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Abstract: This paper contains a variety of new integral inequalities for (s, m)-convex functions using
Caputo fractional derivatives and Caputo–Fabrizio integral operators. Various generalizations of
Hermite–Hadamard-type inequalities containing Caputo–Fabrizio integral operators are derived for
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1. Introduction

The idealogy of convex functions has achieved rapid advancement. Applications of
convex functions have been discovered in engineering [1], statistics [2], optimization [3],
and many others. In [4,5], Khan et al. build up the foresighted estimations by utilizing
the definition of convex functions, various inequalities, and the power mean. They offer
applications in information theory. Hudzik et al. considered in [6] the class of s-convex functions
in the second sense. In 1993, V. Mihesan initiated the class of (s, m)-convex function. In 2014,
N. Eftekhari [7] proposed the class of (s, m)-convex functions in the second sense by combining
an excerpt of s-convexity in the second sense with m-convexity.

In the study of different classes of equations, inequalities are considered as essential
tools. When direct methods of solving problems seem inconvenient, inequalities can
provide indirect routes of reasoning. Inequalities are involved in the problems of applied
sciences and engineering. An enormous amount of endeavour has been committed to find
new sorts of inequalities [8]. In [9], Bainov et al. illustrated the applications of integral
inequalities in partial differential equations, impulse differential equations, etc.

The Hermite–Hadamard inequality, a rudimentary result for convex functions, was
first investigated by J. Hadamard in 1893. It has a simple geometrical exposition and
immense pertinence [10,11]. The classical Hermite Hadamard inequality [12] delivers an
appraisal of mean values of convex function σ : I → R,

σ(
λ + µ

2
) ≤ 1

λ− µ

µ∫
λ

σ(y)dy ≤ σ(λ) + σ(µ)

2
, (1)

where λ, µ ∈ I and I is a closed interval in R . The Hermite Hadamard inequality for
s-convex function [13] is

2s−1σ(
λ + µ

2
) ≤ 1

λ− µ

µ∫
λ

σ(y)dy ≤ σ(λ) + σ(µ)

s + 1
, (2)

where s ∈ (0, 1].
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In 2022, Khan et al. [14] illustrate analogous inequalities for the (s, m)-convex function
as:

If function σ : [0, u] −→ R, u > 0 is (s, m)-convex function, then

2sσ
(λ + mµ

2

)
≤
[ 1

mµ− λ

mµ∫
λ

σ(x)dx +
m2

mµ− λ

µ∫
λ
m

σ(y)dy
]

≤
(σ(λ) + mσ(µ)

s + 1

)
+ m

(σ(µ) + mσ( λ
m2 )

s + 1

)
.

(3)

hold, where s, m ∈ (0, 1], λ, µ ∈ [0, u] and η ∈ [0, 1]. If we put m = 1 in (3), we obtain (2).
If we put s = 1 and m = 1 in (3), we obtain (1). In [15], generalizations of Hermite–Hadamard
inequality to n-time differentiable functions, which are s-convex, are established.

Fractional calculus has a remarkable development in the field of mathematics, be-
sides that it is a landmark in physics, biology, economics, and many other fields [16,17].
The anomalous diffusion has been observed in many phenomena with accurate physical
measurements [18–20].

Michele Caputo introduced Caputo fractional derivatives in 1967 [21]. The Caputo
operator has a non-singular kernel that can be converted to an integral by using Laplace
transformation. Usually, the Caputo version is chosen when physical models are presented
because the physical interpretation of the given data is unambiguous. In practice, most
circumstances when a fractional derivative concept is required are covered by the Caputo
fractional derivative; see [22].

In [23], some inequalities are generated using the Caputo–Fabrizio integral operator.
In [24,25], Butt et al. gave inequalities that have Caputo fractional integrals for exponential
s-convex functions and the Caputo fractional derivative for exponential (s, m)-convex
functions. Kemali et al. [26] established Hermite–Hadamard-type inequalities for s-convex
functions in the second sense through Caputo derivatives and Caputo–Fabrizio integral
operators. In [27], Abbasi et al. provided these inequalities in a generalized form and its
bounds, for s-convex functions using Caputo–Fabrizio integral operator. In [28], Li et al.
gave analogous inequalities for strongly convex functions.

With the aid of the Caputo fractional derivative, the spreading version of COVID-
19 is investigated [29]. Wang et al. [30] initiated a new local fractional modified Ben-
jamin–Bona–Mahony equation that had the local fractional derivative. Ji-Huan He in [31]
discussed fractal calculus and its geometrical explanation. In [32], the authors presented
a fractional model of a falling object with the aid of the Caputo derivative. Wanassi et al.
investigated the world population growth as an application of fractional derivative [33].
The biological model is presented using the Caputo Fabrizio operator in [34]. Areshi et al.
investigated wave solutions of the predator–prey model with fractional derivative [35].
Mahatekar et al. [36] acquired a new numerical method for the solution of fractional differ-
ential equations that have Caputo–Fabrizio derivatives. From the above-cited work, the
primary purpose of this paper is to accomplish various inequalities for the functions whose
derivatives are (s, m)-convex; these inequalities involve Caputo fractional derivatives and
Caputo–Fabrizio integrals.

The paper is organised as follows. In the main findings, firstly, the inequalities for the
functions whose derivatives are (s, m)-convex functions in second sense are established
using the Caputo fractional derivative. For (s, m)-convex functions in the second sense,
the Hermite–Hadamard inequality involving Caputo–Fabrizio operators is presented.
Furthermore, some inequalities for the product of (s, m)-convex functions are constructed.
We establish two vital lemmas, which are helpful to construct new inequalities that contain
the Caputo–Fabrizio operator. Additionally, some applications to special means are created.
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2. Preliminaries

The following are some definitions that are useful in our paper.
Convex function [12]:
A real valued function σ is said to be convex on close interval I if

σ
(

λη + (1− η)µ
)
≤ ησ(λ) + (1− η)σ(µ) (4)

holds, for all λ, µ in I and η ∈ [0, 1].
s-convex function [6]:
A function σ : [0, ∞) −→ R is said to be s-convex in second sense if

σ
(

λη + (1− η)µ
)
≤ ηsσ(λ) + (1− η)sσ(µ) (5)

holds, provided that all λ, µ ∈ [0, ∞), s ∈ (0, 1] and η ∈ [0, 1].
(s, m)-convex function [17]:
A function σ : [0, u] −→ R, u > 0 is said to be (s, m)-convex function in the second

sense with s, m ∈ (0, 1], if

σ
(

λη + m(1− η)µ
)
≤ ηsσ(λ) + m(1− η)sσ(µ) (6)

holds, provided that all λ, µ ∈ [0, u] and η ∈ [0, 1].
Beta function [37]: The integral form of Beta function for f > 0 and l > 0 is as follows:

β( f , l) =
1∫

0

k f−1(1− k)l−1dk. (7)

Gamma function [37]: Integral form of Gamma function is

Γ(x) =
∞∫

0

e−kkx−1dk, (8)

where x > 0.
Digamma function [38]: The integral form of digamma function is

ψ(v) =
1∫

0

1− qv−1

1− q
dq− γ, (9)

where v > 0 and γ is the Euler–Mascheroni constant.
Caputo fractional derivative [21,24,26]:
Let ACn[λ, µ] be the space of functions that have nth derivatives absolutely continuous,

σ ∈ ACn[λ, µ], where n = [κ] + 1 , κ /∈ {1, 2, 3, ....} and [·] denotes floor function. The right
side Caputo fractional derivative is

(CDκ
λ+σ)(z) =

1
Γ(n− κ)

z∫
λ

σ(n)(v)
(z− v)κ−n+1 dv, (10)

z > λ, the left side Caputo fractional derivative is

(CDκ
µ−σ)(z) =

(−1)n

Γ(n− κ)

µ∫
z

σ(n)(v)
(v− z)κ−n+1 dv, (11)
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z < µ. If κ = n ∈ {1, 2, 3...} and usual derivative σ(n)(z) of order n exists, then Caputo
fractional (CDn

λ+σ)(z) matches with σ(n)(z), whereas (CDn
µ−σ)(z) matches with σ(n)(z)

with exactness to a constant multiplier (−1)n. If n = 1, κ = 0, then we have

(CD0
λ+σ)(z) = (CD0

µ−σ)(z) = σ(z).

Caputo–Fabrizio integral operator [16,26]:
Let H1(λ, µ) be the Sobolev space of order one defined as

H1(λ, µ) = {g ∈ L2(λ, µ) : g′ ∈ L2(λ, µ)},

where

L2(λ, µ) = {g(z) :
( µ∫

λ

g2(z)dz
) 1

2
< ∞}.

Let σ ∈ H1(λ, µ), λ < µ and κ ∈ [0, 1]; then, the left derivative in the sense of Ca-
puto–Fabrizio is defined as

(CFD
λ Dκσ)(z) =

B(κ)
1− κ

z∫
λ

σ′(l)e
−κ(z−l)κ

1−κ dl,

z > κ and the associated integral operator is

(CF
λ Iκσ)(z) =

1− κ

B(κ)
σ(z) +

κ

B(κ)

z∫
λ

σ(v)dv, (12)

where B(κ) > 0 is the normalization function satisfying B(0) = B(1) = 1. For κ = 0, κ = 1,
the left derivative is defined as follows, respectively

(CFD
λ D0σ)(z) = σ′(z),

(CFD
λ I1σ)(z) = σ(z)− σ(λ).

For the right derivative operator

(CFD
µ Dκσ)(z) =

−B(κ)
1− κ

µ∫
z

σ′(l)e
−κ(l−z)κ

1−κ dl,

z < µ and the associated integral operator is

(CF Iκ
µσ)(z) =

1− κ

B(κ)
σ(z) +

κ

B(κ)

µ∫
z

σ(v)dv, (13)

where B(κ) > 0 is a normalization function satisfying B(0) = B(1) = 1.
Means [39,40]:
Let 0 < λ < µ, for p ∈ R− {0,−1}, the arithmetic mean and Stolarsky mean are

defined, respectively, as

A(λ, µ) =
λ + µ

2
; (14)

Lp(λ, µ) =
( λp+1 − µp+1

(p + 1)(λ− µ)

) 1
p
. (15)
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3. Main Results

The following theorem gives inequality for the (s, m)-convex function that has a
Caputo fractional derivative.

Theorem 1. Let σ : [λ, µ] ⊂ [0, ∞)→ R be n- times differentiable function, where n is a positive
integer. If σ(n)(·) is (s, m)-convex function, then for κ, θ > 1, x ∈ [λ, µ] with n > max{κ, θ},
(16) holds.

Γ(n− κ + 1)(CDκ−1
λ+ σ)(x) + Γ(n− θ + 1)(CDθ−1

µ− σ)(x)

≤
( (x− λ)n−κ+1σn(λ) + (−1)n(µ− x)n−θ+1σn(µ)

s + 1

)
+ m

( (x− λ)n−κ+1 + (−1)n(µ− x)n−θ+1

s + 1

)
σn(

x
m
).

(16)

Proof. For z ∈ [λ, x] and n > κ, we have

(x− z)n−κ ≤ (x− λ)n−κ . (17)

Let z =
(

x−z
x−λ

)
λ + m

(
z−λ
x−λ

)
( x

m ). Since σ(n)(·) is (s, m)- convex function, the following
inequality holds:

σ(n)(z) ≤
( x− z

x− λ

)s
σn(λ) + m

( z− λ

x− λ

)s
σ(n)(

x
m
). (18)

Multiply (17) and (18); then, integrate with respect to z over [λ, x] to obtain

x∫
λ

(x− z)n−κσ(n)(z)dz ≤ (x− λ)n−λ

(x− λ)s

(
σn(λ)

x∫
λ

(x− z)sdz + mσn(
x
m
)

x∫
λ

(z− λ)sdz
)

.

x∫
λ

(x− z)n−κσ(n)(z)dz ≤ (x− λ)n−κ−s−1

s + 1

(
σ(n)(λ) + mσ(n)(

x
m
)
)

.

Using (10), we have

Γ(n− κ + 1)(CDκ−1
λ+ σ)(x) ≤ (x− λ)n−κ+1

s + 1

(
σ(n)(λ) + mσ(n)(

x
m
)
)

. (19)

Now, consider z ∈ [x, µ], n > θ; we have

(z− x)n−θ ≤ (µ− x)n−θ . (20)

Let z =
(

z−x
µ−x

)
µ + m

(
µ−z
µ−x

)
( x

m ). Since, σ(n)(·) is (s, m)-convex.

σ(n)(z) ≤
( z− x

µ− x

)s
σn(µ) + m

( µ− z
µ− x

)s
σ(n)(

x
m
). (21)

Multiply (20) and (21); then, integrate with respect to z over [x, µ]

µ∫
x

(z− x)n−θσ(n)(z)dz ≤ (µ− x)n−θ

(µ− x)s

(
σn(µ)

µ∫
x

(z− x)sdz + mσn(
x
m
)

µ∫
x

(µ− z)sdz
)

.

µ∫
x

(z− x)n−θσ(n)(z)dz ≤ (µ− x)n−θ+1

s + 1

(
σ(n)(µ) + mσ(n)(

x
m
)
)

. (22)



Fractal Fract. 2023, 7, 187 6 of 16

Multiplying both sides of (22) with (−1)n and taking into account the oddness and
eveness of n, we obtain

(CDθ−1
µ− σ)(x)Γ(n− θ + 1) ≤ (−1)n(µ− x)n−θ+1

s + 1

(
σ(n)(µ) + mσ(n)(

x
m
)
)

. (23)

Add (19) and (23) to obtain (16).

Remark 1. Put m = 1 in (16), we obtain [Theorem 2.1] [26].

Corollary 1. If we take κ = θ in (16) , we obtain

Γ(n− κ + 1)
(
(CDκ−1

λ+ σ)(x) + (CDκ−1
µ− σ)(x)

)
≤
( (x− λ)n−κ+1σn(λ) + (−1)n(µ− x)n−κ+1σn(µ)

s + 1

)
+ m

( (x− λ)n−κ+1 + (−1)n(µ− x)n−κ+1

s + 1

)
σn(

x
m
).

(24)

Remark 2. If we put m = 1 in (24), we obtain [Corollary 2.1] [26].

Corollary 2. If we substitute κ = θ and s = 1 in Theorem 1, then (25) is obtained.

Γ(n− κ + 1)
(
(CDκ−1

λ+ σ)(x) + (CDκ−1
µ− σ)(x)

)
≤
( (x− λ)n−κ+1σn(λ) + (−1)n(µ− x)n−κ+1σn(µ)

2

)
+ m

( (x− λ)n−κ+1 + (−1)n(µ− x)n−κ+1

2

)
σn(

x
m
).

(25)

Remark 3. (a) If we put m = 1 in (25), we have [Corollary 2.2] [26]. (b) When n is even and
m = 1 in Corollary 2, [Corollary 2.1] [41] is obtained.

Theorem 2. Let σ : [λ, µ] ⊂ [0, ∞) → R be an n- times differentiable function, where n is a
positive integer. If σ(n)(·) is (s, m)-convex function and integrable on [λ, µ], then the following
inequalities hold:

2s

n− κ
σ(n)(

λ + mµ

2
) ≤ Γ(n− κ)

(mµ− λ)n−κ
(CDκ

λ+σ(n))(mµ)

+ m
Γ(n− κ)

(µ− λ
m )n−κ

(−1)n(CDκ
µ−σ(n))(

λ

m
)

≤
[ σ(n)(λ)

n− κ + s
+ mσ(n)(

λ

m
)β(s + 1, n− κ)

]
+ σ(n)(µ)

[
mβ(s + 1, n− κ) +

m2

n− κ + s

]
.

(26)

Proof. Since σ(n)(·) is (s, m)-convex function, we have

σ(n)(
x + my

2
) ≤ σ(n)(x) + mσ(n)(y)

2s (27)

for x, y ∈ [λ, µ]. Let x = zλ + m(1− z)µ, y = (1− z) λ
m + zµ for z ∈ [0, 1]. Then, (27) gives:

2sσ(n)(
λ + mµ

2
) ≤ σ(n)(zλ + m(1− z)µ) + mσ(n)((1− z)

λ

m
+ zµ). (28)
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Multiply (28) by zn−κ−1; then, integrate over [0, 1]

2sσ(n)( λ+mµ
2 )

1∫
0

zn−κ−1dz

≤
1∫

0
zn−κ−1σ(n)(zλ + m(1− z)µ)dz

+m
1∫

0
zn−κ−1σ(n)((1− z) λ

m + zµ)dz.

From which one has

2sσ(n)(
λ + mµ

2
)

1
n− κ

≤ Γ(n− κ)

(mµ− λ)n−κ
(CDκ

λ+σ(n))(mµ)

+
Γ(n− κ)

(µ− λ
m )n−κ

(−1)n(CDκ
µ−σ(n))(

λ

m
).

(29)

(s, m)-convexity of σ(n)(·) gives

σ(n)(zλ + m(1− z)µ) + mσ(n)((1− z) λ
m + zµ)

≤ [σ(n)(λ)zs + mσ(n)( λ
m )(1− z)s] + σ(n)(µ)[m(1− z)s + m2zs].

(30)

Multiply both sides of (30) by zn−κ−1; then, integrate with respect to z over [0, 1].

1∫
0

zn−κ−1σ(n)(zλ + m(1− z)µ)dz + m
1∫

0

zn−κ−1σ(n)((1− z)
λ

m
+ µz)dz

≤
1∫

0

[zsσ(n)(λ) + mσ(n)(
λ

m
)(1− z)s]zn−κ−1dz

+ σ(n)(µ)

1∫
0

[m(1− z)s + m2zs]zn−κ−1dz

=
[ σ(n)(λ)

n− λ + s
+ mσ(n)(

λ

m
)β(s + 1, n− κ)

]
+ σ(n)(µ)

[
mβ(s + 1, n− κ) +

m2

n− κ + s

]
,

from which one obtains

Γ(n− κ)

(mµ− λ)n−κ
(CDκ

λ+σ(n))(mµ) +
Γ(n− κ)

(µ− λ
m )n−κ

(−1)n(CDκ
µ−σ(n))(

λ

m
)

≤ σ(n)(λ)
[ 1

n− κ + s
+ mβ(s + 1, n− κ)

]
+ σ(n)(mµ)

[
mβ(s + 1, n− κ) +

m2

n− κ + s

]
.

(31)

Equations (29) and (31) give (26).

Remark 4. If we put m = 1 in (26), we obtain [Theorem 2.2] [26]
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Corollary 3. If we put κ = s = 1 and n = 2 in (16), we obtain:

2σ(n)(
λ + mµ

2
) ≤ 1)

(mµ− λ)
(CD1

λ+σ′′)(mµ)

+ m
1)

(µ− λ
m )

(−1)n(CDκ
µ−σ′′)(

λ

m
)

≤
[ σ′′(λ)

n− κ + s
+ mσ′′(

λ

m
)β(s + 1, n− κ)

]
+ σ(n)(µ)

[
mβ(s + 1, n− κ) +

m2

n− κ + s

]
.

(32)

Remark 5. If we substitute m = 1 in (32), we obtain [Corollary 2.2] [26].

Theorem 3. If σ : [λ, µ]→ R be (s, m)-convex function and integrable on [λ, µ], then

2sσ(
λ + mµ

2
) ≤ B(κ)

κ(mµ− λ)

([
(CF

λ Iκσ)(x) + (CF Iκ
mµσ)(x)

]
+ m2

[
(CF

λ
m

Iκσ)(x) + (CF Iκ
µσ)(x)

]
− 2(1 + m2)(1− κ)

B(κ)
σ(x)

)
≤
[(σ(λ) + mσ(µ)

s + 1

)
+ m

(σ(µ) + mσ( λ
m2 )

s + 1

)]
(33)

hold for κ ∈ [0, 1].

Proof. Multiply (3) by
κ(mµ− λ)

B(κ)
; then, add

2(1 + m2)(1− κ)

B(κ)
σ(x) to obtain

κ(mµ− λ)

B(κ)
2sσ(

λ + mµ

2
) +

(2 + 2m2)(1− κ)

B(κ)
σ(x)

≤ κ

B(κ)

[ mµ∫
λ

σ(u)du + m2
µ∫

λ
m

σ(u)du
]
+

(2 + 2m2)(1− κ)

B(κ)
σ(x)

≤ κ(mµ− λ)

B(κ)

[(σ(λ) + mσ(µ)

s + 1

)
+ m

(σ(µ) + mσ( λ
m2 )

s + 1

)]
+

(2 + 2m2)(1− κ)

B(κ)
σ(x).

(34)

Consider the left side of (34)

κ(mµ− λ)

B(κ)
2sσ(

λ + mµ

2
) +

(2 + 2m2)(1− κ)

B(κ)
σ(x)

≤
[ κ

B(κ)

mµ∫
λ

σ(v)dv +
2(1− κ)

B(κ)
σ(x)

]
+ m2

[ µ∫
λ
m

σ(v)dv +
2(1− κ)

B(κ)
σ(x)

]

=
[
(CF

λ Iκσ)(x) + (CF Iκ
mµσ)(x)

]
+ m2

[
(CF

λ
m

Iκσ)(x) + (CF Iκ
µσ)(x)

]
.

(35)
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Take the right side of (34)

κ(mµ− λ)

B(κ)

[(σ(λ) + mσ(µ)

s + 1

)
+ m

(σ(µ) + mσ( λ
m2 )

s + 1

)]
+

(2 + 2m2)(1− κ)

B(κ)
σ(x)

≥
[ κ

B(κ)

mµ∫
λ

σ(v)dv +
2(1− κ)

B(κ)
σ(x)

]
+ m2

[ µ∫
λ
m

σ(v)dv +
2(1− κ)

B(κ)
σ(x)

]

=
[
(CF

λ Iκσ)(x) + (CF Iκ
mµσ)(x)

]
+ m2

[
(CF

λ
m

Iκσ)(x) + (CF Iκ
µσ)(x)

]
.

(36)

Combine (35) and (36), and further solving yields the required result.

Remark 6. (a) If we put m = 1 in (33), we obtain [Theorem 2.3] [26]. (b) If we put m = 1 and
s = 1 in (33), we obtain [Theorem2] [42].

Theorem 4. Let σ : [λ, µ]→ R be (s1, m)-convex function and χ : [λ, µ]→ R be (s2, m)-convex
function s1, s2 ∈ (0, 1]. If σχ integrable on [λ, µ], where λ, µ ∈ R, then

B(κ)
κ(mµ− λ)

[(
(CF

λ Iκσχ)(x) + (CF Iκ
mµσχ)(x)

)
− 2(1− κ)

B(κ)
σ(x)χ(x)

]
≤ M(λ, µ)

s1 + s2 + 1
+ β(s1 + 1, s2 + 1)mN(λ, µ),

(37)

where B(κ) > 0 is normalization function M(λ, µ) = σ(λ)χ(λ) + m2σ(µ)χ(µ) and N(λ, µ) =
σ(λ)χ(µ) + σ(µ)χ(λ).

Proof. Since σ : [λ, µ] → R is the (s1, m)-convex function and χ : [λ, µ] → R is the
(s2, m)-convex function, we have

σ(ωλ + m(1−ω)µ) ≤ ωs1 σ(λ) + m(1−ω)s1 σ(µ) (38)

and
χ(ωλ + m(1−ω)µ) ≤ ωs2 χ(λ) + m(1−ω)s2 χ(µ), (39)

where λ, µ ∈ I and ω ∈ [0, 1].
Multiply (38) and (39) side to side; then, integrate over [0, 1] to obtain

1∫
0

σ(ωλ + m(1−ω)µ)χ(ωλ + m(1−ω)µ)dω

≤
1∫

0

[ωs1 σ(λ) + m(1−ω)s1 σ(µ)][ωs2 χ(λ) + m(1−ω)s2 χ(µ)]dω

=
M(λ, µ)

s1 + s2 + 1
+ mN(λ, µ)β(s1 + 1, s2 + 1).

Substitute ωλ + m(1−ω)µ = y; this inequality gives the following inequality:

1
mµ− λ

mµ∫
λ

σ(y)χ(y)dy

≤ M(λ, µ)

s1 + s2 + 1
+ mN(λ, µ)β(s1 + 1, s2 + 1).

(40)
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Multiply (40) with
κ(mµ− λ)

B(κ)
and add

2(1− κ)

B(κ)
σ(x)χ(x) to obtain

κ

B(κ)

[ x∫
λ

σ(y)χ(y)dy +

mµ∫
x

σ(y)χ(y)dy
]
+

2(1− κ)

B(κ)
σ(x)χ(x)

≤ κ(mµ− λ)

B(κ)

[ M(λ, µ)

s1 + s2 + 1
+ mN(λ, µ)β(s1 + 1, s2 + 1)

]
+

2(1− κ)

B(κ)
σ(x)χ(x).

Use (12) and (13) to obtain the following inequality:(
(CF

λ Iκσχ)(x) + (CF Iκ
mµσχ)(x)

)
≤ κ(mµ− λ)

B(κ)

[ M(λ, µ)

s1 + s2 + 1
+ mN(λ, µ)β(s1 + 1, s2 + 1)

]
+

2(1− κ)

B(κ)
σ(x)χ(x).

(41)

Subtract
2(1− κ)

B(κ)
σ(x)χ(x) from both sides of (41); then, multiply both sides by

B(κ)
2(1− κ)

σ(x)χ(x), so that inequality (37) is obtained.

Corollary 4. If we choose s1 = s2 = 1, then we obtain

B(κ)
κ(mµ− λ)

[(
(CF

λ Iκσχ)(x) + (CF Iκ
mµσχ)(x)

)
− 2(1− κ)

B(κ)
σ(x)χ(x)

]
≤ M(λ, µ)

3
+

1
6

mN(λ, µ).

Remark 7. For m = 1, we have [Corollary 2.4] [26].

Corollary 5. Put κ=1, B(κ) = B(1)=1 in (37); we obtain

1
κ(mµ− λ)

[(
(CF

λ Iκσχ)(x) + (CF Iκ
mµσχ)(x)

)]
≤ M(λ, µ)

s1 + s2 + 1
+ β(s1 + 1, s2 + 1)mN(λ, µ).

(42)

Remark 8. For m = 1, we have [Theorem 6] [22].

Lemma 1. Let σ : [λ, mµ]→ R be a differentiable function on (λ, mµ). If σ′(·) is integrable on
[λ, mµ] , then

σ(λ) + σ(mµ)

2
− B(κ)

κ(mµ− λ)

[(
(CF

λ Iκσ)(x) + (CF Iκ
mµσ)(x)

)]
+

2(1− κ)

(mµ− λ)κ
σ(x)

=
(mµ− λ)

2

1∫
0

(1− 2y)σ′(λy + m(1− y)µ)dy

holds for κ ∈ [0, 1].
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Proof. It is easy to see that

1∫
0

(1− 2y)σ′(λy + m(1− y)µ)dy

=
σ(λ) + σ(mµ)

(mµ− λ)
+ 2

1∫
0

σ(λy + (1− y)mµ)

λ−mµ
dy.

Substitute λy + (1− y)mµ = u in the integral on right side of equation.

1∫
0

(1− 2y)σ′(λy + m(1− y)µ)dy

=
σ(λ) + σ(mµ)

(mµ− λ)
− 2

(mµ− λ)2

mµ∫
λ

σ(u)du.

(43)

Multiply both sides of (43) by
κ(mµ− λ)2

2B(κ)
and subtract

2(1− κ)σ(x)
B(κ)

to obtain:

κ(mµ− λ)2

2B(κ)

1∫
0

(1− 2y)σ′(λy + m(1− y)µ)dy− 2(1− κ)σ(x)
B(κ)

=
κ(mµ− λ)2

2B(κ)

[σ(λ) + σ(mµ)

(mµ− λ)
− 2

(mµ− λ)2

( x∫
λ

σ(u)du+

mµ∫
x

σ(u)du
)]
− 2(1− κ)σ(x)

B(κ)
,

(44)

where x ∈ [λ, µ]. Further solving (44) leads towards the proof of Lemma 1.

Remark 9. Put m = 1, in Lemma 1, we obtain [Lemma 2] [42].

Lemma 2. Let σ : [λ, mµ]→ R be a differentiable function on (λ, mµ). If σ′′(·) is integrable on
[λ, mµ] and κ ∈ [0, 1], then (45) holds.

σ(λ) + σ(mµ)

2
− B(κ)

κ(mµ− λ)

[(
(CF

λ Iκσ)(x) + (CF Iκ
mµσ)(x)

)]
+

2(1− κ)

κ(mµ− λ)
σ(x)

=
(mµ− λ)2

2

1∫
0

r(1− r)σ′′(λr + m(1− r)µ)dr.
(45)

Proof. It is easy to show

1∫
0

r(1− r)σ′′(λr + m(1− r)µ)dr

=
2

(mµ− λ)2

[σ(λ) + σ(mµ)

2
−

1∫
0

σ(λr + m(1− r)µ)dr
]
.

(46)
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Substitute u = λr + (1− r)mµ on the right side of the Equation (46).

1∫
0

r(1− r)σ′′(λr + m(1− r)µ)dr

=
2

(mµ− λ)2

[σ(λ) + σ(mµ)

2
− 1

mµ− λ

mµ∫
λ

σ(u)du
]
.

(47)

Multiply both sides of of (47) by κ(mµ− λ)3

2B(κ) and subtract
2(1− κ)σ(x)

B(κ)
to obtain

κ(mµ− λ)3

2B(κ)

1∫
0

r(1− r)σ′′(λr + m(1− r)µ)dr− 2(1− κ)σ(x)
B(κ)

=
κ(mµ− λ)3

2B(κ)

[ 2
(mµ− λ)2

[σ(λ) + σ(mµ)

2
− 1

mµ− λ

( x∫
λ

σ(u)du +

mµ∫
x

σ(u)du
)]]

− 2(1− κ)σ(x)
B(κ)

,

(48)

where x ∈ [λ, µ]. Further solving (48) leads to the proof of Lemma 2.

Remark 10. Put m = 1, in Lemma 2, we obtain [Lemma10] [43].

Theorem 5. Let σ : [λ, mµ]→ R be a differentiable function on (λ, mµ). If σ′(·) is (s, m)-convex
function and integrable on [λ, mµ], then (49) holds:

σ(λ) + σ(mµ)

2
− B(κ)

κ(mµ− λ)

[(
(CF

λ Iκσ)(x) + (CF Iκ
mµσ)(x)

)]
+

2(1− κ)

κ(mµ− λ)
σ(x)

≤ mµ− λ

2
[mσ′(µ)− σ′(λ)]

s
(s + 1)(s + 2)

.
(49)

Proof. Lemma 1 and (s, m)-convexity of σ′(·) give

σ(λ) + σ(mµ)

2
− B(σ)

σ(mµ− λ)

[(
(CF

λ Iκσ)(x) + (CF Iκ
mµσ)(x)

)]
+

2(1− κ)

κ(mµ− λ)
σ(x)

≤ mµ− λ

2

1∫
0

(1− 2y)[ysσ′(λ) + m(1− y)sσ′(µ)]dy

=
mµ− λ

2
[mσ′(µ)− σ′(λ)]

s
(s + 1)(s + 2)

.

Corollary 6. If we put s = 1 in Theorem 5, we obtain

σ(λ) + σ(mµ)

2
− B(σ)

σ(mµ− λ)

[(
(CF

λ Iκσ)(x) + (CF Iκ
mµσ)(x)

)]
+

2(1− κ)

κ(mµ− λ)
σ(x)

≤ mµ− λ

12
[mσ′(µ)− σ′(λ)].

(50)

Remark 11. For m = 1 in (50), we have [Corollary 2.5] [26].
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Theorem 6. Let σ : [λ, mµ] → R be a twice differentiable function on (λ, mµ). If σ′′(·) is an
(s, m)-convex function and an integrable on [λ, mµ], then

σ(λ) + σ(mµ)

2
− B(σ)

σ(mµ− λ)

[(
(CF

λ Iκσ)(x) + (CF Iκ
mµσ)(x)

)]
+

2(1− κ)

κ(mµ− λ)
σ(x)

≤ (mµ− λ)2

2
[σ′′(λ) + mσ′′(µ)]

(s + 3)(s + 2)
.

Proof. Use Lemma 2 and (s, m)-convexity of σ′′(·)

σ(λ) + σ(mµ)

2
− B(σ)

σ(mµ− λ)

[(
(CF

λ Iκσ)(x) + (CF Iκ
mµσ)(x)

)]
+

2(1− κ)

κ(mµ− λ)
σ(x)

≤ (mµ− λ)2

2

1∫
0

(y− y2)[ysσ′′(λ) + m(1− y)sσ′′(µ)]dy

=
(mµ− λ)2

2
[σ′′(λ) + mσ′′(µ)]

(s + 3)(s + 2)
.

Corollary 7. If we substitute s = 1 in Theorem 6, the following inequality is obtained:

σ(λ) + σ(mµ)

2
− B(σ)

σ(mµ− λ)

[(
(CF

λ Iκσ)(x) + (CF Iκ
mµσ)(x)

)]
+

2(1− κ)

κ(mµ− λ)
σ(x)

≤ (mµ− λ)2

24
[σ′′(λ) + mσ′′(µ)].

Remark 12. For m = 1, we have in [Corollary 2.6] [26].

Proposition 1. Let λ, µ be a positive real number with λ < mµ. The inequalities

2
s

s+m−1 A(λ, mµ) ≤ (1 + m2−s−m)
1

s+m−1 Ls+m−1(λ, mµ)

≤
( (1 + m4−2s−2m)λs+m−1 + (2m)µs+m−1

s + 1

) 1
s+m−1

,
(51)

hold for s ∈ (0, 1), m ∈ (0, 1] and 0 < s + m < 1.

Proof. Applying Theorem 3 to the (s, m)-convex function σ : [0, ∞) → [0, ∞),
σ(x) = xs+m−1, 0 < s + m < 1, κ = 1 and B(κ) = 1

2s
(λ + mµ

2

)s+m−1
≤ m2−s−m + 1

mµ− λ

[ (mµ)s+m − λs+m

s + m

]
≤
( (1 + m4−2s−2m)λs+m−1 + (2m)µs+m−1

s + 1

)
.

(52)

Implies that

2
s

s+m−1

(λ + mµ

2

)
≤
(m2−s−m + 1

mµ− λ

[ (mµ)s+m − λs+m

s + m

]) 1
s+m−1

≤
( (1 + m4−2s−2m)λs+m−1 + (2m)µs+m−1

s + 1

) 1
s+m−1

.

(53)

Use (14) and (15) in (53) to obtain (51).

Remark 13. If we put m = 1 in (51), we have [Proposition 3.1] [26].
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Proposition 2. Let h ∈ (1, 2), m ∈ (0, 1]. Then,

2h−m − 21−m ≤ [ψ(h) + γ][1 + m3−h] ≤ 1+m6−2h+2m3−h(h−1)
h−m ,

where ψ(h) is digamma function, i.e.,

ψ(h) =
Γ′(h)
Γ(h)

for h > 0 and γ is Euler–Mascheroni constant.

Proof. Substitute p = λ
mµ , in (52), where s ∈ (0, 1), m ∈ (0, 1] and 0 < s + m < 1.

2s
(1 + p

2

)s+m−1
≤
(1− ps+m

1− p

)(1 + m2−s−m

s + m

)
≤
(

ps+m−1(1 + m4−2s−2m) +
2

ms+m−2

) 1
s + 1

.
(54)

Integrate (54) with respect to p, over [0, 1], to obtain

2s+1 − 21−m ≤ (1 + m2−s−m)

1∫
0

1− ps+m

1− p
dp

≤ 1 + m4−2s−2m + 2m2−s−m(s + m)

s + 1
.

(55)

In (55), use Equation (9) of digamma function:

2s+1 − 21−m ≤ ψ(s + m + 1) + γ

≤ 1 + m4−2s−2m + 2m2−s−m(s + m)

s + 1
.

(56)

The substitution h = s + m + 1 in (56) for h ∈ (1, 2) leads towards the proof.

Remark 14. If we put m = 1 in Proposition 2, we obtain double inequalities in the statement of
[Proposition 3.2] [26] with h ∈ (1, 2).

4. Conclusions

This paper presents several inequalities accomplished for the functions whose nth
derivatives are (s, m)-convex functions via Caputo fractional derivatives. The paper also
includes the outcomes obtained by Caputo–Fabrizio integrals, which depict a generalization
of Hermite–Hadamard-type inequalities for the (s, m)-convex function and the product
of (s, m)-convex functions. Lemmas 1 and 2 are established to obtain new inequalities
involving Caputo–Fabrizio integrals, which are applied to obtain the special means and an
inequality involving the digamma function. These lemmas are also convenient to obtain
bounds and error estimates. Our results provide the extension of the inequalities presented
in [26,41–43]. Other types of inequalities can be obtained with the analogous classes of
other convex functions.
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