,0) = [(2.5+0.50)", (3.5 — 0.5¢)"] © sing (& )m,
The local fuzzy fractional series form is
W(9,0) =[(2.540.50)", (3.5 — 0.50)"]
@ sing(8F) [ 1+ 200 4 | _86¥ + (267)" +
sin S VI
P T(1+p) T(1+2B) T(1+3p) T(1+np)

Thus, we can obtain the exact solution as follows:

> (208"
W(d,0) = sin
( p(0 Z%J I'(1+4np)

= [(2540.50)", (3.5 — 0.50)"] @ sing (8#)Eg(26F).

(60)

In Figure 1, we plot 2D graphs of the exact and approximation solutions for local
fuzzy fractional differential equations (LFFDEs) on Cantor set. Figure 1a shows that for
6 =450 =2, =1,n = 2, the LFFDEs become bounded and closed. In addition, the W
sign shows increasing functions and W denotes decreasing functions on the o-level set
of W. To reflect the concept of the g-level set, Figure 1a illustrates that the g-level set of
LFFDE:s is bounded and closed for 6 = 45. Similarly, in Figure 1b, we can observe the same
explanation of g-level set closedness and boundedness for Example 1.
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Figure 1. The exact and approximate lower and upper solutions of (46) at (a) 6 = 45,¢ = 2,
B=1n=2(b)0 =450 =2,8=0.5n = 2, respectively. Moreover, (a,b) are 2D figures for the
exact and approximate solutions of local fuzzy fractional differential equations on Cantor of W (4, 0)
in Example 1.

Example 2. We consider the following local fuzzy fractional partial differential equation with a
local fuzzy fractional differential operator:

W (9,6) of 3PW(9,0)

~giF O —gp - =L 6>08€R 0<p<l, (61)

with the initial conditions

p
W(8,0) = [(35+050)", (45— 050)") & Eg ((20)F), % — [(35+0.50)", (4.5 — 0.50)"],
(62)
9%PW(9,0) " , ) 93FW(9,0)
oY) — _02B p 2R n — n
7 [(3.5+0.50)", (4.5 — 0.50)"] & ( 2E, ((219) )) o7 [(3.5+0.50)", (4.5 — 0.50)"],
wheren =1,2,3,...
1. Local fuzzy fractional homotopy perturbation Sumudu transform method.
Using the LFFST for the LFFD formula in Equation (61), we obtain
oW (9,0) %W (9,0)
’7 ﬁ 7’ pr—
LFFS/;[ " } © LFFS [2 © =55 1. (63)

Applying the LFFST for the LFD formula in Equation (63), we obtain

%ﬁ [LFFSﬁ (W(8,8)) o W(8,0) & zPWP) (8,0) & 22PW?(8,0) © zCAWER) (9, o)}
4
3FW(9,0)
/5 7’ =
& LFFSg [2 O ——= 3 ] 1. (64)
After the rearrangement of the terms in Equation (64), we obtain
LFFS5(W(9,6)) = W(8,0) & W(9,0) @ zPWE) (9,0) @ 226 W2 (9,0) @ zCPWEP)(8,0)
d3PW(9,6)
4p Bo WU ap
®z LFFS/;[Z © —5 }@z : (65)
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The initial conditions (62) can transform Equation (68) as

36
LFFS5(W(9,0)) = Eg ((219)5) o 2P, ((219)/3) ® 2 LFFS; [2/3 ® aW(M)] @ %

093

Taking the inverse LFFST on Equation (66), we obtain

W(9,0) = LFFS;" (Eg((29)P) ) & LFFS;! (22022 B4 ((29)F) )

38
® LFFS5! [24/3LFFS,3 [2ﬁ ® aW(M)H © LFFS;" 2],

093
After simplification, Equation (67) yields

94ﬁ 1.4
~ B B
)} 2] T(1+4p) S LFFSﬁ {z LFFSg [2

628
r(1+28

W(8,0) = Eg((20)°) {1 2% 33’5“’(199)”

093h
The LFFHPM proposes homotopy expression creation as

6% o4
{1+ 25)] T 4p)
PP { T "W (9,6)) )

i p"PW,(8,0) = [(3.5+0.50)", (4.5 — 0.50)"] & Eg ((219)5) {1 2%
n=0

=1|.4
© pPLFFS, [z ﬁzﬁLPFs,g< Yo

(66)

(67)

(68)

(69)

The following components for the series solution are calculated by comparing the powers

of p as
o0 : Wo(9,6) = [(35+050)", (45 — 0.50)"] @ Eg (20)F) [1 ©2¥ 1"(16?2/3)} v r(leiﬁ)’
p'f - Wy(9,60) = LFFS," :24525LFF55( “;Vlggj %) ) ,
0% : Wy(6,6) = LFFS;" :24/52/5LFFS/5( ?1913;9 9) ) ,
0% W5(8,0) = LPFSIgl :z4/325LFF5;3( ?;3;;9 2 ) ’

After simplification, we obtain

Wo(8,0) = [(3.5+050)", (45— 0.50)"] & Eg ((29)F) :1 o 22/5r(19f2ﬁ)} @ r(19f4/5)’
W1(8,0) = [(3.5+050)", (45— 0.50)"] & Eg ((29)F) _2413r Jiﬁ 7 2% = (16jﬁ6 ﬁ)}
W,(8,6) = [(3.5 +0.50)", (4.5 — 0.50)"] @ Eg ((219)ﬁ) :28ﬁr(19_iﬁ) S 210’5“1(10?0[3)]
Ws(8,0) = [(35+050)", (45— 0.50)"] & Eg( (20)F) _2lzﬁr(19ﬁzﬁ> o 214ﬁr(19:iﬁ)}

Hence, we can obtain the solutions of Equation (61) as follows:

(70)

(71)
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W(9,0) = i W, (9,6)
n=0

= [(35+0.50)", (4.5 — 0.50)"] & [F(leiﬁ) ® Eg ((219)13) (1 o 2% r(1942rﬁ25) @ 24 r(19iﬁ4/3)
o2 F(lej—ﬁéﬁ) & 2% F(le—iﬁSﬁ) © zloﬁ%
= [(35+0.50)", (45— 0.50)"] @ [F(ﬁiﬁ) ® Eg ((2&)@ (1 o F ((12 i)zjﬁ) O 5 (<12 ?Z;) - ((12 ?6:5)
(26)%F (26)106 (260)12F (20)14

T(1+88) T(1+10B) = T(1+128) ~ I(1+ 14p)
it )

I'(1+2np)
(6)* = n (20)%F
T(1+4p) @Eﬁ((w)ﬁ)< (1) F(1+2n[3)>]

n=0

® @ (-1)"

= [(3.5+0.50)", (45— 0.50)"] ®

W(8,0) = [(3.5+ 0.50)", (4.5 — 0.50)"] [F(leiﬁ) ® Eg ((219)/5) cos((Zz‘))ﬁ)] . (73)

2. Local fuzzy fractional Sumudu decomposition method.
Utilizing equations (39) and (61), we can obtain the subsequent mathematical expression

Uy(8,6) = [(3.5+0.50)", (4.5 — 0.50)"] @ Eg(28)F © 2% Eg((29)F) ik - o
0L, B) = [0 o), R0 = o0 p p T(1+20) ~ T(1+4p)

9%PU,_1(8,0) )
_ -1 4 —1\Y,
U, (9,0) = LFFS, (u ﬁ(LFFsﬁ [2/3;193[3})), n>1.
Applying the formula (74), successive approximations are obtained as follows:
0%f o4f
— n _ n B 2B
Uo(8,0) = [(3.5+0.50)", (4.5 — 0.50)"] & [E,;((zﬂ) )(1@2 r(1+2/3)> @ F(1+4/3)]’
[ 50%FU(8,0)]
— —-1(,4p B olv,
Ui(8,0) = LFFS, (u (LFFSﬁ _2 = 9% >>
[50%P U (8,0)]
_ -1 4 1\Y, 75
Uy(8,6) = LFFS; (u ﬁ(mfs,5 _2f3al973/3 >) (75)
[ 50%FUL(8,0)]
_ -1 4 2\Y,
Us(8,6) = LFFS, (u p (LFFsﬁ _2!5807%_ >>

The first terms of LFFSDM have the following form:
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0% g4h
Wo(8,60) = [(3.5+0.50)", (4.5 — 0.50)"] & | Eg ((219)ﬁ) (1 o 22ﬁr(1 n 2;3)) @ Tt 4ﬁ)]
] ) o' 0%
W1 (8,60) = [(3.5+0.50)", (4.5 — 0.50)"] & |Eg ((219)!3) (24ﬁm 25) o zﬁﬂm — 6[;))}
_ n _ n B B 6% 610 76
W, (8,0) = [(3.5+0.50)", (4.5 —0.50)"] & |Eg ((219) ) (28 T 1 85) o210 FiT 10/3))} (76)
128 148
W5(8,6) = [(35+0.50)", (45 - 0.50)"] & | Ep((20)° ) <leﬁr(19+ 128) 14ﬁr(16+ 14/3)>}
The local fractional series form can be expressed as
94p 0)2p 0)48 0)68
W(8,8) = [(3.5+0.50)", (4.5 — 0.50)"] & [T(1+4ﬁ) +Eg ((219)15) (1 S r((12+) 2] r((12+) 5 r((12+) )
(205 (20106 . (208
T(1+88) ~TI(1+10p) @OV g @ )} @7)
Therefore, the exact solution of (61), as determined by LFFSDM, is given by
n n 94‘3 = n 29 zn‘B
W(9,0) = [(35+0.50)", (45~ 050)"| ® | s © E,g( ) ; ~1) (1+)2n/3)] .

Therefore, the exact solution can be achieved as

48

W(9,0) = [(35+0.50)", (4.5 — 0.50)"] & {F(16+4ﬁ) ®Eg ((219)!3) cos((ze)ﬁ)] . (78)

Table 1 shows the error term between exact and approximate solutions of Example 2

for o € [0,1].
Table 1. For the absolute error between exact solutions (E-S) at § = 1 and approximate solutions
(A-S)atp =0.5.
0 Lower E-S Lower A-S  Lower Error  Upper E-S Upper A-S  Upper Error
0 33,369 482.42 32,887 33370 483.42 32,887
0.1 33,369 482.47 32,887 33,370 483.37 32,887
0.2 33,369 482.52 32,887 33,370 483.32 32,887
0.3 33,369 482.57 32,887 33,370 483.27 32,887
0.4 33,369 482.62 32,887 33,370 483.22 32,887
0.5 33,370 482.67 32,887 33,370 483.17 32,887
0.6 33,370 482.72 32,887 33,370 483.12 32,887
0.7 33,370 482.77 32,887 33,370 483.07 32,887
0.8 33,370 482.82 32,887 33,370 483.02 32,887
0.9 33,370 482.87 32,887 33,370 482.97 32,887
1 33,370 482.92 32,887 33,370 482.92 32,887

In Figure 2, we plot 2D graphs of the exact and approximation solutions for local fuzzy
fractional partial differential equations with local fuzzy fractional differential operators.
Figure 2a shows that for 8 = 30,¢ = 3, 8 = 1,n = 1, the LFFPDEs become bounded
and closed. In addition, the W sign shows increasing functions and W denotes decreasing
functions on the o-level set of W. To reflect the concept of the g-level set, Figure 2a illustrates
that the g-level set of LFFPDEs is bounded and closed for & = 30. Similarly, in Figure 2b, we
can observe the same explanation of g-level set closedness and boundedness for Example 2.
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Figure 2. The exact and approximate lower and upper solutions of (61) at (a) 6 = 30,¢ = 3,
B=1n=1()0 =30,0 =3, = 05n = 1. Further, (a,b) are 2D figures for the exact and
approximate solutions of local fuzzy fractional partial differential equations with local fuzzy fractional
differential operators of W(%,6) in Example 2.

Example 3. We consider the following local fuzzy fractional partial differential equation

2PW(9,0) 9*PW(0,0)
502F 592 630W(@,0)=0, 6>0,0€R, 0<B<1, (79
with the initial condition
p
W(8,0) = [(5.5+0.50)", (6.5 — 0.50)"] @ sing (dF), a\v;rf(g,o) = [(55+0.50)", (6.5 - 0.50)"] ®2sing(¢¥)  (80)
wheren =1,2,3,...
1. Local fuzzy fractional homotopy perturbation Sumudu transform method
Applying the LFFST of Equation (79), we obtain the following:
02PW (9,0) 02PW (9,0)
LFFSg {8925} @ LFFSg {81925] = 3LFFS(W(9,0)). (81)
Taking the formula of LFFST for the LFFDs in Equation (81), we obtain
2PW(0,0) 1
2\ e — Py (B) =
LFFSg [ 7 ] = [LFFS,; (W(9,0)) & W(8,0) & ZPWE) (9, o)} BLFFS5(W(9,0)). (82)
Rearranging the terms given in Equation (82) yields
I*PW (8,6
LFFS5(W(8,0)) = W(9,0) @ zPWP)(9,0) @ 322 LFFS5(W(9,6)) © 2P LFFS [aﬂgﬁ)} . (83)

Moreover, Equation (83) is simplified for the initial condition (80) in the following manner:

LFFSg(W(8,60)) = [(5.5+0.50)", (65— 0.50)"] ® [sinﬁ(ﬁﬁ) © 22 sing(0F) @ 3z LFFSg(W(8,0))

(84)

28
gzzﬁLppsﬁ [M’\V(ﬁ,@)} }

092h
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We apply the inverse of LFFST on Equation (83) to obtain

(W(8,0)) = [(5.5+0.50)", (6.5 — 0.50)"] & [sinﬁ(l?/g) & 2LFFS;! (zﬁ sinﬁ(ﬁﬁ)) ® 3LFFS;! [22!5LFF5,3 (W(9, 9))]

_ 02PW(9,6)

The homotopy expression can be established using the fundamental method of LFFHPM:

o B
Y p"PW,(8,0) = [(5.5+0.50)", (6.5 — 0.50)"] & {sinﬁ(ﬂﬁ) & 2sing (0F) _"
= I'(1+p)
@3pﬂLFPs[;1 lZZﬁLppsﬁ ( Op"ﬁwn(ﬂ, 9))]
n=
92B{ 0 0P W (80) }
-1(,2
SpPLFFSy [z PLFFSg ( =37 . (86)

The comparison of the similar powers of p yields the subsequent components of the series solution:
ol
0. _ . .
0% : Wy (8,60) = [(5.5+0.50)", (6.5 — 0.50)"] ® [smﬁ(ﬂﬁ) @ ZSmﬂ(ﬁﬁ)W}
o' W1 (8,0) = [(5.5+0.50)", (6.5 — 0.50)"] & [3LFPS!;1 [zZﬂLFPs,g (W (9, 9))]

[ [9%PWo(9,6)7]
—1|,28 olv,
OLFFS; |z LFPS/g_ =925 ]

0% W, (8,0) = [(5.5+0.50)", (6.5 — 0.50)"] B [3L-F-PS*1 [ZZﬂLFFs,; (W1 (9, 9))]

p
i [92P W, (9,60)7]

-11,2 1\Y,
OLFFS;! |2?PLFFSg e ]

p

0" W, (9,0) = [(5.5+0.50)", (6.5 — 0.50)"] & [SLFFSﬁ‘l [z25LPFs,5 (W,_1(0, 9))}

P*PW,_1(9,6) ] } } '

B

-11,2
SLFFS [z ﬁLFFS/g[ =35

Following the reduction technique, we have

_ of
Wo(9,0) = [(5.5+0.50)", (6.5 — 0.50)"] & |sing(8F) & 2sinﬁ(z9ﬁ)r}

(1+B)
- - 26 36
W1(8,0) = [(55+0.50)", (6.5 — 0.50)"] & |sing(8F) r(fi 75 © msi 5
: R NG
Wa(8,0) = [(55+050)", (65 0.50)"] & |sing(8°) - (ﬁ BT (?zi 5
: : - (87)
: S e
Wi (8,0) = [(55 + 0.50)", (6.5 — 0.50)"] & | sing(8F) r(iﬁo— 5 ® r(112§r67/3)

(29/3)2n (29/3)(2n+1)
Ir(1+2np) T+ (2n+1)B)

W, (8,0) = [(55+0.50)", (65— 0.50)"] & |sing(8P)

] |

Therefore, the solution to Equation (79) is expressed as
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B 26 36
W(8,0) = [(5.5+ 0.50)", (6.5 — 0.50)"] @ [sinﬁ(ﬂﬂ) (1 ® r(fi 7 ® r(fi 25 © r(fi )
1604 320% (26P)"
Ta+4p) “T+5p) T F(l—l—nﬁ))}

Thus, we achieve our desired solution as
W(9,0) = [(55 + 0.50)", (6.5 — 0.50)"] & (sin,g(ﬁﬁ)E,3 (295) ) (88)

2. Local fuzzy fractional Sumudu variational iteration method
The formula for consecutive approximations given in (45) and (79) is

?PW,(0,0)  9PW(8,0)

W1 (9,0) = W,(8,0) S 1P [

002p 06P
9%PW,, (9,6
@Sgl <u2ﬁ55 [aﬂz‘(ﬁ) o 3Wn(t9,6)D]. (89)

The initial conditions (80), the successive formula (89), and the result are as follows:

9B
Wo(8,0) = [(5.54+ 0.50)", (6.5 — 0.50)"] ® {sinﬁ(ﬂﬁ) + 2sing(8P) r(1+ﬁ)}

0*PWy(8,0) 9P (8,0)

W1 (8,0) = Wo(8,0) o 1P [

0028 06P
92PWy(9,0)
—-1(,28 olv,
@SB <M S,B[ 5928 @3WQ(19,9):|):| 00)
_ (p) [0#W1(9,0) _ 0PW(8,0)
WZ(ﬂ/G) - Wl(ﬁ/e) ©o 19 |: 0028 00P
?PW(9,0)
-1 2 1\Y,
According to the above equations, the first of LFFSVIM can be obtained as
Wo(8,0) = [(5.5+0.50)", (6.5 — 0.50)"] & sing () _1 ® zeﬁ]
' ' | T(1+p)
20P 40P 80P
W1 (8,0) = [(5.5+ 0.50)", (6.5 — 0.50)"] @ sing(97) |1 ,
[ 20P 40P 80P 1664 326°F
8,0) = [(5. 50)", (6.5 — 0.50)"] @ sing(9P) |1
W2(0,6) = [(55+050)", (6.5 = 05¢)") @ sing(8) |1© F7—5 © 7= 557 P Ty 387 © T+ 2p) © T(1 1 58)
[ 20P 40P 80P 1664
,0) = [(5. 50)", (6.5 — 0.50)"] @ sing(9F) |1
W3 (8,0) = [(5.5+ 0.50)", ( 0)"] @ sing( )_ @r(1+ﬁ) @1"(1+2[%) @F(1+3ﬁ)@r(1+4ﬁ)
o 326°F - 640 o 12867F
Ir(1+58) TI'(1+6B) T(1+7B)
1)

Then, the non-differentiable solution of (38) has the form
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p p p 4p
%Wwﬁ)_ua5+aww&65_awwhgFmﬂmﬂﬂﬂ(l@rgiﬁ)@rdﬁamggufiwﬁ@ré?AW
326°F 646P 12867F (26F)"
T(1+56) T(+ep) "Ta+7p) % r(1+nﬁ))]'

Finally, the exact solution can be obtained as
W(8,0) = [(5:5+050)", (65— 05¢)"] & (sing(9F) By (26%) ).

4. Fuzzy Diffusion and Wave Equations on Cantor Sets Within Local
Fractional Operators

In this section, we present the fuzzy fractional diffusion and wave equations on Cantor
sets with local fractional operators by using some techniques.

4.1. Local Fuzzy Fractional Laplace Variational Iteration Method

We consider the following local fuzzy fractional partial differential equations,

Lgp(8,0) © Rgp(8,0) = f(8,0), (92)

where the linear local fractional operator Ly and the linear local fractional operator Rg,
which has an order less than Lg, are defined. Additionally, f(8,0) is a non-differentiable
source term.

The correction functional for (92) is constructed as follows, based on the rule of the
local fractional variational iteration technique

A8 —6)P
tra(®) = () o0l (LI Lp®) O Raple) 0 7@)] ), 09)
where )i"((li:ja))ﬁ is a fractal Lagrange multiplier and Lg in (92) are kf times LFFPDEs. The

initial value problem of (92) can be approached by beginning with

B (k=1)p
Po(8) = 9(0) & r(ll:ﬁ)”(ﬁ) O)@---a I“[l—i(k—l)/%}lp((k_l)ﬁ) (0). (94)

Applying the Yang-Laplace transform on the value of (93), yields, in particular

—9)B
Li{nsr(9)) = La{pn(®} @ Ly ol (LG5 55 Lot @ o Rpn(@) 0 £0)] ) |- 05)

Assume the local fuzzy fractional variation of Equation (95), as expressed by

8P (Lp{pns1(9)})

= 5ﬁ(Lﬁ{4’n(l9)}) (96)

B -
@ o (Lﬁ{m}mﬁ{mﬁwn(ﬂ) O Ryu(8) © fw)}).

We apply the computation of (96) to obtain
0P (Lp{n+1(8)})
A(9)P

97)
= P eplin(®)) @] 112 g 1 (s (Lotn(0)))



Fractal Fract. 2023, 7, 851 25 of 41
Thus, from (96), we get
ABP \ g _
1+L5{F(1+ﬁ)}s =0, (98)
where
o (kp{Lpn(8)})
= o (PLp{yu(®)} o5t VP (0) & - 0 9P (0)) (99)
= PP (kg {yu(9)}).
Consequently, we obtain
ABYP N\ up_ 1
Lﬁ{r(l—i—ﬁ)}s =~ (100)
Using the Yang-Laplace transform’s inverse, we have
AOF L 1) ()P
Ta+p) 8 { skﬁ}_ T[1+(k—1)p] kel 10D
and, as a result, we get
@ (8—6)kDP
Eg{n1(8)} =Lp{yn(8)} ©Lpq0ly T+ (k—1)f [Lgpn(0) ® Rgyn(0) © f(0)] | ¢- (102)
Consequently, we have the subsequent iteration algorithm,
9)(k=1)B
Ep{Pu(8)) = Lsla(9)} © 1 lef%ﬂk__l)ﬁ}]tﬁ[Lﬁ¢m<ﬁ>eaRﬁ¢m<ﬁ>eaf<ﬁn, (103)
where the first value can be written as
(k=1)p (k=2)B(B) @ yplDR)
¢o@n._hgl<s P(0) s wsk;o>e> ® P} <o>>
p 2p (k=1)p (109
1% L% A
= — ¥ e Y. LA ( (S D))
YOS O rap T O Tt O

Hence, the solution of the above equation (92) in terms of a local fuzzy fractional series can
be expressed as follows:

(6,0) = lim E57 (Eg{yn(9,0)}). (105)

4.2. Local Fuzzy Fractional Series Expansion Method
We consider the following local fractional differential equation

95" (0,8) = Lgp(8,6), (106)
where L stands for a linear local operator with regard to ¢,n € {1,2}. According to the

findings of [68,70], there are multi-term separated functions of independent variables
6 and ¢

P(8,6) = Y. Ti(6)X:(9), (107)
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where T;(0) and X;(9) are local fuzzy fractional continuous functions. Moreover, there

exists a non-differential series term

(108)

(109)

(110)

(111)

(112)

T; (6 P Gl
i(0) = T+ ip)
where P; represents a coefficient. We can represent the solution in the form presented
below:
$(0.0) = Y P Ki(0)
’ _i:O "T1+ig) "~
Then, following (109), we obtain
(0,0) = 3 i)
YO0 = Lot
Hence,
ll’gﬁ = i ! 0 Xz+1(l9) = i ! 0' Xz+n(l9)/
= r(1+ip) = I'(1+ip)
=] 91/3 00 Giﬂ-
L L ()| = — (LpX;) (0
pY ﬁL;)F(l—H/S) 3 )1 lgr(uz/z)( pXi) (9)
Considering (111), we have
P e bPX,,(0) = 3 (L))
=T +ip) T &g P

Consequently, we can derive a recursion from (112)
Xin(9) = (L, Xi) (9),
and when n = 1, the following relation is obtained:
Xir1(9) = (Lg, X;)(8).
For n = 2, we get the following relation:
Xir2(9) = (Lg, X;) (8).
The solution of (106) can be obtained through the recursion process,

=) 91‘6

whereas convergence can be achieved using

[y =

4.3. Local Fuzzy Fractional Variational Iteration and Decomposition Methods

(113)

(114)

(115)

(116)

(117)

We study the following nonlinear local fuzzy fractional differential equations to demon-

strate two analysis techniques:

]L/(;)IP ©® Rﬁlp =0,

(118)
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(n)

where L g Tepresents linear local fuzzy fractional operators with n = 1,2 and Rg represents
linear local fuzzy fractional operators of order less than H‘/(sn)‘
4.3.1. Local Fuzzy Fractional Variational Iteration Method

In this sub-section, we present the local fuzzy fractional variational iteration technique
as follows

B
Ba®) =00 © s [ e s (L o R P, 19

where ¥, is a confined local fuzzy fractional variation, i.e., 5B Y, = 0. For n = 0, we have

V= g (120)

and, therefore, this iteration can be defined as

_9)5
1+ pB)

Thus, the solution can be in the following form:

$us1(60) =lpn(9>@r(11+ 5 9 IE? (L5 9n(s) @ Ru(s) f(@s)P. (121)

P(9) = lim ¥, (9). (122)

n—oo

4.3.2. Local Fuzzy Fractional Decomposition Method

The local fuzzy fractional differential operator ]Lfg") in Equation (118) has order 28,
and we define

() _ o 2p)_ 0%
]L‘B _]L1919 _8192ﬂ’

iy (123)
Rap(6) = =9(0) @ f(0)
The n-fold fuzzy fractional integral operator is defined as
]L;;Z)m(s) — o180 18 m(s) (124)
and we have
Ly 2L p(s) = Ly P Rep(s). (125)
Hence,
P(s) =r(8) & Ls Reip(s), (126)

where r(19) is identified by the initial conditions of the fractal. Consequently, the iterative
formula is

-2
$(9) = o(8) @ Ly VRgip(s), (127)
with ¢ (9) = r(8). Therefore, assuming that n > 0, the recurrence connectionthat we have

achieved is

I Rgu(s),

r(9).

(1] (19) = LE;
$o(8)

(128)
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Ea (e (8,6)) = Ly p(6,0)} @Lﬁ{l}tﬁ{

The solution can be formulated as

n—oo

$(®) = lim 4,(0) = lim 3 9, (0) (129)
n=0

4.4. Applications

In this section, we give examples of fuzzy fractional diffusion and wave equations on
Cantor sets to demonstrate the efficiency of the used techniques.

Example 4. We consider the following fuzzy fractional diffusion equation on a Cantor set

P (9,0) - 2Py (8,0)
06p 092p

-0, 0<p<1, (130)

subject to the initial condition

B
P(8,0) = [(0.25 + 0.25¢0)", (0.75 4 0.250)"] ® (1’(112—/3))’ (131)
wheren = 1,2,3,--- .

1. Local fuzzy fractional Laplace variational iteration method.
Using relation (103), we obtain

P (9,0) 5 2Py (9,0) }
06p 092h

aZﬁLﬁ{lpn(ﬂ,B)}> 132)

=Lg{yn(9,0)} & slﬁ (sﬁLﬁ{q)n(ﬁ, 0)} © ¢ (8,0)© =475

1 1 %L {yn(0,6)}
- S?¢n(l9’0) D STg aﬁzﬁ .

The initial value can be expressed as

B
¥0(9,0) = (8,0) = [(0.25 + 0.250)", (0.75 + 0.250)"] © (r(119+5)) . (133)

We obtain the initial approximation

1 9%PEg{yo(8,6)}

1
Lo {91(0,0)) = 500,00 & 5 L=,

09%f

= [(0.25 +0.250)", (0.75 + 0.25 )”]@(1 00 1o, )

(134)

B
= [(0-25+0.25¢)", (0.75 4 0.25¢)"] © (slﬁr(ll:ﬁ)> '

Therefore,
1(0,0) = [(0.25+ 0.25¢0)", (0.75 + 0.250)"] ® ! —1 719/3
1(8,6) = [(0. 250)", (0. 250)"] (ﬁ (sﬁl“(l—l—ﬁ)))

9P
= [(0.25+ 0.25¢)", (0.75 4+ 0.250)"] ® (W) . (135)

The second approximation is presented as
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1 0%PEgp{y1(9,0)}

1
Lp{y2(6,0)} = 5754’1(19, 0)® G g

= 025+ 0250)", (0.75 + 0.250)"] © <slﬁ -

p 2 p
% 10 % )>, (136)

0+p) & oo PT 1B

p
= [(0.25+0.25¢)", (0.75 + 0.250)"] © (slﬁr(ll:ﬁ)> '

Therefore,

B

p
= [(0.254 0.250)", (0.75 + 0.25¢)"] ® ( F(1ﬂ+/5) >

(137)

Therefore, the local fuzzy fractional series solution is
(9,0) = lim £ (Eg{yn(0,0)}),

n n . -1 1 ﬁﬁ (138)
= [(0.25 + 0.250)", (0.75 + 0.250)"] ® <nh_r>r(}ohﬁ <55F(1+B)>>

Thus, we achieve the required solution as

9b
P(9,0) = [(0.25 + 0.25¢0)", (0.75 + 0.250)"] © (nlglgo w)

9B
= [(0.25 + 0.25¢0)", (0.75 + 0.250)"] ® <F(1+ﬂ)) (139)

2. Local fuzzy fractional series expansion method
Following (114), we have the following recursive formula

y (140)
Xa() = [(025-+025¢)",(075+ 0250 @ 11 )

which gives us

9B
Xo(8) = [(0.25 4 0.250)", (0.75 + 0.250)"] ® (mﬂg))

X1(9) =0, (141)

Finally, using Equation (141), we obtain

9B
¥(0,0) = [(0.25 + 0.250)", (0.75 + 0.250)"] ® <F(1+/3)) : (142)

Tables 2—4 show the error term between exact and approximate solutions of Example
4 for different values of B = 0.25, 0.50, 0.75.
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Table 2. For the absolute error between exact solutions (E-S) at § = 1 and approximate solutions
(A-S)at p = 0.25.

0 Lower E-S Lower A-S  Lower Error  Upper E-S Upper A-S  Upper Error

0 0.75 0.36299 0.38701 2.25 1.089 1.161
0.1 0.825 0.39929 0.42571 2.175 1.0527 1.1223
0.2 0.9 0.43559 0.46441 2.1 1.0164 1.0836
0.3 0.975 0.47189 0.50311 2.025 0.98008 1.0449
0.4 1.05 0.50819 0.54181 1.95 0.94378 1.0062
0.5 1.125 0.54449 0.58051 1.875 0.90748 0.96752
0.6 1.2 0.58079 0.61921 1.8 0.87119 0.92881
0.7 1.275 0.61709 0.65791 1.725 0.83489 0.89011
0.8 1.35 0.65339 0.69661 1.65 0.79859 0.85141
0.9 1.425 0.68969 0.73531 1.575 0.76229 0.81271

1 1.5 0.72599 0.77401 1.5 0.72599 0.77401

Table 3. For the absolute error between exact solutions (E-S) at = 1 and approximate solutions
(A-S) at p = 0.50.

0 Lower E-S Lower A-S  Lower Error  Upper E-S Upper A-S  Upper Error

0 0.75 0.4886 0.2614 2.25 1.4658 0.78419
0.1 0.825 0.53746 0.28754 2.175 1.4169 0.75805
0.2 0.9 0.58632 0.31368 2.1 1.3681 0.73191
0.3 0.975 0.63518 0.33982 2.025 1.3192 0.70577
0.4 1.05 0.68404 0.36596 1.95 1.2704 0.67963
0.5 1.125 0.7329 0.3921 1.875 1.2215 0.65349
0.6 1.2 0.78176 0.41824 1.8 1.1726 0.62735
0.7 1.275 0.83062 0.44438 1.725 1.1238 0.60121
0.8 1.35 0.87948 0.47052 1.65 1.0749 0.57507
0.9 1.425 0.92834 0.49666 1.575 1.0261 0.54893

1 1.5 0.97721 0.52279 1.5 0.97721 0.52279

Table 4. For the absolute error between exact solutions (E-S) at = 1 and approximate solutions
(A-S)at g =0.75.

0 Lower E-S Lower A-S  Lower Error  Upper E-S Upper A-S  Upper Error

0 0.75 0.62006 0.12994 2.25 1.8602 0.38981
0.1 0.825 0.68207 0.14293 2.175 1.7982 0.37682
0.2 0.9 0.74408 0.15592 2.1 1.7362 0.36382
0.3 0.975 0.80608 0.16892 2.025 1.6742 0.35083
0.4 1.05 0.86809 0.18191 1.95 1.6122 0.33784
0.5 1.125 0.93009 0.19491 1.875 1.5502 0.32484
0.6 1.2 0.9921 0.2079 1.8 1.4882 0.31185
0.7 1.275 1.0541 0.22089 1.725 1.4261 0.29885
0.8 1.35 1.1161 0.23389 1.65 1.3641 0.28586
0.9 1.425 1.1781 0.24688 1.575 1.3021 0.27287

1 1.5 1.2401 0.25987 1.5 1.2401 0.25987

In Figure 3, we plot 2D graphs of the approximation solutions for fuzzy fractional
diffusion equations (FFDEs) on the Cantor set. Figure 3a shows that for § = 1,8 = 3,
n =1, = 0.25,0.50,0.75, the FFDEs becomes bounded and closed. Moreover, the ¢
sign shows increasing functions and ¢ denotes decreasing functions on the o-level set of
. To reflect the concept of the g-level set, Figure 3a illustrates that the g-level set of the
FFDE:s is bounded and closed for § = 1. Similarly, in Figure 3b,c, we can observe the same
explanation of the g-level set closedness and boundedness for Example 4.
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Figure 3. The approximate lower and upper solutions of (130) at (a-¢) 0 =1, =3,n =1, 8 = 0.25,
0.50, 0.75, respectively. Moreover, (a—c) are 2D figures for the approximate solutions of the fuzzy
fractional diffusion equation on the Cantor set of (¢, 6) in Example 4.

Example 5. We consider the following fuzzy fractional diffusion equation on the Cantor set

2P
I'(1+2B)

oPp(9,0)
908

?*P(9,0)
902

=0, 0<B<1, (143)

with the initial condition

¥(8,0) = [(0.75 + 0.250)", (1.25 — 0.250)"] ® ( (144)

%P
r(1 +2,8)>'
wheren =1,2,3,--- .

1. Local fuzzy fractional Laplace variational iteration method

Applying relation (103), the iterative relation is structured as follows:
0%f 2Py (9,6) }

I'(1+42p) 092p

0P (9,0)
908

2
~ {80} & 5 (sﬂhﬁ{wnw, e

azﬁhﬁ{lpn(ﬁ/ 0)}
09%h '

(145)

*PLp{p(8,0)}
09%f

1 9%
s T(1+2B)

1
= 575%(19,0) D

According to (104), the initial value is

Wo(8,8) = [(0.7 9P
0(8,6) = [(0.75 +0.25¢)", (1.25 — 0.25¢)"] © <1p(19,0) ® (1)>

2
) (8,0) = [(0.75 +0.250)", (1.25 — 0.250)"] ® (M) :

Thus, we obtain

%P
s2BT(1+2B)

g {po(0,0)}
092p ’

B . . 1 8% 1 9% ?*PLg (9% 147

o8P (1.1
F(l—I—Zﬁ) sP 38

S

= [(0.75+ 0.250)", (1.25 — 0.250)"]
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P1(9,0) =

= [(0.75+0.250)", (1.25 — 0.250)"] ®

¥(8,0)

Therefore,

1(8,6) = [(0.75+ 0.250)", (1.25 — 0.250)"] © (Lﬁl <1& (Slﬁ ® 521,5) >>

2P 62p
= [(0.75 4+ 0.250)", (1.25 — 0.250)"] ® T+ 2p) (1 ) (17 25) ) (148)

The second approximation is written as
L1 o *PLp{y1(8,0)}
9% 1 9%

17 28) © FT(1+2p)

= [(0.75 + 0.250)", (1.25 — 0.250)"] ® (slﬁ .

et (e e })

= [(0.75 4 0.250)", (1.25 — 0.25 )"]@l leloel
= [(0. .250)", (1. 250 rar2p\F O )

Thus, we have

[(0.75 + 0.250)", (125 — 0.250)"] & (Lﬁl (r(ﬁiﬁ) (slﬁ © 359 s31B) >)

2P . 0B 12P
T(1+2p) < “Tarp” r(1+25))

which gives us the local fuzzy fractional series solutions

lim £ (L/g{llln(ﬂ/ 9)})'

n—co B

0.75 +0.250)", (1.25 — 0.250)" lim £;1 820 ; 1
[( . +0. Q) r(- Y Q) ]® ng{}o B F(1+2ﬁ)§s(”+1)5

92B n kB ) (150)

(149)

k=0

= [(0.75 +0.250)", (1.25 — 0.250)"] ® <nl (15 25) Z T 1 25)

= [(0.75+0.250)", (1.25 — 0.250)"] ® < (

ﬂZﬁ 00 gk‘B
T(1+2p) kgr(uzﬁ))

Hence, we find our desired solution as
2P
¥(8,0) = [(0.75+ 0.250)", (1.25 — 0.25¢0)"] © (r()Eﬁ(Gﬁ)). (151)

2. Local fuzzy fractional series expansion method
Following (114), we have

8% 9%PX;(0)
X;41(8) = [(0.75 +0.250)", (1.25 — 0.250)"] ® < )
[(1+28) o002 (152)

%P
Xo(8) = [(0.75 4 0.250)", (1.25 — 0.250)"] ® (F(H2ﬁ))
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We apply the recursive formula (152) to get

9%
Xo(®) = [(0.75+0.250)", (1.25 — 0.250)"] ® <F(1+2[5))

%P
Xl(l9) = [(0.75 + 0.25Q)”, (1.25 — 0.25Q)n] © <F(1~|—2‘B))’ (153)

%P
X, (8) = [(0.75 +0.250)", (1.25 — 0.250)"] © (F(1+2ﬁ))

As a result of these recursive calculations, one can obtain

P(8,0) = [(0.75 4 0.25¢0)", (1.25 — 0.250)"] ® < o i 0 )
,0) = . 250)", (1.25 — 0.25¢0 p
I'(1+2p) = T(1+28) (154)

2P
¥(9,0) = [(0.75 + 0.250)", (1.25 — 0.250)"] © (wEﬁ(eﬁ)) )

Table 5 shows the error term between exact and approximate solutions of Example 5.
for p =0.50,1.

Table 5. For the absolute error between exact solutions (E-S) at B = 1 and approximate solutions
(A-S) at p = 0.50.

0 Lower E-S Lower A-S  Lower Error  Upper E-S Upper A-S  Upper Error

0 838.39 161.01 677.39 2328.9 447.25 1881.6
0.1 895.22 171.92 723.3 2236.7 429.54 1807.1
0.2 953.91 183.19 770.71 2146.3 412.18 1734.1
0.3 1014.5 194.82 819.64 2057.8 395.19 1662.6
0.4 1076.9 206.81 870.06 1971.2 378.55 1592.6
0.5 1141.1 219.15 922 1886.4 362.27 1524.1
0.6 1207.3 231.85 975.44 1803.5 346.35 14571
0.7 1275.3 24491 1030.4 1722.4 330.78 1391.7
0.8 1345.2 258.33 1086.8 1643.3 315.58 1327.7
0.9 1416.9 272.1 1144.8 1565.9 300.73 1265.2

1 1490.5 286.24 1204.2 1490.5 286.24 1204.2

In Figure 4, we plot 2D graphs of the exact and approximation solutions of local fuzzy
fractional diffusion equation on Cantor set. Figure 4a shows thatfor6 =8, =1, =1,
n = 2, the local fuzzy fractional diffusion equation on Cantor set become bounded and
closed. In addition, the i sign shows increasing functions and ¢ denotes decreasing
functions on the g-level set of 1. To reflect the concept of the o-level set, Figure 4a illustrates
that the o-level set of local fuzzy fractional diffusion equation on Cantor set is bounded and
closed for 6 = 8. Similarly, in Figure 4b, we can observe the same explanation of ¢-level set
closedness and boundedness for Example 5.
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Figure 4. The exact and approximate lower and upper solutions of (143) at (a) 8 = 8,8 =1, =1,
n=2(b)0 =809 =18 = 050,n = 2. Further, (a,b) 2D figures for the exact and approximate
solutions of fuzzy fractional diffusion equation on Cantor set of (¢, ) in Example 5.

Example 6. We consider the following fuzzy fractional wave equation on a Cantor set

2Py (0,0) 0%f 2Py (8,6)
=0, 1 <2, 155
0% CT(128) 0 90% <Ps (155
subject to the initial value condition
¥(9,0) = [(2.25 4+ 0.250)", (2.75 — 0.250)"] @ (192/;>
’ : : A : T(1+28))’ (156
g
% _ [(2.25+0.250)", (2.75 — 0.250)"],
wheren =1,2,3,--- .
1. Local fuzzy fractional Laplace variational iteration method
Using relation (103), we structure the iterative relation as
0P 2Py (8,6) %P 2Py (0,0)
Lﬁ{lzanrl(ﬂrg)} = L,B{lpn(ﬂrg)} @L‘B{F(l—l—ﬁ) }Lﬁ{ 002P © 1"(1 —|-2,3) 002P }
1
= £ {yn(0,0)} & 5 (Phs (9a(6,0)}
% P {(8,0)}
B ) 9 AU
S5 P (8,0) © Py (ﬁ’o)@r(uzﬁ) =32
_ 1 1 ,® 1 Pe{yn(9,0)}
= FPB 08 9 (0,008 a7 P
According to (104), the initial value is
Po(8,0) = p(9,0) &P (8,0) = [(2.25 + 0.250)", (2.75 — 0.250)"] & (ﬁzﬁ> (157)
p : , . . ,(2. . Ti+2p) )"

Hence, we obtain the first approximation
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1 92 0%PL 8,0

. . 1 8% 1 8% PPrg [ 0%
= [(22540.250)", (2.75 — 0.250)"] & <sﬁr(1+2ﬁ) ® BT ap) © 90 {1"(1+2,B)}>’ (158)

(225 +0250)", (275 — 0250 & — 2 (Lo L
=[(225+025¢)", (2. 250)"] [(14+28)\sP 38 )°

Thus,

2
1(8,60) = [(2.25+0.250)", (2.75 — 0.250)"] & (Lﬁ—l (1"(1194—2[3) (;ﬁ ® —Siﬂ ) ))
%h 028
= (225 +0250)", (275 - 0250)"| © 755 (1 ® T8 ) (159)

The second approximation can be written as

1 1 92 0%PL, 8,0
Lﬁ{¢2(l9/9)} Sﬁ#] (19 0) @ 7#]1‘3)(19 0) 2[5 1"(1 +2ﬁ) © ﬁ{g:leﬁ( )}I

—[(225+025)”(275025)”]@(1 AR S
et A e SPT(1+2p) ~ 2PT(1+2p)

Qaa;fﬁ Lﬁ{mﬁjﬁzﬁ) (1 v r(leiﬁ25)> })

= [(225+0.250)", (2.75 — 0.250)"] & _ (111
’ ’ F(l (&) 2‘3) sP 53B 5oB

We obtain

28
¥o(8,60) = [(2.25 + 0.250)", (2.75 — 0.250)"| & (ngl (r(119+25) (Slﬁ D 33% ® S;) ))

0 " o%h 02p 4B
= [(225+0250)", (275 0250)"| © 17 555 (1 ® g9 O T +4ﬁ))' (160)

The local fuzzy fractional series solutions are

¥(8,0) = hm L (L/g{tpn(ﬁ 0)}),

28 n
= [(2.2540.250)", (2.75 — 0.250)"] & (1111(}0 Lﬁ (r(lﬁ—i— 28) & Z 2n1+1)ﬁ ) )

Y 161
= [(2.25+0.250)", (2.75 — 0.25¢)"] & [ lim 92h 92k/5 (161)
" (1+2/3) P OT(1+2k/3)

= [(225+0.250)", (2.75—0.259)”]@< (ST kZér 1+k/3 )

Thus, we can obtain the solutions as

2P
¥(9,0) = [(2.25 + 0.250)", (2.75 — 0.250)"] & (F(l) cosh,g(eﬁ)> ) (162)

+28
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2. Local fuzzy fractional variation iteration method
Using (121), we have the iterative formula

2B
$ui1(8,60) = $u(8,60) & 1+5 / 1"1+ﬁ P 50 lggg %) (45)P

9 P (8,06)
1+5 /r1+/s OTa42p) © oo

S (ds)P, (163)

where the initial condition is defined as

8%
o(8,0) = [(2.25+0.250)", (2.75 — 0.250)"] & (F(HZIS)) : (164)

After computing (156), we have
—0)p aZ'BIIJO 9,6)

#1(9,0) = ¢o(9,0) ® 1+/5 r1+ﬁ 0s2P (ds)?
92p 0%y (9,0)
1—1-,8 / F1+ﬁ 1+2[‘3) FY (ds)P
; 820 b
1+[3 r 1+ﬁ [ ( (2.25+0.250)", (2.75 — 0.250) ]@<F(1+2ﬁ)>)](ds)
928 92P
= [(2.25+0.250)", (2.75 — 0.250)"] & [F(l 26) (1 ® I +2/3)>}’
—0)F 3P (8,6)
$2(8,0) = 1(8,0) & 1+/3 F1+ﬁ 3225 o
192/3 82/31/)1 (19r 9)
°Ta+p) 1+/3 / r1+/3 N (1+25) il
1+/3 / I( 1+/3
28 2p
® [—([(2-25+0-25e> (275 -0.25¢)"| ® <r(1ﬁ+ 2B) r(1s+ 2ﬁ)>)] (@)

28 28 4P
= [(2.25+0.25¢)", (2.75 — 0.25¢)"] & {mi 26) (l © r(16+ 28) ¢ r<19+ 4/5))}'

—0)F azﬁ¢2 8,6)

$2(0.0) = 2(0,0) 1+[—5 r1+/5 o (@)
92 PPpa(8,6) g
°F 1+/3 /r1+ﬁ® (1+2/5) 3928 (4s)
=1(9,0) ®

F(1+ﬁ)® 0 F(1+ﬁ)

® [— ([(2.25 +0.250)", (275 — 0.250)"] & < (ﬁﬁ T (fjf = ) )] (ds)P

928 3 02ip
T(1+2p) Z T(1+2iB)

i=0

= [(2.25 +0.250)", (2.75 — 0.250)"] &
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—0)P azﬁzpn,lw,e)

Pu(8,0) = Pn-1(8,0) & 1 + 5 r 1+ ﬁ 952P (ds)P
9 PPua(9,0) g
Sy 1 5 © r 1+ /3 e T(1+2p) 362 (s) (165)
928 n g2ip

= [(2.25+0.250)", (2.75 — 0.250)"] &

T(1+2B) ; T(1+2ip) |’

Consequently, we obtain the solution as follows:

9%p
— 1 _ n _ n v B
P(0,0) lr}gwn(ﬂ) [(2.25 4+ 0.25¢0)", (2.75 — 0.250)"] ® [F(1+2ﬁ) COShﬁ(G )] (166)
3. Local fuzzy fractional decomposition method
From (128), we obtain
®) () 0% 0*Ppu(9,6)
2 (8,6) = ol ol T(1+2p) o092 '
926 (167)
9,0) = [(2.25+0.250)", (2.75 — 0.250)" & —————.
From (167), the components are
9,0 2.25+0.250)", (2.75 — 0.250)" 820
¢0(’)_[('+'9)’('_'Q)]@_F(T.zﬁ)’
9,0) = [(2.25+0.250)", (2.75 — 0.250)" 0% i
9,0) = [(2.25+ 0.25¢0)", (2.75 — 0.250)" [ 0% ]
[ 9% RGN
9,0) = [(2.25 + 0.250)", (2.75 — 0.250)" ) (168)
l/)?)( ’ ) [( + Q) ( Q) ]69 _F(1+2/3) ®1—'(1+3ﬁ)_
(8,0) = [(2.25 4 0.25¢0)", (2.75 — 0.25 )”69- oF O] 0]
$4(9,8) = [(2:25+0250)% (275 = 0.250)"| © | T35 755y © T 18 |
9,0 2.25+0.250)", (2.75 — 0.250)" 8% i
Thus, the exact solution can be defined as
(9,6) =,}gr;02w (8,6)
00 928 92xp
= li 169
A, Y T 1 2p) © T+ 20p) (169)
9%p
_ n _ n B
[(2.25 +0.250)", (2.75 — 0.250)"]| & {1+ 28) @coshﬁ(ﬂ )|,
where
o g2np
By — 7
coshg (97) K;)r(lJanﬁ)'

In Figure 5, we plot 2D graphs of the approximation solutions for fuzzy fractional wave
equations on Cantor set. Figure 5a shows that for6 = 5,0 =2,n =3, = 1.25,1.50,1.75,
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the fuzzy fractional wave equation becomes bounded and closed. Moreover, the ¢ sign
shows increasing functions and i denotes decreasing functions on the g-level set of ¢. To
reflect the concept of the g-level set, Figure 5a illustrates that the g-level set of the fuzzy
fractional wave equation is bounded and closed for & = 5. Similarly, in Figure 5b,c, we can
observe the same explanation of the g-level set closedness and boundedness for Example 6.
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Figure 5. The approximate lower and upper solutions of (167) at (a—¢) 0 = 5,0 =2,n = 3,5 = 1.25,
1.50, 1.75, respectively. Moreover, (a—c) are 2D figures for the approximate solutions of the fuzzy
fractional wave equation on the Cantor set of (9, 0) in Example 6.

5. Conclusions

In this paper, the hybrid LFFHPSTM, LFFSDM, and LFFSVIM have been used to
successfully obtain the solutions of LFFPDEs. Computer-based numerical simulations
can clarify the fundamental properties of the physical models given in LFFPDEs. The
results demonstrate the efficiency and simplicity of the used technique in identifying
LFFPDEs. The originality of this work comes from the fact that the utilized methodology
has not recently been used for LFFPDEs. The combination that is used has two features;
He’s polynomials are used to decompose nonlinear terms in the first case, while fast
convergent series solutions in closed form are produced in the second. Furthermore,
the LFHPSTM does not necessitate the calculation of complex Adomian polynomials.
The LFFHPM and local fuzzy fractional Sumudu transform method (LFFSTM) can be
coupled more quickly and provide better mathematical computations than the LFFHPM.
The process of determining a solution demonstrates the efficacy and precision of the
proposed method. The LFFSDM offers the solution in the form of a series that, if one
exists, quickly converges to the precise solution. It is evident from the findings that the
LFFSDM produces very accurate solutions with a minimal number of iterations. Moreover,
we have investigated the LFFLIM, LFFSEM, LFFVIM, and LFFADM applied to solving
fuzzy diffusion and wave equations defined on Cantor sets with fractal conditions. We
show that the LFFVIM utilizing the iteration of the correction local fractional function
yields numerous successive approximations. However, the exact solution, which is a local
fractional continuous function, is provided by the LFFADM, where these components are
local fractional continuous functions. The techniques produce approximate solutions to
linear and nonlinear fuzzy fractional differential equations.
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