
Citation: Liu, T.; Feng, H.; Qiu, T.;

Luan, S.; Zhang, J. Robust

Localization for Near- and Far-Field

Signals with an Unknown Number of

Sources. Fractal Fract. 2023, 7, 184.

https://doi.org/10.3390/

fractalfract7020184

Academic Editors: Norbert

Herencsar, Esteban Tlelo-Cuautle,

Dumitru Baleanu and Shibendu

Mahata

Received: 2 January 2023

Revised: 7 February 2023

Accepted: 9 February 2023

Published: 12 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Robust Localization for Near- and Far-Field Signals with an
Unknown Number of Sources
Tao Liu 1 , Hao Feng 1 , Tianshuang Qiu 2 , Shengyang Luan 3 and Jiacheng Zhang 1,*

1 School of Artificial Intelligence, Nanjing University of Information Science and Technology,
Nanjing 210044, China

2 Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology,
Dalian 116024, China

3 School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou 221116, China
* Correspondence: zhangjc@nuist.edu.cn

Abstract: Source location is a constant issue of importance of both theoretical study and practical
engineering. Many pioneers have put out the corresponding solutions for near- or far-field signals,
and preferred contributions are suggested. To our best knowledge, there are currently few focused
approaches to the complicated situation where both near- and far-field signals exist with an unknown
number of sources. Additionally, the robustness of the method must be taken into account when the
additive background noise does not follow Gaussian or super-Gaussian distribution. To solve these
problems, a novel method based on phased fractional lower-order moment (PFLOM) is proposed to
simultaneously better preserve the signal and suppress the noise. Secondly, the whole procedure of
the method containing direction of arrival (DOA) estimation, range estimation, separation of near-and
far-field sources, and crucial parameter settings are studied in detail. Finally, comprehensive Monte
Carlo experiments are carried out in the simulation to demonstrate the superiority of the proposed
method compared to the existing competitive methods. Due to the novel method’s effectiveness with
an unknown number of sources and robustness against various noises, it is believed that it could be
fully utilized in more fields.

Keywords: phased fractional lower order moment (PFLOM); source location; direction of arrival
(DOA); alpha-stable noise

1. Introduction

Source location is an essential and crucial area of study in modern science, with a wide
range of applications including sound acoustics [1–6], monitoring system [7,8], mobile
communication [9–12], satellite communication [13], and so on. Based on their ranges, the
sources are classified into two categories: near-field sources and far-field sources. Scholars
have thoroughly investigated feasible solutions to the source location for near- or far-field
ones [14–19]. In some complicated cases, the coexistence of near- and far-field sources leads
to the failure of the above-mentioned solutions.

To address this tough problem, a large number of methods are provided one after
another [20–25]. Among these methods, the two technologies of subspace decomposi-
tion and sparse reconstruction are introduced, and satisfactory algorithm performance is
achieved [26–29]. Nonetheless, the two technologies have certain limitations. On the one
hand, subspace decomposition requires the existence of the second or high-order statistics
of signals with various noises [30,31]. On the other hand, sparse reconstruction is sensitive
to the influence of noises [32–34]. It means that these targeted methods are commonly as-
sumed and applied in the additive noise obeying Gaussian or super-Gaussian distribution.
When the noise does not meet the above conditions, these methods will show significant
performance degradation or even unavailability [35,36].
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In addition, the estimation of the number of sources is another important problem
that needs to be explored in depth. Usually, the number of łsources closely relating to
the sparsity is given as known prior knowledge in research, which greatly reduces the
difficulty of sparse reconstruction [37,38]. In our design, the estimation of the number is
divided into two steps, total number estimation and then separation of near and far-field
sources. The high total accuracy is based on the high accuracy of each step over the whole
procedure [39].

To our best knowledge, there has not yet been any research focusing on source location
for both near and far-field signals with an unknown number of sources in the presence
of non-Gaussian noise. Therefore, more reliable and robust methodologies need to be
developed. In this paper, we first employ alpha-stable distribution instead of traditional
Gaussian distribution to model the additive background noise. Alpha-stable distribution
equipped with four parameters has a strong generalization and can generate a wide range of
distributions, including Gaussian distribution, Cauchy distribution, Levy distribution, and
so on. Secondly, we provide an appropriate method to modify the covariance and suppress
the noise based on PFLOM [33]. Both amplitude information and phase information are
seriously analyzed to obtain high computational accuracy. Finally, we step by step derive
the processes of the novel method, containing DOA estimation, range estimation, and
separation of near and far-field sources.

The remainder of this paper is organized as follows: In Section 2, the signal model and
noise model are briefly introduced. In Section 3, the entire procedure and crucial parameter
setting in the proposed method are theoretically studied. In Section 4, Monte Carlo experi-
ments are carried out to demonstrate the algorithm performance of the proposed method
compared to the existing competitive methods. In Section 5, some remarkable conclusions
are finally drawn.

2. Related Work
2.1. Signal Model

The signal model is given by the following scenario. On the sending side, there
are K narrow band sources containing K1 near-field ones and K − K1 far-field ones. On
the receiving side, there are 2M + 1 sensors forming a symmetric uniform linear array.
The phase reference point is set in the center. Accordingly, the receiving signal can be
expressed as

x(m, t) =
K

∑
k=1

s(k, t)ejτ(m,k) + n(m, t), −M ≤ m ≤ M (1)

where s(k, t) denotes the kth source, n(m, t) denotes the additive noise, and τ(m, k) denotes
the phase shift caused by the kth source’s propagation delay between the center and mth
sensors. It is worth noting that near- and far-field sources share the same carrier frequency
(wavelength). If not, the sources with different carrier frequencies and Baud rates can be
separated by cyclostationary signal processing. In this study, we focus on the hard issue of
sources with the same carrier frequency. Furthermore, τ(m, k) can be expanded by

τ(m, k) = −2πd sin θk
λ

m +
πd2 cos2 θk

λrk
m2, (2)

where d denotes the distance between adjacent sensors, λ denotes the wavelength of both
near and far-field sources. θk and rk denote the kth DOA and range of source, respectively.
For the far-field sources (i.e., rk is very large), the second term in (2) is approximately equal
to zero. From (1) and (2), the matrix expression of the signal model is given by

X = A1S1 + A2S2 + N (3)

A1 ∈ C(2M+1)×K1 , A2 ∈ C(2M+1)×(K−K1), S1 ∈ RK1×L, S2 ∈ R(K−K1)×L (4)
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where S1 and A1 denote near-field sources and the corresponding steering matrix. As
such, S2 and A2 denote far-field sources and the corresponding steering matrix. S1, S2 are
represented by s(k, t), and A1, A2 are calculated from τ(m, k), and L denotes the signal
length of sources. N is the matrix form of n(m, t), and X is the matrix form of x(m, t).

2.2. Noise Model

In traditional scientific research and engineering practice, additional background noise
is commonly modeled based on Gaussian distribution derived from the central limit theo-
rem (CLT), so-called Gaussian noise [40,41]. Nonetheless, Gaussian noise is an ideal model
due to the fixed characteristic exponent, and it is not suitable to describe noise showing
intensive impulsiveness. To overcome the weakness, alpha-stable distribution derived
from the generalized central limit theorem (GCLT) is introduced to model the additional
background noise, so-called alpha-stable noise [42–44]. As alpha-stable distribution does
not have an explicit formula for the general probability density function, its characteristic
function is usually used instead. The expression is given by

ϕX(t) = E[ejtX ] = exp
{

jδt− γα|t|α
[
1− jβsgn(t)φ(t, α)

]}
, (5)

where

φ(t, α) =

{
tan(πα

2 ) α 6= 1

− 2
π ln |t| α = 1.

(6)

ϕX(t) denotes the characteristic function of a random variable X obeying alpha-stable
distribution. α, β, γ, and δ and four important parameters to model alpha-stable distribu-
tion S(α, β, γ, δ). Specifically, α ∈ (0, 2] denotes the characteristic exponent describing the
two tails of the distribution. The larger α is, the heavier the tails are. β ∈ [−1, 1] denotes
the skewness describing the slope of the distribution. When β = 0, the distribution is
completely symmetric about x = δ and is called symmetric alpha-stable (SαS) distribu-
tion. γ ∈ [0, ∞), and δ ∈ (−∞, ∞) denote skewness, scale, and location, respectively. γ
and δ are very much like σ and µ used in Gaussian distribution N (µ, σ2). Alpha-stable
distribution has strong generalization, and Gaussian distribution as a sub-case of it has the
following correspondence:

N (µ, σ2)� S(2, β, γ, δ). (7)

When α = 2, we have φ(t, α) = 0, and it means the value of β has nothing to do with ϕX(t).
In (1), the additive background noise n(m, t) can be further expressed as

n(m, t) =
K

∑
k=1

n(k, t), (8)

where n(k, t) denotes the additive alpha-stable noise of each source s(k, t). If n(k, t) with
different values of k are independent of each other, we can draw an important conclusion
that n(m, t) is also alpha-stable noise. Particularly, when all n(k, t) have the same character-
istic exponent, the four parameters in n(m, t) can be calculated according to the following
mathematical property [45]:

Property 1. If X1 ∼ S(α, β1, γ1, δ1) and X2 ∼ S(α, β2, γ2, δ2) are independent, then

X = X1 + X2 ∼ S(α, β, γ, δ) (9)

β =
β1γα

1 + β2γα
2

γα
1 + γα

1
, γ = α

√
γα

1 + γα
2 , δ = δ1 + δ2 (10)
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3. Proposed Method
3.1. DOA Estimation

The covariance of the m1th and m2th sensors is given by

Cx(m1, m2) = E
[
x(m1, t)x∗(m2, t)

]
, (11)

where E denotes the time averaging. It is different from the same symbol E denoting
the statistical averaging used in (5). From the perspective of the matrix given in (3), the
operation is computing the inner product between the m1th row of X and the m2th row
of X∗. From (1) and (11), it can be seen that, when the additive background noise obeys
alpha-stable distribution, Cx(m1, m2) does not exist in theory due to the second order
statistics. To solve this problem, we employ PFLOM to replace the traditional covariance to
guarantee the existence. The PFLOM of the m1th and m2th sensors is defined by

C〈p〉x (m1, m2) = E
[
x〈p〉(m1, t)x−〈p〉(m2, t)

]
(12)

where {
x〈p〉 = |x|p−1x

x−〈p〉 =
[
x〈p〉

]∗
= |x|p−1x∗

(13)

In (13), p denotes the fractional lower order and satisfies the domain of 0 ≤ p < α/2 ≤ 1.
Furthermore, C〈p〉x (m1, m2) is expanded as follows:

E
[
x〈p〉(m1, t)x−〈p〉(m2, t)

]
(14)

= E
{
|x(m1, t)|p−1|x(m2, t)|p−1x(m1, t)x∗(m2, t)

}
(15)

= E
{

A0

[ K

∑
k=1

s(k, t)ejτ(m1,k) + n(m1, t)
][ K

∑
k=1

s∗(k, t)e−jτ(m2,k) + n∗(m2, t)
]}

(16)

= E
{

A0

K

∑
k1=1

K

∑
k2=1

s(k1, t)s∗(k2, t)ej[τ(m1,k1)−τ(m2,k2)]

}
+ E

[
A0n(m1, t)n∗(m2, t)

]
+ E

{
A0n(m1, t)

K

∑
k=1

s∗(k, t)e−jτ(m1,k)
}
+ E

{
A0n∗(m2, t)

K

∑
k=1

s(k, t)ejτ(m2,k)
}

(17)

= A E
{ K

∑
k=1

∣∣s(k, t)
∣∣2ej[τ(m1,k)−τ(m2,k)]

}
= A

K

∑
k=1

Pkej[τ(m1,k)−τ(m2,k)] (18)

In (16), A0 denotes the decay term of the amplitude information, and has nothing to do
with the phase information. In (18), Pk denotes the power of s(k, t), and, from (16) to (18), is
based on the condition that all sources and noises are independent from each other. When
m1 = −m2 = −m, we can further simplify to obtain the definition of Tx(m):

Tx(m) , C〈p〉x (−m, m) = A
K

∑
k=1

Pk exp
( j4πd sin θk

λ
m
)
= A

K

∑
k=1

φ(m, k)Pk (19)
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Accordingly, T is the vector form of Tx(m) that can be obtained by traversing all the values
of m taken:


Tx(−M)

Tx(−M + 1)
...

Tx(M)

 = A


φ(−M, 1) φ(−M, 2) · · · φ(−M, K)

φ(−M + 1, 1) φ(−M + 1, 2) · · · φ(−M + 1, K)
...

...
. . .

...
φ(M, 1) φ(M, 2) · · · φ(M, K)




P1
P2
...

PK

 (20)

T = Φ0P0 (21)

Regretfully, Pk can not be directly obtained because of the unknown number of sources K.
When the source and the DOA are one-to-one, we can extend the matrix by traversing the
angle from −90◦ to 90◦ and selecting 1◦ as the interval, leading to

θk ∈ θl , θl = l − 91, 1 ≤ l ≤ 181. (22)

Correspondingly, the expansion of T is revised as follows:


Tx(−M)

Tx(−M + 1)
...

Tx(M)

 =


φ(−M, 1) φ(−M, 2) · · · φ(−M, 181)

φ(−M + 1, 1) φ(−M + 1, 2) · · · φ(−M + 1, 181)
...

...
. . .

...
φ(M, 1) φ(M, 2) · · · φ(M, 181)




P1
P2
...

P181

 (23)

T = Φ1P1 (24)

It is easy to see that (24) is an under-determined equation, and the nonzero term Pk can be
estimated by sparse reconstruction.

The approaches for sparse reconstruction are mainly divided into two categories:
greedy algorithm and convex optimization. Generally speaking, the greedy algorithm
has less computational complexity, while convex optimization has higher computational
accuracy. Typical greedy algorithms include: OMP O(M0N0K0) [46], SP O(M0N0L0) [47],
and IHTO(M0N0L0) [48]. Typical convex optimizations include: BPDNO(M2

0 N3
0 ) [38] and

Reweighted `1 minimization O(M2
0 N3

0 L0) [49]. M0, N0, K0, and L0 denote the dimension
of the observation vector, the dimension of the original vector, the sparsity of the original
vector, and the number of iterations, respectively. Of course, there are also some examples
of exceptions. Some greedy algorithms with tree search and backtracking technology have
computational accuracy equal to or even higher than convex optimization at the cost of
computational complexity [50–52]. These greedy algorithms are suitable for use in the case
of large sparsity. In the specific scenario of DOA estimation, we have

M0 = 2M + 1, N0 = 181, K0 = K. (25)

At the same time, the sparse reconstruction in the complex domain will increase the
computational complexity to a certain extent. After full consideration of all aspects, we can
accept the computational complexity of convex optimization and think that it is a suitable
choice for the whole procedure. The estimation of P1 can be expressed as

P̂1 = arg min
P1
L(P1) = arg min

P1
‖T−Φ1P1‖2 + λ1‖P1‖1, (26)

where L(·) denotes loss function. If the kth term in P̂1 is a peak, there is a near or far-field
source in this direction such that{

P̂k is a peak in P̂1

}
⇒ θ̂k = k− 91. (27)



Fractal Fract. 2023, 7, 184 6 of 14

3.2. Range Estimation

According to the DOAs achieved in the first process, we secondly estimate the range
of both near and far-field sources by a subspace-based method. Substituting the estimated
DOA θk into (2), we have

τ(m, θ̂k, rk) = −
2πd sin θ̂k

λ
m +

πd2 cos2 θ̂k
λrk

m2 (28)

ejτ(m,θ̂k ,rk) = exp
(
− j2πd sin θ̂k

λ
m
)

exp
( jπd2 cos2 θ̂k

λrk
m2
)

. (29)

Furthermore, the matrix form of eτ(m,θ̂k ,rk) with different values of m is given by

H =
[
ejτ(−M,θ̂k ,rk), ejτ(−M+1,θ̂k ,rk), . . . , ejτ(M−1,θ̂k ,rk), ejτ(M,θ̂k ,rk)

]T. (30)

Then, the range rk can be estimated by searching the peak of the following spectrum:

Q(θ̂k, rk) =
1

HHUUHH
(31)

where U denotes the noise subspace of the eigenvectors. These eigenvectors are correspond-
ing to the 2M + 1− K eigenvalues with the smallest absolute value. In order to reduce the
computational complexity, we employ an effective Root-MUSIC like method for reference.
According to (29), H can be further decomposed into the product of two exponential terms
such that


ejτ(−M,θ̂k ,rk)

...
ejτ(M,θ̂k ,rk)

 =


exp

( j2πd sin θ̂k
λ M

)
· · · 0

...
. . .

...

0 · · · exp
(
− j2πd sin θ̂k

λ M
)



g(θ̂k, rk)
(−M)2

...
g(θ̂k, rk)

M2

 (32)

H = ΛG, (33)

and g(θ̂k, rk)
m2

is given by

g(θ̂k, rk)
m2

= exp
( jπd2 cos2 θ̂k

λrk
m2
)

. (34)

We define a new polynomial about g(θ̂k, rk) and make it equal to zero to obtain g(θ̂k, rk).

f [θ̂k, g(θ̂k, rk)] , g(θ̂k, rk)
M2

HHUUHH = g(θ̂k, rk)
M2

GHΛUUHΛG = 0 (35)

Among a large number of roots, the root that is closest to the unit circle is chosen since
|g(θ̂k, rk)| = 1. Finally, based on the result of ĝ(θ̂k, rk), we have

r̂k =
πd2 cos2 θ̂k

λangle[ĝ(θ̂k, rk)]
. (36)

3.3. Separation of Near and Far-Field Sources

According to the ranges achieved in the second process, we finally separate the near
and far-field sources by the Fresnel region [16]:

{
r̂k ∈ [0.62

√
D3/λ, 2D2/λ], near-field source

r̂k /∈ [0.62
√

D3/λ, 2D2/λ], far-field source
(37)
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where D = 2Md denotes the array aperture. If a source is determined to be far-field, the
estimated range previously is meaningless. This is because there is no rk in τ(m, k) of a
far-field source according to (2). In other words, the estimated range is only effective for
near-field sources.

3.4. Crucial Parameter Setting
3.4.1. Regularization Coefficient λ1

Calculating the partial derivative of P1 from (26), we have

∂L(P1)

∂P1
=

ΦH
1 (Φ1P1 − T)
‖T−Φ1P1‖2

+ λ1C, (38)

where C = ones(181, 1) = [1, 1, . . . , 1]T because Pk ≥ 0. Let the partial derivative be zero,
and the analytic expression of λ is given by

λ1 =
CTΦH

1 (T−Φ1P1)

181‖T−Φ1P1‖2
. (39)

In fact, the solution of P1 and λ1 is a cross-iterative process. Most researchers use the
toolboxes and a large number of training sets to estimate λ1 in various applications. In
addition, if the source signals are non-stationary, T is a high dimensional random variable,
which makes it difficult to find the optimal solution of λ1 under different conditions.

In our scenario, we carry out some experiments to observe the impact of λ1 on DOA
estimation. From Figure 1, λ1 = 1.5 is a proper value for the sparse reconstruction as the
four inside peaks with high amplitudes and peak-to-average powers (PAPRs).

-100 -50 0 50 100
0

0.05

0.1

0.15

A
m

p
lit

u
d
e

(a)

-100 -50 0 50 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

A
m

p
lit

u
d
e

(b)

-100 -50 0 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

A
m

p
lit

u
d

e

(c)

-100 -50 0 50 100
0

1

2

3

4

5

6

A
m

p
lit

u
d

e

10
-10

(d)

Figure 1. Performance comparison of sparse reconstruction with different regularization coefficients:
(a) λ1 = 1; (b) λ1 = 1.5; (c) λ1 = 2; (d) λ1 = 2.5.
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3.4.2. Evaluation Standard

Regarding the traditional DOA estimation evaluation standard, we consider the fol-
lowing equation using the absolute deviation and the negative exponential function to
evaluate the DOA estimation:

f1 =
1
K

K

∑
k=1

exp
(
− |θ̂k − θk|

)
(40)

when the number of peaks is smaller than K (e.g., Figure 1c), and the DOA estimation is
incorrect and returns f1 = 0. When the number of peaks is larger than K (e.g., Figure 1a,d),
the result is calculated from the K highest peaks. In the same way, the range estimation is
evaluated as follows:

f2 =
1

K1

K1

∑
k=1

exp
(
− |r̂k − rk|

)
(41)

The range estimation must be predicated on the successful DOA estimation and
successful source separation as a foundation. Specifically, if the number of peaks is smaller
than K or the estimated number of near-field sources is not K1, return f2 = 0.

4. Simulation

Both near and far-field sources are quadrature phase-shift keying (QPSK) signals with
identical mapping mode and power. Because the second-order statistics related to the
power of alpha-stable noise do not exist, the generalized power is introduced to replace
the traditional power. In order to quickly generate a large number of noises with the same
generalized power for Monte Carlo experiments, we set skewness β and location δ to zero
to make alpha-stable noise without losing the generality. Consequently, the generalized
signal-to-noise (GSNR) is defined by

GSNR = 10 lg
(

Px

γα

)
, β = 0, δ = 0. (42)

where γα denotes the generalized power, which is very similar to σ2 indicating the power
of N (0, σ). With the preset characteristic exponent α and GSNR, scale γ can be directly
calculated by

γ = α

√
Px

10GSNR/10 , β = 0, δ = 0. (43)

Correntropy is another effective method to deal with alpha-stable noise with a broad
consensus in research [53]. It is necessary to take this existing competitive method into
consideration. Nevertheless, in this application, correntropy can not work since its result is
a real number without any phase information [54,55]. Therefore, correntropy is not added
to the simulation. Instead, the MS-subspace method and its modified version employing
PFLOM are added [56]. As there is no sparse reconstruction step in the MS-subspace
method and its modified version, the regularization coefficient λ1 has nothing to do with
them. The parameters used in the simulation are listed in Table 1.
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Table 1. Parameter setting in the simulation.

Parameter Value

DOAs of near- and far-field sources [−6◦, 13◦], [−40◦, 31◦]
Ranges of near-field sources [10λ, 15λ]
Baud rates of near- and far-field sources 5× 106 Baud, 107 Baud
Carrier frequency and sampling frequency 20 Mhz, 100 Mhz
Snapshots 5000
GSNR 10 : 5 : 20 dB
Characteristic exponent, α 0.6 : 0.1 : 2.0
Scale parameter, γ calculated by GSNR and α

Figures 2–4 show the performance comparison of different methods according to the
evaluation standards of f1 and f2. Each point in the figures is calculated from the statistical
average of one hundred Monte Carlo experiments. From the figures, it can be seen that the
fractional order p has a great impact on both f1 and f2, which is consistent with the principle
of PFLOM. The conventional covariance-based method and MS-subspace method do very
well in Gaussian noise (α = 2). However, with the decreasing of character exponent α from
2 to 0.6, only the PFLOM-based method (p = 0.2) and the modified MS-subspace method
(p = 0.2) demonstrate strong robustness, but the other methods are severely degraded
due to the growing frequency and intensity of the impulses in alpha-stable noise. In
comparison, the PFLOM-based method (p = 0.2) is better than the modified MS-subspace
method (p = 0.2) in accuracy.
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Figure 2. Performance comparison of different methods under the condition of GSNR = 10 dB;
(a) λ1 = 1.6; (b) λ1 = 1.9; (c) λ1 = 1.9; (d) λ1 = 1.9.
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Figure 3. Performance comparison of different methods under the condition of GSNR = 15 dB;
(a) λ1 = 1.6; (b) λ1 = 1.9; (c) λ1 = 1.6; (d) λ1 = 1.9.

In Figure 2a, when α = 2, the covariance-based method and MS-subspace method
perform best in line with the conclusion that the second- and fourth- order statistics per-
form well with Gaussian and super-Gaussian noises. When α = 0.6, the PFLOM-based
method (p = 0.2) performs best because of its algorithm characteristic and the small-
est value of p. The performance of the PFLOM-based methods (p = 0.4 : 0.2 : 0.8) is
between the PFLOM-based method (p = 0.2) and covariance-based method. Similarly,
the performance of the modified MS-subspace methods (p = 0.4 : 0.2 : 0.8) is between
the modified Ms-subspace method (p = 0.2) and Ms-subspace method. In addition, the
PFLOM-based methods with different values of p are monotonic, while the modified
MS-subspace methods are not.

The only difference between Figure 2a,b is that the value of λ1 is taken differently.
Overall, the five curves of the covariance-based method and PFLOM-based method
in Figure 2a łhave trends similar to the corresponding curves in Figure 2b, i.e., the MS-
subspace method and its modified version are not related to λ1. The PFLOM-based methods
(p = 0.2 : 0.2 : 0.8) in Figure 2b perform a bit worse than those in Figure 2a, which means λ1
is another important factor to effect the methods containing the step of convex optimization.
Unlike p, λ1 is not monotonic in the PFLOM-based methods, and [1.6, 1.9] is an acceptable
definition domain. It is easy to see that the effect of p on the algorithm performance is
higher than that of λ1.

Comparing Figure 2a–d, we see that f1 > f2 under all conditions including α, λ1,
and p. This means that the accuracy of the range estimation is lower than that of the
DOA estimation, which is in line with the objective facts that the range estimation must be
predicated on the correct DOA estimation. In other words, the range estimation as a further
process is more difficult than the DOA estimation. In Figure 2c,d, the covariance-based
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method and MS-subspace method perform best when α = 2 but has no robustness against
the decreasing of α. The PFLOM-based method (p = 0.2) and the modified MS-subspace
method (p = 0.2) have the strongest robustness at the cost of slightly worse performance
at α = 2. In comparison, the PFLOM-based method (p = 0.2) is better than the modified
MS-subspace method (p = 0.2) in accuracy.
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Figure 4. Performance comparison of different methods under the condition of GSNR = 20 dB;
(a) λ1 = 1.6; (b) λ1 = 1.9; (c) λ1 = 1.6; (d) λ1 = 1.9.

Figures 3 and 4 show the performance comparisons of different methods under the
conditions of GSNR = 15 dB and GSNR = 20 dB. From the two figures, it can be seen
that all methods perform better than those in Figure 2 because of the higher GSNRs, and
maintain similar trends because of their own algorithm characteristics.

5. Conclusions

In this paper, a novel method for robust localization for near and far-field signals with
an unknown number of sources is provided. The proposed method employs PFLOM to
maintain the signals of interest and suppress the various noises, and further achieves high
accuracy DOA estimation, range estimations, and separation of near- and far-field sources.
From the numerical results in Monte Carlo experiments, the impacts of fractional order p
and regularization coefficient λ1 are clearly shown, which is of most importance to describ-
ing the special characteristics of the methodology. The proposed method with a suitable
fractional order demonstrates good effectiveness and strong robustness under different
conditions. It is thought that it might be used to its full potential in additional areas.
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