
Citation: Ackora-Prah, J.; Seidu, B.;

Okyere, E.; Asamoah, J.K.K.

Fractal-Fractional Caputo Maize

Streak Virus Disease Model. Fractal

Fract. 2023, 7, 189. https://doi.org/

10.3390/fractalfract7020189

Academic Editor: Carlo Cattani

Received: 27 December 2022

Revised: 30 January 2023

Accepted: 9 February 2023

Published: 13 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Fractal-Fractional Caputo Maize Streak Virus Disease Model
Joseph Ackora-Prah 1,*,† , Baba Seidu 2,*,† , Eric Okyere 3,† and Joshua K. K. Asamoah 1,†

1 Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
2 Department of Mathematics, Faculty of Mathematical Sciences, C. K. Tedam University of Technology and

Applied Sciences, Navrongo UK-0215-5321, Ghana
3 Department of Mathematics and Statistics, University of Energy and Natural Resources, Sunyani, Ghana
* Correspondence: ackoraprahj@gmail.com (J.A.-P.); bseidu@cktutas.edu.gh (B.S.)
† These authors contributed equally to this work.

Abstract: Maize is one of the most extensively produced cereals in the world. The maize streak
virus primarily infects maize but can also infect over 80 other grass species. Leafhoppers are the
primary vectors of the maize streak virus. When feeding on plants, susceptible vectors can acquire
the virus from infected plants, and infected vectors can transmit the virus to susceptible plants.
However, because maize is normally patchy and leafhoppers are mobile, leafhoppers will always
be foraging for food. Therefore, we want to look at how leafhoppers interact on maize farms using
Holling’s Type III functional response in a Caputo fractal-fractional derivative sense. We show that
the proposed model has unique positive solutions within a feasible region. We employed the Newton
polynomial scheme to numerically simulate the proposed model to illustrate the qualitative results
obtained. We also studied the relationship between the state variables and some epidemiological
factors captured as model parameters. We observed that the integer-order versions of the model
exaggerate the impact of the disease. We also observe that the increase in the leafhopper infestation
on maize fields has a devastating effect on the health of maize plants and the subsequent yield.
Furthermore, we noticed that varying the conversion rate of the infected leafhopper leads to a
crossover effect in the number of healthy maize after 82 days. We also show the dynamics of varying
the maize streak virus transmission rates. It indicates that when preventive measures are taken to
reduce the transmission rates, it will reduce the low-yielding effect of maize due to the maize streak
virus disease.

Keywords: Caputo derivative; fractal-fractional; maize disease; Holling’s Type III; functional
response

1. Introduction

In 2016, maize was predicted to be next to yellow rice among cereals in revenue.
Regarding the Sustainable Development Goal of eradicating world hunger, plants’ health is
crucial as it affects food production. Over 80% of the calories consumed by humans comes
from plants. Plants and animals have become more susceptible to disease and pests due to
increased travel, unfavorable climate change, and continuous forest encroachment caused
by rising populations and urbanization. Close to 40% of the annual global food crop losses
are attributable to pests and diseases, so more efforts must be adopted to combat the effect
of these pests and diseases [1]. During feeding, susceptible leafhoppers can acquire the
virus from infected plants, and infected vectors can, in turn, transmit the virus to suscep-
tible plants. The importance of mathematics in helping us better understand the world
around us cannot be overemphasized. Mathematical models are crucial to the development
and execution of effective policies for eradicating infectious diseases in plants and animals.
Two areas where mathematics is increasingly used are mathematical epidemiology and
mathematical ecology, where mathematical tools and techniques are used to study the
dynamics of infectious diseases and ecology. Mathematical modeling has been a significant
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resource for studying the transmission of disease and creating effective prophylactic mea-
sures and is effective in aiding a better understanding of infectious disease dynamics and
control.

Much research has been conducted using mathematical models to help understand
the spread and control of MSVD. Regarding maize disease research, [2] studied the epi-
demiological compartments of maize plants to explore the most effective control strategies.
Using the SEI-SI plant-vector model, the relationship between plants and maize Lethal
Necrosis disease (MLND)-vector populations is described by [3]. The contact rates were
found to have beneficial effects on the transmission of MLND between maize and MLND
vectors and between maize and other plants. Moreover, ref. [4] proposed a susceptible–
infected maize-vector differential equation model to analyze the dynamics of MSVD. To
investigate the effect of the ambient pathogen concentration on MSVD management, ref. [5]
integrated the pathogen compartment into the maize leafhopper model, demonstrating
that the removal of infected leafhoppers and the incineration of infected maize plants is
a suitable method for controlling the disease. The epidemiological model of Alemneh
and colleagues [4] was broadened in [6] to examine the most cost-effective approaches to
manage MSVD and made the same findings as [5]. The epidemiological models in [4–6]
gave in-depth knowledge of the dynamics of MSVD. Still, it is noteworthy that they rep-
resent maize plant infection and predation in a multifunctional fashion. Recently, Seidu
and colleagues [7] presented a dynamical model of MSVD with the incorporation of the
Holling’s Type II and standard incidence to study the best strategies for controlling the
spread of MSVD. They noticed that the most cost-effective strategy combines the simultane-
ous adoption of infection control, predation control, the removal of infected maize plants,
and insecticide application.

Finally, the work in [8] included the latent period in the spread of MSVD. We note
that much of the research that has been conducted on MSVD modeling does not consider
the use of fractal-fractional derivatives. However, researchers are becoming highly in-
volved in using non-integer-scale mathematical modeling of contagious diseases [9]. In
epidemiology, fixed-order derivatives can only define classical models, while models with
fractional-order derivatives and a fractal order are more effective in representing real-world
issues. This superiority of the non-integer models is due to their inherent memory ef-
fect, which ensures that current solutions of models rely on all previous solutions and
not just the immediate previous solution, as in the case of integer-order models. A new
non-integer differentiation concept is presented in [10,11], where the operator has two
orders: a fractional order and a fractal dimension (order). Thus, to show the dynamism
of this new concept, the work in [12] used fractal-fractional derivatives and integrals to
study and forecast the dynamic behavior of some attractors. Moreover, the work in [13]
investigated novel numerical approximations for the Chua attractor using fractional and
fractal-fractional operators. Due to the new insight, the fractal-fractional investigation
brings the following works [14–23], giving various valuable epidemiological importance
to the concept of fractal-fractional modeling on numerous diseases, including COVID-19.
Sinan et al. [24] studied the fractional model of malaria disease with treatment and insecti-
cides and observed that the utilization of bed nets and insecticides could drastically cut
down on the transmission of malaria. However, the effect of medication and treatment on
infection regulation is relatively less significant. Ahmad et al. [25] studied the dynamics
and sensitivity analysis of pine wilt disease with asymptomatic carriers via the fractal-
fractional differential operator of the Mittag-Leffler kernel and found that eliminating
beetles might significantly lower the infection. The work in [26] used a fractal-fractional
model to study the sensitivity analysis of COVID-19, which included both quarantine and
vaccination. The use of fractional and fractal derivatives to model maize streak disease
dynamics has not been considered to the best of our knowledge. Therefore, this work is the
first to study the effect of maize streak disease using the Caputo fractal-fractional derivative.
This study has been conducted because the fractal-fractional derivative can help capture the
repeated and memory aspects of natural phenomena. Moreover, the potential outcome of
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the further spread of the maize streak virus can be captured by the Caputo fractal-fractional
derivative. The rest of this paper is arranged as follows: Some fundamental definitions and
preliminary information are provided in Section 2. We present our proposed model in inte-
ger and fractal-fractional forms in Section 3. Section 4 presents the analysis of the Caputo
fractal-fractional model. We present the numerical results of the Caputo fractal-fractional
model in Section 5. Finally, Section 6 provides this study’s conclusion.

2. Preliminaries

In this part, the general definitions concerning the fractal-fractional Caputo are pre-
sented.

Definition 1 ([10,27]). Given a continuous interval (e∗, f ∗), and assuming that P∗ is differen-
tiable on the fractal dimension interval β∗. Following that, the Caputo fractal-fractional differential
operator of P∗ of order θ∗ is provided by

CFD
θ∗ ,β∗
e∗ ,z∗ P

∗(z∗) =
1

Γ(q− θ∗)

d∗

d∗z∗β∗

∫ z∗

e∗
(z∗ − k∗)q−θ∗−1P∗(k∗)d∗k∗, (q− 1 < θ∗, β∗ ≤ q ∈ N),

with the following derivative:

d∗P∗(k∗)
d∗k∗β∗

= lim
z∗→k∗

P∗(z∗)−P∗(k∗)
z∗β∗ − k∗β∗

.

If β∗ = 1, then the Caputo fractal-fractional derivative CFDθ∗ ,β∗
e∗ ,z∗ becomes the θ∗th-

Riemann–Liouville derivative RLDθ∗
e∗ ,z∗ .

Definition 2 ([10,27]). Suppose that P∗ is uninterrupted on the open interval (e∗, f ∗). Then, the
fractal-fractional integral of P∗ of the Caputo operator is written as

CFI
θ∗ ,β∗
e∗ ,z∗ P

∗(z∗) =
β∗

Γ(θ∗)

∫ z∗

e∗
k∗β∗−1(z∗ − k∗)θ∗−1P∗(k∗)d∗k∗.

Let G∗ be categorized under the umbrella of nondecreasing mappings g∗ : R≥0 →
R≥0 with g∗(z∗) < z∗, ∀ z∗ > 0, and

∞

∑
v∗=1

g∗v∗(z∗) < ∞.

Definition 3 ([27,28]). Suppose P∗ : U∗ → U∗ and φ∗ : U∗2 → R≥0, with U∗ being a normed
linear space. Then, as follows:

1. In the event that for each y∗1 , y∗2 ∈ U∗,

φ∗(y∗1 , y∗2)d(P∗y∗1 ,P∗y∗2) ≤ g∗(d(y∗1 , y∗2)),

then P∗ is φ∗-g∗-contraction.
2. Suppose φ∗(y∗1 , y∗2) ≥ 1 gives φ∗(P∗y∗1 ,P∗y∗2) ≥ 1, then P∗ is φ∗-admissible.

3. Formulation of the Mathematical Model

To develop a fractal-fractional model for maize streak virus disease, we first pro-
vide an integer-order description of the disease based on an existing MSVD model [7].
Thus, the model is made up of healthy maize plants, denoted as Smp; exposed maize
plants, denoted as Emp; and unhealthy maize plants, denoted as Imp, with the overall maize
plant population given by Nmp = Smp + Emp + Imp. The maize plant gets infected by the
invasion of leafhoppers and the injection of the virus into the plant tissue during feeding.
The healthy leafhopper population is denoted as Slh and the unhealthy leafhopper is
denoted as Ilh, so that the overall leafhopper population is denoted as Nlh = Slh + Ilh.
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The rate at which leafhoppers consume maize plants is described by Holling’s Type II and
Type III functional responses. The Holling’s Type II rate of maize predation is given by

aY∗mpNlh
1+ah∗Y∗mp

, where Y∗mp stand for any of the maize sub-populations, a is the attack rate of the
leafhoppers (that is, the rate at which leafhoppers bump into maize plants per unit of the
entire maize population), and h∗ is the handling time (estimates the output of the total
amount of time spent by leafhoppers in processing consumed maize plants). The Holling’s

Type III rate of maize predation is given by
aY∗mp

2Nlh

1+ah∗Y∗mp
2 , where a, h∗, Y∗mp have the usual

meaning. The square term indicates leafhoppers increase search activity proportionally to
the maize plants. The rest of the model assumptions are listed as follows:

1. The growth rate of the healthy maize population takes a logistic nature, thus

rSmp

(
1− Nmp

K

)
, where r is the intrinsic growth rate, and K represents the carrying

capacity.
2. The healthy (susceptible) maize plants become exposed to MSVD at a rate of βhmIlhSmp

Nlh
when unhealthy (infected) leafhoppers feed on the maize plants. Here, the parameter
βhm is the likelihood that the disease will spread from the infected leafhopper to the
susceptible maize plant.

3. The possibility of MSVD transfer from an unhealthy maize plant to a healthy leafhopper

is βmh, and it occurs at a rate of
βmh(Emp+Imp)Slh

Nmp
.

4. We assume that farmers will grow MSVD-resistant maize varieties so that only a part ε
of the exposed maize plants advance to the infected class at rate ερ and the remainder
revert to the susceptible class. The parameter ρ denotes the level of MSVD infection
resistance in maize.

5. The assumed natural mortality rates for maize plants and leafhoppers are µmp and µlh,
respectively, while the estimated mortality rate for plants exposed to MSV is α.

6. The green lacewing (leafhoppers) population increases at a constant rate b. Here, we set

b = b1 + aNlh

(
η1Smp

1+ah∗Smp
+

η2Emp
1+ah∗Emp

+
η3Imp

1+ah∗Imp

)
, where b1 would be the constant rate

of invasion of the maize field and ηi, i = 1, 2, 3 are the respective conversion rates of
consumed susceptible, exposed, and infected maize plant by leafhoppers.

From the above description, the integer-order model with Holling’s Type II is given as
follows:

dSmp
dz = rSmp

(
1− Nmp

K

)
+ (1− ε)ρEmp −

βhmSmp Ilh
Nlh

− aSmpNlh
1+ah∗Smp

,
dEmp

dz =
βhmSmp Ilh

Nlh
− aEmpNlh

1+ah∗Emp
−
(
ρ + µmp

)
Emp,

dImp
dz = ερEmp −

aImpNlh
1+ah∗ Imp

−
(
α + µmp

)
Imp,

dSlh
dz = b1 + aNlh

(
η1Smp

1+ah∗Smp
+

η2Emp
1+ah∗Emp

+
η3Imp

1+ah∗ Imp

)
− βmhSlh(Emp+Imp)

Nmp
− µlhSlh,

dIlh
dz =

βmhSlh(Emp+Imp)
Nmp

− µlhIlh.

Smp(0) ≥ 0, Emp(0) ≥ 0, Imp ≥ (0), Slh(0) ≥ 0, Ilh(0) ≥ 0.


(1)

Moreover, from the above description, the integer-order model with Holling’s Type III is given
as follows:

dSmp
dz = rSmp

(
1− Nmp

K

)
+ (1− ε)ρEmp −

βhmSmpIlh
Nlh

− aSmp
2Nlh

1+ah∗Smp
2 ,

dEmp
dz =

βhmSmpIlh
Nlh

− aEmp
2Nlh

1+ah∗Emp
2 −

(
ρ + µmp

)
Emp,

dImp
dz = ερEmp −

aImp
2Nlh

1+ah∗Imp
2 −

(
α + µmp

)
Imp,

dSlh
dz = b1 + aNlh

(
η1Smp

2

1+ah∗Smp
2 +

η2Emp
2

1+ah∗Emp
2 +

η3Imp
2

1+ah∗Imp
2

)
− βmhSlh(Emp+Imp)

Nmp
− µlhSlh,

dIlh
dz =

βmhSlh(Emp+Imp)
Nmp

− µlhIlh.

Smp(0) ≥ 0, Emp(0) ≥ 0, Imp ≥ (0), Slh(0) ≥ 0, Ilh(0) ≥ 0.


(2)
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Now, we introduce the fractal-fractional nature into our proposed model (1) and (2) in confor-
mity with the fractal-fractional definitions above. Therefore, the MSVD model in (1) and (2) can be
expressed in Caputo fractal-fractional sense as

CF
0 Dθ∗ ,β∗

z Smp(z) = rSmp

(
1− Nmp

K

)
+ (1− ε)ρEmp −

βhmSmpIlh
Nlh

− aSmpNlh
1+ah∗Smp

,
CF
0 Dθ∗ ,β∗

z Emp(z) =
βhmSmpIlh

Nlh
− aEmpNlh

1+ah∗Emp
−
(
ρ + µmp

)
Emp,

CF
0 Dθ∗ ,β∗

z Imp(z) = ερEmp −
aImpNlh

1+ah∗Imp
−
(
α + µmp

)
Imp,

CF
0 Dθ∗ ,β∗

z Slh(z) = b1 + aNlh

(
η1Smp

1+ah∗Smp
+

η2Emp
1+ah∗Emp

+
η3Imp

1+ah∗Imp

)
−
(

βmh(Emp+Imp)
Nmp

+ µlh

)
Slh,

CF
0 Dθ∗ ,β∗

z Ilh(z) =
βmhSlh(Emp+Imp)

Nmp
− µlhIlh.


(3)

The initial conditions for the model are given as Smp(0) > 0, Emp(0) ≥ 0, Imp ≥ (0), Slh(0) >
0, Ilh(0) ≥ 0.

Moreover, with Holling’s Type III, the model is given by

CF
0 Dθ∗ ,β∗

z Smp(z) = rSmp

(
1− Nmp

K

)
+ (1− ε)ρEmp −

βhmSmpIlh
Nlh

− aSmp
2Nlh

1+ah∗Smp
2 ,

CF
0 Dθ∗ ,β∗

z Emp(z) =
βhmSmpIlh

Nlh
− aEmp

2Nlh

1+ah∗Emp
2 −

(
ρ + µmp

)
Emp,

CF
0 Dθ∗ ,β∗

z Imp(z) = ερEmp −
aImp

2Nlh
1+ah∗I2mp

−
(
α + µmp

)
Imp,

CF
0 Dθ∗ ,β∗

z Slh(z) = b1 + aNlh

(
η1Smp

2

1+ah∗Smp
2 +

η2Emp
2

1+ah∗Emp
2 +

η3Imp
2

1+ah∗Imp
2

)
− βmhSlh(Emp+Imp)

Nmp
− µlhSlh,

CF
0 Dθ∗ ,β∗

z Ilh(z) =
βmhSlh(Emp+Imp)

Nmp
− µlhIlh.


(4)

Using the algebraic idea of cancelation, we recast some of the expressions in model (4) into the
following notations

U1 = (1 + ε)ρ, U2 = (ρ + µ), U3 = (α + µmp), U ∗1 =
(
1− Nmp

K
)
,

U ∗2 =
βhmIlh
Nlh

, U ∗3 = aNlh
1+ah∗Smp

2 , U ∗4 = aNlh
1+ah∗Emp

2 , U ∗5 = aNlh
1+ah∗Imp

2 ,

U ∗6 = aNlh

(
η1Smp

2

1+ah∗Smp
2 +

η2Emp
2

1+ah∗Emp
2 +

η3Imp
2

1+ah∗Imp
2

)
, U ∗7 =

βmh(Emp+Imp)
Nmp

.

Thus, the model (3) can be recast as

CF
0 Dθ∗ ,β∗

z Smp(z) = U ∗1 rSmp + U1Emp −U ∗2 Smp −U ∗3 Smp
2,

CF
0 Dθ∗ ,β∗

z Emp(z) = U ∗2 Smp −U ∗4 Emp
2 −U2Emp,

CF
0 Dθ∗ ,β∗

z Imp(z) = ερEmp −U ∗5 Ilh
2 −U3Imp,

CF
0 Dθ∗ ,β∗

z Slh(z) = b1 + U ∗6 −U ∗7 Slh − µlhSlh,
CF
0 Dθ∗ ,β∗

z Ilh(z) = U ∗7 Slh − µlhIlh.

(5)

4. Basic Qualitative Properties of the Caputo Fractal-Fractional Model
Here, we present some analysis for the proposed Holling’s Type III model (4). Without loss of

generality, the same analysis can be imposed on (3).

4.1. Positivity and Boundedness
The following analysis is carried out for the model (5) to assess whether or not the model’s

solutions are positive and bounded.

Lemma 1. Every solution to the model (5) which begins within ν∗ remains in ν∗ for all z ≥ 0.

Additionally, the region Ω =
{(

Smp, Emp, Imp
)
× (Slh, Ilh) ∈ R3

+ × R2
+|Nmp ≤ K, Nlh ≤ b

µlh

}
is

positively invariant.

Proof. In light of the fact from [29], we define Θ∗(x) as follows.

Θ∗(x) =
{

x(z) = 0, (Smp,Emp, Imp) ∈ R3
≥0 and (Slh, Ilh) ∈ R2

≥0
}

, ∀x ∈
{
Smp,Emp, Imp

}⋃ {
Slh, Ilh

}
.
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Then, from model (5), we have

CF
0 Dθ∗ ,β∗

z Smp
∣∣
Θ∗(Smp=0) = U1 Emp ≥ 0,

CF
0 Dθ∗ ,β∗

z Emp
∣∣
Θ∗(Emp=0) = U

∗
2 Smp ≥ 0,

CF
0 Dθ∗ ,β∗

z Imp
∣∣
Θ∗(Imp=0) = ερEmp ≥ 0,

CF
0 Dθ∗ ,β∗

z Slh
∣∣
Θ∗(Slh=0) = b1 > 0,

CF
0 Dθ∗ ,β∗

z Ilh
∣∣
Θ∗(Ilh=0) = U

∗
7 Slh ≥ 0.

(6)

Lemma 2 of [30] shows that for every solution of the model (5), we have (Smp,Emp, Imp) ∈ R3
≥0

and (Slh, Ilh) ∈ R2
≥0. This concludes the prologue to Lemma 1.

Now, recall that Nmp = Smp + Emp + Imp, and hence we have

CF
0 Dθ∗ ,β∗

z Nmp = rSmp

(
1−

Nmp

K

)
−

aImp
2Nlh

1 + ah∗Imp
2 ,

CF
0 Dθ∗ ,β∗

z Nmp ≤ rSmp −
rSmpNmp

K
.

Thus, Nmpz ≤ Nmp(0)e
−rSmp

K z + K
(

1− e
−rSmp

K z
)

. Therefore, if 0 ≤ Nmp(0) ≤ K, then

lim sup
z→+∞

Nmp(z) ≤ K.

Moreover, because Nlh = Slh + Ilh, we have

CF
0 Dθ∗ ,β∗

z Nlh = b1 + U ∗6 − µlh(Slh + Ilh),
CF
0 Dθ∗ ,β∗

z Nmp ≤ b1 − µlhNlh.

Thus, with proper transforms, we have Nlh(z) ≤ Nlh(0)e−µlhz + b1
µlh

(
1− e−µlhz). Therefore, if

0 ≤ Nlh(0) ≤ b1
µlh

, then lim supz→+∞ Nlh(z) ≤ b1
µlh

.
Therefore, any solution that starts within Ω is guaranteed to remain in Ω, concluding

Proof 1.

As a result of the above Lemma, the maize streak model that is proposed and denoted by (3)
and translated into (5) is mathematically tractable and epidemiologically sound. Hence, without loss
of generality, we can say that (4) is mathematically tractable and epidemiologically sound.

4.2. Existence and Uniqueness
Existence

It is helpful to think of a Banach space in terms of its qualitative properties, and to do this, we
use the formulas U∗ = K∗∗ ×K∗∗ ×K∗∗ ×K∗∗ ×K∗∗, where K∗∗ = C∗(J, R) is the norm, and thus a
group of continuous functions that includes:

‖W‖U∗ = ‖
(
Smp ,Emp , Imp ,Slh , Ilh

)
‖U∗ ,

= max
{
|Smp(z∗)|+ |Emp(z∗)|+ |Imp(z∗)|+ |Slh(z∗)|+ |Ilh(z∗)| : z∗ ∈ J

}
.

To start the analysis of existence, we redefine (4) as

F1
(
z∗ ,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z∗), Ilh(z∗)

)
= rSmp(z∗)

(
1− Nmp (z∗ )

K

)
+(1− ε)ρEmp(z∗)−

βhmSmp (z∗ )Ilh (z
∗ )

Nlh (z
∗ ) − aSmp2(z∗ )Nlh (z

∗ )
1+ah∗Smp2(z∗ )

,

F2
(
z∗ ,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z∗), Ilh(z∗)

)
=

βhmSmp (z∗ )Ilh (z
∗ )

Nlh (z
∗ ) − aEmp2(z∗ )Nlh (z

∗ )
1+ah∗Emp2(z∗ )

−
(
ρ + µmp

)
Emp(z∗),

F3
(
z∗ ,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z∗), Ilh(z∗)

)
= ερEmp(z∗)−

aImp2(z∗ )Nlh (z
∗ )

1+ah∗ Imp2(z∗ )

−
(
α + µmp

)
Imp(z∗),

F4
(
z∗ ,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z∗), Ilh(z∗)

)
= b1

+aNlh(z∗)
(

η1Smp2(z∗ )
1+ah∗Smp2(z∗ )

+
η2Emp2(z∗ )

1+ah∗Emp2(z∗ )
+

η3 Imp2(z∗ )
1+ah∗ Imp2(z∗ )

)
− βmhSlh (z

∗ )(Emp (z∗ )+Imp (z∗ ))
Nmp (z∗ ) − µlhSlh(z∗),

F5
(
z∗ ,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z∗), Ilh(z∗)

)
=

βmhSlh (z
∗ )(Emp (z∗ )+Imp (z∗ ))

Nmp (z∗ ) − µlhIlh(z∗).

(7)
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Using the Riemann–Liouville integral, the fractal-fractional model (4) is given as

RLDθ∗
0,z∗Smp(z∗) = β∗z∗β∗−1F1

(
z∗,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z∗), Ilh(z∗)

)
,

RLDθ∗
0,z∗Emp(z∗) = β∗z∗β∗−1F2

(
z∗,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z∗), Ilh(z∗)

)
,

RLDθ∗
0,z∗ Imp(z∗) = β∗z∗β∗−1F4

(
z∗,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z∗), Ilh(z∗)

)
,

RLDθ∗
0,z∗Slh(z∗) = β∗z∗β∗−1F3

(
z∗,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z∗), Ilh(z∗)

)
,

RLDθ∗
0,z∗ Ilh(z

∗) = β∗z∗β∗−1F5
(
z∗,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z∗), Ilh(z∗)

)
.

(8)

We can transform (8) into an initial value problem:
RLDθ∗

0,z∗H(z∗) = β∗z∗β∗−1F
(
z∗,H(z∗)

)
,

H(0) = H0, θ∗, β∗ ∈ (0, 1],
(9)

for z∗ ∈ J, so that

H(z∗) =
(
Smp(z∗),Emp(z∗), Imp(z∗),Slh(z

∗), Ilh(z
∗)
)z,

H0 =
(
Smp0,Emp0, Imp0,Slh0, Ilh0

)T, (10)

and

F
(
z∗,H(z∗)

)
=



F1
(
z∗,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z∗), Ilh(z∗)

)
,

F2
(
z∗,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z∗), Ilh(z∗)

)
,

F3
(
z∗,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z∗), Ilh(z∗)

)
,

F4
(
z∗,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z∗), Ilh(z∗)

)
,

F5
(
z∗,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z∗), Ilh(z∗)

)
.

(11)

Applying the fundamental theorem of calculus to (9), thus

H(z∗) = H(0) +
β∗

Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1F

(
k∗,H(k∗)

)
d∗k∗, (12)

we have the following:

Smp(z∗) = Sm0 +
β∗

Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1

F1
(
k∗,Smp(k∗),Emp(k∗), Imp(k∗),Slh(k∗), Ilh(k∗)

)
d∗k∗,

Emp(z∗) = Em0 +
β∗

Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1

F2
(
k∗,Smp(k∗),Emp(k∗), Imp(k∗),Slh(k∗), Ilh(k∗)

)
d∗k∗,

Imp(z∗) = Im0 +
β∗

Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1

F3
(
k∗,Smp(k∗),Emp(k∗), Imp(k∗),Slh(k∗), Ilh(k∗)

)
d∗k∗,

Slh(z
∗) = Ih0 +

β∗
Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1

F4
(
k∗,Smp(k∗),Emp(k∗), Imp(k∗),Slh(k∗), Ilh(k∗)

)
d∗k∗,

Ilh(z
∗) = Ih0 +

β∗
Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1

F5
(
k∗,Smp(k∗),Emp(k∗), Imp(k∗),Slh(k∗), Ilh(k∗)

)
d∗k∗.

(13)

From this, we can rewrite (4) as a fixed-point problem. Define G : U∗ → U∗ by

G(H(z)) = H(0) +
β∗

Γ(ω)

∫ z

0
k∗β∗−1(z− k∗)θ∗−1F

(
k∗,H(k∗)

)
d∗k∗. (14)

Subsequently, we present a fixed-point theorem for φ∗-g∗ contractions (also referred to as φ, ϕ

contraction) in support of our proof.



Fractal Fract. 2023, 7, 189 8 of 27

Theorem 1 ([28]). Metric spaces with the completeness property can be constructed using the following
formula: g∗ ∈ G∗, φ∗ : U∗2 → R, and G : U∗ → U∗, an φ∗-g∗-contraction such that the following:
1. G is φ∗-permissible.
2. ∃ y∗0 ∈ U∗, such that φ∗(y∗0 ,Gy∗0) ≥ 1.
3. ∀ {y∗n∗} ⊆ U∗ with y∗n∗ → y∗ and φ∗(y∗n∗ , y∗n∗+1) ≥ 1, ∀ n∗ ≥ 1, we have φ∗(y∗n∗ , y∗) ≥ 1, ∀ n∗ ≥ 1.
So, a fixed point exists for G.

In this case, we prove the existence result using φ∗-g∗-contractions.

Theorem 2. Suppose ∃m∗ : R× R→ R and ∃ g∗ ∈ G and ∃F ∈ C(J×U∗,U∗). As well,

(P1) ∀H1,H2 ∈ U∗ and z∗ ∈ J,

|F (z∗,H1(z∗))−F (z∗,H2(z∗))| ≤ ṽ∗ φ∗(|H1(z∗)−H2(z∗|),

with m∗
(
H1(z∗),H2(z∗)

)
≥ 0 and ṽ∗ =

Γ(β∗ + θ∗)

β∗Tβ∗+θ∗−1Γ(β∗)
.

(P2) ∃H0 ∈ U∗ such that ∀ z∗ ∈ J,

m∗
(
H0(z∗), G(H0(z∗))

)
≥ 0,

and also
m∗
(
H1(z∗),H2(z∗)

)
≥ 0 =⇒ m∗

(
GG(H1(z∗)), G(H2(z∗))

)
≥ 0.

(P3) ∀ {Hn∗}n∗≥1 ⊆ U∗ withHn∗ → H,

m∗
(
Hn∗ (z∗),Hn∗+1(z∗)

)
≥ 0 =⇒ m∗

(
Hn∗ (z∗),H(z∗)

)
≥ 0,

for every n∗ and z∗ ∈ J.

Then, given this, there must be a solution for the maize streak virus as modeled by the fractal-fractional
space approach of Caputo.

Proof. ViewH1,H2 belonging to U∗ so that m∗
(
H1(z∗),H2(z∗)

)
≥ 0, for each z∗ ∈ J. As a result of

the Beta function definition and some elementary math, we obtain∣∣G(H1(z∗))− G(H2(z∗))
∣∣ ≤ β∗

Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1∣∣F(k∗,H1(k∗)
)
−F

(
k∗,H2(k∗)

)∣∣d∗k∗,

≤ β∗
Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1ṽ∗φ∗

(
|H1(k∗)−H2(k∗|

)
d∗k∗,

≤ β∗ ṽ∗Tβ∗+θ∗−1B(β∗, θ∗)
Γ(θ∗)

φ∗
(
‖H1 −H2‖U∗

)
,

=
β∗Tβ∗+θ∗−1Γ(β∗)

Γ(β∗ + θ∗)
ṽ∗φ∗

(
‖H1 −H2‖U∗

)
.

Therefore,

‖G(H1)− G(H2)‖U∗ ≤
β∗Tβ∗+θ∗−1Γ(β∗)

Γ(β∗ + θ∗)
ṽ∗φ∗

(
‖H1 −H2‖U∗

)
= φ∗

(
‖H1 −H2‖U∗

)
.

For arbitrary elementsH1,H2 ∈ U∗, define φ∗ : U∗ ×U∗ → [0, ∞) by

φ∗(H1,H2) =

1 if m∗
(
H1(z∗),H2(z∗)

)
≥ 0,

0 Otherwise.

Then,
φ∗(H1,H2)d(G(H1),G(H2)) ≤ φ∗(d(H1,H2)), ∀H1,H2 ∈ U∗.

So, G is an φ∗-g∗-contraction. Here, let us takeH1,H2 ∈ U∗ with φ∗(H1,H2) ≥ 1. From the prop-
erty of φ∗, we find that m∗

(
H1(z∗),H2(z∗)

)
≥ 0. Thus, (P2) implies that m∗

(
G(H1(z∗)),G(H2(z∗))

)
≥

0. Once again, φ∗ yields that φ∗(G(H1),G(H2)) ≥ 1. Therefore, G is an φ∗-admissible.
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Moreover, (P2) confirms that there is someH0 ∈ U∗. Then, z∗
(
H0(z∗),G(H0(z∗))

)
≥ 0, ∀ z∗ ∈

J. It is evident that
φ∗(H0,G(H0)) ≥ 1.

Consider {Hn∗}n∗≥1 ⊆ U∗ s.t. Hn∗ → H and ∀ n∗, φ∗(Hn∗ ,Hn∗+1) ≥ 1. Definition of φ∗

implies that
m∗
(
Hn∗ (z∗),Hn∗+1(z∗)

)
≥ 0.

Thus, (P3) gives m∗
(
Hn∗ (z∗),H(z∗)

)
≥ 0. Therefore, φ∗(Hn∗ ,H) ≥ 1, ∀ n∗. By Theorem

1, according to our investigations, we discover ∃H∗ ∈ U∗ s.t. G(H∗) = H∗. Consequently,
H∗ =

(
Smp

∗,Emp
∗, Imp

∗,Slh
∗, Ilh

∗)T is a solution to the maize streak disease model developed by
Caputo using fractal fractions.

Regarding our goal, the existence result, the next auxiliary theorem we need is the Leray–
Schauder theorem.

Theorem 3 ([31]). For simplicity, we will assume that U∗ is a Banach space; Q is a convex, bounded, and
closed set in U∗; and V ⊆ Q is an open set with 0 ∈ V. When L : V̄→ Q is compact and continuous, one of
the following must be true:
1. ∃y∗∗ ∈ V̄ such that L(y∗∗) = y∗∗; or
2. ∃ y∗ ∈ ∂V and µ∗ ∈ (0, 1) such that y∗ = µ∗L(y∗).

Remark 1. Simply put, we define
f = H0, (15)

and

Θ =
β∗Tβ∗+θ∗−1Γ(β∗)

Γ(β∗ + θ∗)
. (16)

Theorem 4. Suppose that F ∈ C(J×U∗,U∗).
(E1): ∃ φ∗ ∈ L1(J, R+) and ∃ a nondecreasing map B ∈ C([0, ∞), R>0), satisfying for all z∗ ∈ J and
H ∈ U∗,

|F (z∗),H(z∗)| ≤ φ∗(z∗)B(|H(z∗)|).
(E2): ∃Π > 0 and

Π
f+ Θφ∗∗0B(Π)

> 1, (17)

with φ∗∗0 = supz∗∈J |φ∗((z∗))| and f, Θ are specified in (15) and (16).
Then, the Caputo fractal-fractional maize streak model (4) on J has a solution.

Proof. Consider G : U∗ → U∗ defined by (14) and

Mε = {H ∈ U∗ : ‖H‖U∗ ≤ ε}, for some ε > 0.

We instantly obtain the continuity of G from the continuity of F . As a result, we have for
H ∈Mε and E1.

|G(H(z∗))| ≤ |H(0)|+ β∗
Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1|F (k∗,H(k∗)))|dk∗,

≤ H0 +
β∗

Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1φ∗(k∗)B(|H(k∗)|)dk∗,

≤ H0 +
β∗Tβ∗+θ∗−1B(β∗, θ∗)

Γ(θ∗)
φ∗∗0B(‖H‖U∗ ),

≤ f+ Θφ∗∗0B(ε).

Hence,

‖GH‖ ≤ f+ Θφ∗∗0B(ε) < ∞. (18)
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The uniform boundedness of G is based on U∗. Randomly, pick z∗, z∗′ ∈ [0, T] in such a way
that z∗,≤ z∗′ andH ∈Mε. Whilst also making the assumption,

sup
(z∗ ,H)∈J×M�

|F (z∗,H(z∗))| = F ∗ < ∞,

We now have

|G(H(z∗′))− G(H(z∗))| =
∣∣∣∣∣ β∗
Γ(θ∗)

∫ z∗ ′

0
k∗β∗−1(z∗′ − k∗)θ∗−1F (k∗,H(k∗))dk∗

− β∗
Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1F (k∗,F (k∗))dk∗

∣∣∣∣,
≤ β∗F ∗

Γ(θ∗)

∣∣∣∣∣
∫ z∗ ′

0
k∗β∗−1(z∗′ − k∗)θ∗−1dk∗ −

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1dk∗

∣∣∣∣∣,
≤ β∗F ∗B(β∗, θ∗)

Γ(θ∗)
[z∗′

β∗+θ∗−1 − z∗β∗+θ∗−1],

=
β∗F ∗Γ(β∗)
Γ(β∗ + θ∗)

[(z∗′)β∗+θ∗−1 − z∗β∗+θ∗−1], (19)

which is independent ofH, and as z∗′ → z∗, the right-hand side of (19) approaches 0.
Thus, ‖G(H(z∗′))− G(H(z∗))‖U∗ → 0.
That G is equicontinuous is demonstrated here. Compactness of G onMε is provided by the

Arzelá–Ascoli theorem. The assumptions of Theorem 3 have been proven true for the operator G.
Therefore, either (i) or (ii) will be true. Now, using (E2), we construct.

P = {H ∈ U∗ : ‖H‖U∗ < Π},

for some Π > 0 via
f+ Θφ∗∗0B(Π) < Π.

Using (E1) and by (18), we obtain

‖GH‖U∗ ≤ f+ Θφ∗∗0 B(H). (20)

Regarding the existence of H ∈ ∂P and α ∈ (0, 1) such that H = αG(H). For such α and H,
by (20),

Π = ‖H‖U∗ = α‖GH‖U∗ < f+ Θφ∗∗0 B(‖H‖U∗ ) < f+ Θφ∗∗0 B(Π) < Π,

It obviously cannot be the case. Hence, (ii) is false, and G has a fixed point in P̄P according to
Theorem 3. This means that a solution to the Caputo fractal-fractional maize streak model (4) has
been found.

4.3. Uniqueness
In this section, we want to demonstrate that the proposed Caputo fractal-fractional model

admits precisely one solution.

Lemma 2. Suppose Smp,Emp, Imp,Slh, Ilh,Smp
∗,Emp

∗, Imp
∗,Slh

∗, Ilh
∗ ∈ A = C(J, R), and

(V1): ‖Smp‖ ≤ L1, ‖Emp‖ ≤ L2, ‖Slh‖ ≤ L3, ‖Imp‖ ≤ L4, ‖Ilh‖ ≤ L5 for some L1,L2,L3,L4,L5 >
0, where the norms satisfy the sup-norm condition with regard to z∗.

Given this scenario, F1,F2,F3,F4,F5 in light of (7) are Lipschitz with regard to the respective compo-
nents whenever A1,A2,A3,A4,A5 > 0, where

A1 = r + βhm + a, A2 = a + ρ + µmp, A3 = a + α + µmp, A4 = a + βhm + µlh, A5 = µlh.
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Proof. Now, using F1, for each Smp,Smp
∗ ∈ A, we calculate

‖F1
(
z∗,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z

∗), Ilh(z
∗)
)

−F1
(
z∗,Smp

∗(z∗),Emp(z∗), Imp(z∗),Slh(z
∗), Ilh(z

∗)
)
‖,

=

∥∥∥∥rSmp(z∗)
(

1−
(Smp(z∗) + Emp(z∗) + Imp(z∗))

K

)
+ (1− ε)ρEmp(z∗)

−
βhmSmp(z∗)Ilh(z∗)
(Slh(z∗) + Ilh(z∗))

−
aSmp

2(z∗)(Slh(z∗) + Imp(z∗))

1 + ah∗Smp
2(z∗)

−
(

rS∗mp(z
∗)

(
1−

S∗mp(z∗) + Emp(z∗) + Imp(z∗)
K

)
+ (1− ε)ρEmp(z∗)

−
βhmS

∗
mp(z∗)I(z∗)

(Slh(z∗) + Ilh(z∗))

−
aS∗mp

2(z∗)(Slh(z∗) + Ilh(z∗))

1 + ah∗S∗mp
2(z∗)

)∥∥∥∥,

≤ ‖− r(Smp − S∗mp)− βhm(Smp − S∗mp)− a(Smp − S∗mp)‖,

≤ (r‖Smp − S∗mp‖+ βhm‖Smp − S∗lh‖+ a‖Smp − S∗mp‖,

≤ (r + βhm + a)‖Smp − S∗mp‖,

≤ A1‖Smp − S∗mp‖.

Hence, F1 is Lipschitz with respect to Smp with associated constant A1 > 0. Next, we consider
F2, for each Emp,E∗mp ∈ A := C(J, R), leads to

‖F2
(
z∗,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z

∗), Ilh(z
∗)
)

−F2
(
z∗,Smp(z∗),E∗mp(z

∗), Imp(z∗),Slh(z
∗), Ilh(z

∗)
)
‖,

=

∥∥∥∥ βhmSmp(z∗)Ilh(z∗)
(Slh(z∗) + Ilh(z∗))

−
aEmp

2(z∗)(Slh(z∗) + Ilh(z∗))

1 + ah∗Emp
2(z∗)

−
(
ρ + µmp

)
Emp(z∗)

−
(

βhmSmp(z∗)Ilh(z∗)
(Slh(z∗) + Ilh(z∗))

−
aE∗mp

2(z∗)(Slh(z∗) + Ilh(z∗))

1 + ah∗E∗mp
2(z∗)

−
(
ρ + µmp

)
E∗mp(z

∗)

)∥∥∥∥,

≤ ‖− a(Emp − E∗mp)− (ρ + µmp)(Emp − E∗mp)‖,

≤ (a‖Emp − E∗mp‖+ (ρ + µmp)‖Emp − E∗mp‖,

≤ (a + ρ + µmp)‖Emp − E∗mp‖,

≤ A2‖Emp − E∗mp‖.

Hence, F2 is Lipschitz with respect to Emp with associated constant A2 > 0. Next, we consider
F3, for each Imp, I∗mp ∈ A := C(J, R), leads to

‖F3
(
z∗,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z

∗), Ilh(z
∗)
)

−F3
(
z∗,Smp(z∗),Emp(z∗), I∗mp(z

∗),Slh(z
∗), Ilh(z

∗)
)
‖,

=

∥∥∥∥(ερEmp(z∗)−
aImp

2(z∗)(Slh(z∗) + Ilh(z∗))

1 + ah∗Imp
2(z∗)

−
(
α + µmp

)
Imp(z∗))

−
(

ερEmp(z∗)−
aI∗mp

2(z∗)(Slh(z∗) + Ilh(z∗))

1 + ah∗I∗mp
2(z∗)

−
(
α + µmp

)
I∗mp(z

∗)

)∥∥∥∥,

≤ (a + α + µmp)‖Imp − I∗mp‖,

= A3‖Imp − I∗mp‖.
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Hence, F3 is Lipschitz with respect to Imp with associated constant A3 > 0. Next, we consider
F4, for each Slh,S∗lh ∈ A := C(J, R), leads to

‖F4
(
z∗,Smp(z∗),Emp(z∗), Imp(z∗),Slh(z

∗), Ilh(z
∗)
)

−F4
(
z∗,Smp(z∗),Emp(z∗), Imp(z∗),SS∗lh(z

∗), Ilh(z
∗)
)
‖

=

∥∥∥∥b1 + a(Slh + Ilh)(z
∗)

(
η1Smp

2(z∗)

1 + ah∗Smp
2(z∗)

+
η2Emp

2(z∗)

1 + ah∗Emp
2(z∗)

+
η3Imp

2(z∗)

1 + ah∗Imp
2(z∗)

)

−
βmhSlh(z∗)

(
Emp(z∗) + Imp(z∗)

)
Nmp(z∗)

− µlhSlh(z
∗)

−
(

b1 + a(S∗lh + Ilh)(z
∗)

(
η1Smp

2(z∗)

1 + ah∗Smp
2(z∗)

+
η2Emp

2(z∗)

1 + ah∗Emp
2(z∗)

+
η3Imp

2(z∗)

1 + ah∗Imp
2(z∗)

)

−
βmhS

∗
lh(z

∗)
(
Emp(z∗) + Imp(z∗)

)
Nmp(z∗)

− µlhS
∗
lh(z

∗)

)∥∥∥∥,

≤ (a + βmh + µlh)‖Slh − S∗lh‖,

≤ A4‖Slh − S∗lh‖.

Hence, F4 is Lipschitz with respect to Slh with associated constant A4 > 0. Next, we consider
F5, for each Ilh, I∗lh ∈ A := C(J, R), leads to

‖F5
(
z∗,Smp(z∗),Emp(z∗),Slh(z

∗), Imp(z∗), Ilh(z
∗)
)

−F5
(
z∗,Smp(z∗),Emp(z∗),Slh(z

∗), Imp(z∗), I∗2 (z∗)
)
‖,

=

∥∥∥∥ βmhSlh(z∗)
(
Emp(z∗) + Imp(z∗)

)
Nmp(z∗)

− µlhIlh(z
∗)

−
(

βmhSlh(z∗)
(
Emp(z∗) + Imp(z∗)

)
Nmp(z∗)

− µlhI
∗
lh(z

∗)

)∥∥∥∥,

≤ µlh‖Ilh − I∗lh‖,

= A5‖Ilh − I∗lh‖.

Hence, F5 is Lipschitz with respect to Ilh with associated constant A5 > 0. Based on what has
been discussed so far, we may conclude that the functions Fi, where i corresponds to 1, 2, 3, 4, and 5,
respectively, are considered to be Lipschitz in relation to the component that has constants denoted
by Ai.

Theorem 5. If we assume (V1), then the provided Caputo fractal-fractional maize streak model of (4) permits
a single solution if

ΘAi < 1, i ∈ {1, 2, 3, 4, 5}. (21)

Specifically, Θ is provided in (16).

Proof. It is presumed that the result of the theorem is incorrect. In other words, the Caputo fractal-
fractional maize streak model (4) has more than one plausible solution.
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Letting (S∗mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗h(z
∗), I∗lh(z

∗)) be an alternative solution given the initial
conditions (Sm0,Em0, Im0,Sh0, Ih0) such that by (14), we obtain

S∗mp(z
∗) = Smp0 +

β∗
Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1×

F1(k∗,S∗mp(k
∗),E∗mp(k

∗), I∗mp(k
∗),S∗lh(k

∗), I∗lh(k
∗))d∗k∗,

E∗mp(z
∗) = Em0 +

β∗
Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1×

F2(k∗,S∗mp(k
∗),E∗mp(k

∗), I∗mp(k
∗),S∗lh(k

∗), I∗lh(k
∗))d∗k∗,

I∗mp(z
∗) = Im0 +

β∗
Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1×

F3(k∗,S∗mp(k
∗),E∗mp(k

∗), I∗mp(k
∗),S∗lh(k

∗), I∗lh(k
∗))d∗k∗,

S∗lh(z
∗) = Sh0 +

β∗
Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1×

F4(k∗,S∗mp(k
∗),E∗mp(k

∗), I∗mp(k
∗),S∗lh(k

∗), I∗lh(k
∗))d∗k∗,

I∗lh(z
∗) = Ih0 +

β∗
Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1×

F5(k∗,S∗mp(k
∗),E∗mp(k

∗), I∗mp(k
∗),S∗lh(k

∗), I∗lh(k
∗))d∗k∗.

Therefore,

|Smp(z∗)− S∗mp(z
∗)| ≤ β∗

Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1×

|F1(k∗,Smp(k∗),Emp(k∗), Imp(k∗),Slh(k
∗), Ilh(k

∗))

−F1(k∗,S∗mp(k
∗),E∗mp(k

∗), I∗mp(k
∗),S∗lh(k

∗), I∗lh(k
∗))|d∗k∗,

≤ β∗
Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1κ1‖Smp − S∗mp‖d∗k∗,

≤ ΘA1‖Smp − S∗mp‖.

This leads to
[1−ΘA1]‖Smp − S∗mp‖ ≤ 0.

Therefore, from (21), the preceding inequality is valid if ‖Smp − S∗mp‖ = 0, or else if Smp = S∗mp.
From the same approach, we can extract the following:

‖Emp − E∗mp‖ ≤ [1−ΘA2]‖Emp − E∗mp‖,

This leads to
[1−ΘA2]‖Emp − E∗mp‖ ≤ 0.

Thus, the inequality is valid if ‖Emp − E∗mp‖ = 0; alternatively, if Emp = E∗mp. Next, we have

‖Imp − I∗mp‖ ≤ [1−ΘA3]‖Imp − I∗mp‖.

Which gives
[1−ΘA3]‖Imp − I∗mp‖ ≤ 0.

Thus, the inequality is valid if ‖Imp − I∗mp‖ = 0, or if Imp = I∗mp. Moreover,

‖Slh − S∗lh‖ ≤ [1−ΘA4]‖Slh − S∗lh‖,

yields
[1−ΘA4]‖Slh − S∗lh‖ ≤ 0.

Thus, the inequality is valid if ‖Slh − S∗lh‖ = 0, or Slh = S∗lh. Finally,

‖Ilh − I∗lh‖ ≤ [1−ΘA5]‖Ilh − I∗lh‖,
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this gives
[1−ΘA5]‖Ilh − I∗lh‖ ≤ 0.

Thus, the inequality is valid if ‖Ilh − I∗lh‖ = 0, or Ilh = I∗lh. The above assertion leads us to

(Smp(z∗),Emp(z∗),Slh(z
∗), Imp(z∗), Ilh(z

∗)(z∗)) =

(S∗mp(z
∗),E∗mp(z

∗), I∗mp(z
∗),S∗lh(z

∗), I∗lh(z
∗)∗(z∗)).

These observations show that the Caputo fractal-fractional maize streak model (4) likewise has
a unique solution.

4.4. Stability Criterion
Having a reliable system is especially important when working with fractional calculus. When

dealing with fractional derivatives, the Ulam–Hyers–Rassias (UHR) and Ulam–Hyers (UH) stability
is among the most appealing types of stability that may be achieved. While the Ulam–Hyers stability
was initially introduced in [32], it was generalized by Rassias in a subsequent publication [33].
This instability is common in natural occurrences and makes it hard to find a precise or correct
answer. In modeling approaches where exact solutions may be hard to find, the Ulam–Hyers stability
is employed to regulate the proposed model’s dynamics effectively. The stable solutions to the
Caputo fractal-fractional maize steak model (4) using Ulam–Hyers and Ulam–Hyers–Rassias will be
discussed here.

Definition 4 ([27]). The Caputo fractal-fractional MSVD model (4) is stable according to the criteria of
Ulam–Hyers, if ∃ 0 < MFi ∈ R, i = 1, 2, 3, 4, 5 such that ∀ wi > 0, and ∀(S∗mp,E∗mp, I∗mp,S∗lh, I∗lh) ∈ U

∗,
satisfying 

|CFDθ∗ ,β∗
0,z∗ S∗mp(z∗)−F1(S

∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗))| < w1,

|CFDθ∗ ,β∗
0,z∗ E∗mp(z∗)−F2(S

∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗))| < w2,

|CFDθ∗ ,β∗
0,z∗ I∗mp(z∗)−F3(S

∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗))| < w3,

|CFDθ∗ ,β∗
0,z∗ S∗lh(z

∗)−F4(S
∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗))| < w4,

|CFDθ∗ ,β∗
0,z∗ I∗lh(z

∗)−F5(S
∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗)| < w5.

(22)

There exists (Smp,Emp,Slh, Imp, Ilh) ∈ U∗, fulfilling the Caputo fractal-fractional MSVD model with
the equations (4) such that 

|S∗mp(z∗)− Smp(z∗))| ≤ MF1w1,

|E∗mp(z∗)− Emp(z∗))| ≤ MF2w2,

|I∗mp(z∗)− Slh(z∗))| ≤ MF3w3,

|S∗lh(z
∗)− Imp(z∗))| ≤ MF4w4,

|I∗lh(z
∗)− Ilh(z∗))| ≤ MF5w5.

(23)

Remark 2. (S∗mp,E∗mp, I∗mp,S∗lh, I∗lh,R∗) ∈ U∗ is a solution of (22) if and only if ∃Φ1, Φ2, Φ3, Φ4, Φ5 ∈
C([0, T], R) (depending upon S∗mp,E∗mp, I∗mp,S∗lh, I∗lh,R∗, respectively) s.t. ∀ z∗ ∈ J,
(i). |Φi(z∗)| < wi, (i = 1, 2, 3, 4, 5), and

(ii).



CFD
θ∗ ,β∗
0,z∗ S∗mp(z∗) = F1(S

∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗)) + Φ1(z∗),

CFD
θ∗ ,β∗
0,z∗ E∗mp(z∗) = F2(S

∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗)) + Φ2(z∗),

CFD
θ∗ ,β∗
0,z∗ I∗mp(z∗) = F3(S

∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗)) + Φ3(z∗),

CFD
θ∗ ,β∗
0,z∗ S∗lh(z

∗) = F4(S
∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗)) + Φ4(z∗),

CFD
θ∗ ,β∗
0,z∗ I∗lh(z

∗) = F5(S
∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗)) + Φ5(z∗).

(24)
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Definition 5. The Caputo fractal-fractional MSVD model (4) is UHR stable with respect to the func-
tions Σi, i = 1, 2, 3, 4, 5 whenever ∃ 0 < MFi ,Σi ∈ R, i = 1, 2, 3, 4, 5 such that ∀ wi > 0 and for all
(S∗mp,E∗mp, I∗mp,S∗lh, I∗lh,R∗) ∈ U∗, satisfying

|CFDθ∗ ,β∗
0,z∗ S∗mp(z∗)−F1(S

∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗))| < w1Σ1(z∗),

|CFDθ∗ ,β∗
0,z∗ E∗mp(z∗)−F2(S

∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗))| < w2Σ2(z∗),

|CFDθ∗ ,β∗
0,z∗ I∗mp(z∗)−F3(S

∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗))| < w3Σ3(z∗),

|CFDθ∗ ,β∗
0,z∗ S∗lh(z

∗)−F4(S
∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗))| < w4Σ4(z∗),

|CFDθ∗ ,β∗
0,z∗ I∗lh(z

∗)−F5(S
∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗))| < w5Σ5(z∗).

(25)

∃ (Smp,Emp,Slh, Imp, Ilh) ∈ U∗, satisfying the Caputo fractal-fractional MSVD (4) with

|S∗mp(z∗)− Smp(z∗))| ≤ MF1,Σ1w1Σ1(z∗),

|E∗mp(z∗)− Emp(z∗))| ≤ MF2,Σ2w2Σ2(z∗),

|I∗mp(z∗)− Slh(z∗))| ≤ MF3,Σ3w3Σ3(z∗),

|S∗lh(z
∗)− Imp(z∗))| ≤ MF4,Σ4w4Σ4(z∗),

|I∗lh(z
∗)− Ilh(z∗))| ≤ MF5,Σ5w5Σ5(z∗).

(26)

Remark 3. (S∗mp,E∗mp, I∗mp,S∗lh, I∗lh) ∈ U
∗ is a solution of (25) iF ∃Φ1, Φ2, Φ3, Φ4, Φ5, Φ6 ∈ C([0, T], R)

(based on S∗mp,E∗mp, I∗mp,S∗lh, I∗lh, respectively) such that ∀z∗ ∈ J,

(i). |Φi(z∗)| < Σi(z∗)wi, (i = 1, 2, 3, 4, 5), and
(ii). 

CFD
θ∗ ,β∗
0,z∗ S∗mp(z∗) = F1(S

∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗)) + Φ1(z∗),

CFD
θ∗ ,β∗
0,z∗ E∗mp(z∗) = F2(S

∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗)) + Φ2(z∗),

CFD
θ∗ ,β∗
0,z∗ I∗mp(z∗) = F3(S

∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗)) + Φ3(z∗),

CFD
θ∗ ,β∗
0,z∗ S∗lh(z

∗) = F4(S
∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗), ) + Φ4(z∗),

CFD
θ∗ ,β∗
0,z∗ I∗lh(z

∗) = F5(S
∗
mp(z∗),E∗mp(z∗), I∗mp(z∗),S∗lh(z

∗), I∗lh(z
∗)) + Φ5(z∗).

(27)

Theorem 6. The Caputo fractal-fractional MSVD model (4) is UH stable on J := [0, T] such that

ΘAi < 1, i ∈ {1, 2, 3, 4, 5},

whereas Θ is given in (16), if assumption (V1) holds.

Proof. Suppose w1 > 0 and S∗mp ∈ A such that∣∣∣CFDθ∗ ,β∗
0,z∗ S∗mp(z

∗)−F1
(
z∗,S∗mp,E∗mp, I∗mp,S∗lh, I∗lh

)∣∣∣ < w1.

Then, taking into account the Remark, 2, ∃Φ1(z∗), which leads to

CFD
θ∗ ,β∗
0,z∗ S∗mp(z

∗) = F1
(
z∗,S∗mp,E∗mp, I∗mp,S∗lh, I∗lh

)
+ Φ1(z∗),

and |Φ1(z∗)| ≤ w1. Therefore,

S∗mp(z
∗) =Smp0 +

β∗
Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1

F1
(
k∗,S∗mp(k

∗),E∗m(k
∗), I∗m(k

∗),S∗lh(k
∗), I∗lh(k

∗)
)
d∗k∗

+
β∗

Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1Φ1(k∗)d∗k∗.

Based on Theorem 5, we consider Spm ∈ A to be unique. Then, Spm(z∗) is calculated as follows:
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Smp(z∗) = Smp0 +
β∗

Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1×

F1
(
k∗,S∗mp(k

∗),E∗m(k
∗), I∗m(k

∗),S∗lh(k
∗), I∗lh(k

∗)
)
d∗k∗.

And so, we obtain

|S∗mp(z
∗)− Smp(z∗)| ≤

β∗
Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1|Φ1(k∗)|d∗k∗

+
β∗

Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1

×
∣∣F1
(
k∗,S∗mp(k

∗),E∗m(k
∗), I∗m(k

∗),S∗lh(k
∗), I∗lh(k

∗),
)

−F1
(
k∗,Smp(k∗),Emp(k∗), Imp(k∗),Slh(k

∗), Ilh(k
∗)
)∣∣d∗k∗,

≤ Θε1 + ΘA1‖S∗mp − Smp‖.

Hence,

‖S∗mp − Smp‖ ≤
Θw1

1−ΘA1
.

If MF1 =
Θ

1−ΘA1
, then ‖S∗mp − Smp‖ ≤ MF1w1. Similarly,

‖E∗mp − Emp‖ ≤ MF2w2, ‖I∗mp − Imp‖ ≤ MF3w3, ‖S∗lh − Slh‖ ≤ MF4w4,

‖I∗lh − Ilh‖ ≤ MF5w5,

where
MFi =

Θ
1−ΘAi

, (i ∈ {1, 2, 3, 4, 5}).

As a result, the UH (Ulam–Hyers) stability of the Caputo fractal-fractional MSVD (3) is met.

Theorem 7. Suppose (V1): ∃ nondecreasing mappings Σi ∈ C([0, T], R+), (i ∈ {1, 2, 3, 4, 5} and ∃fΣi > 0
such that ∀z∗ ∈ J.

CFI
θ∗ ,β∗
0,z∗ Σi(z∗) < fΣi Σi(z∗), (i ∈ {1, 2, 3, 4, 5}. (28)

When (V1) is satisfied, the Caputo fractal-fractional MSVD model (4) is Ulam–Hyers–Rassias stable.

Proof. For each w1 > 0 and ∀S∗mp ∈ A accomplishing∣∣∣CFDθ∗ ,β∗
0,z∗ S∗mp(z

∗)−F1(z∗,S∗mp(z
∗),E∗m(z

∗), I∗m(z
∗),S∗lh(z

∗), Ilh(z
∗))
∣∣∣ < w1Σ1(z∗),

∃Φ1(z∗) s.t.

CFDθ∗ ,β∗
0,z∗ S∗mp(z

∗) = F1(z∗,S∗mp(z
∗),E∗m(z

∗), I∗m(z
∗),S∗lh(z

∗), Ilh(z
∗)) + Φ1(z∗),

and |Φ1(z∗)| ≤ w1Σ1(z∗). Therefore,

S∗mp(z
∗) =Smp0 +

β∗
Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1

F1(k∗,S∗mp(k
∗),E∗m(k

∗), I∗m(k
∗),S∗lh(k

∗), Ilh(k
∗))d∗k∗

+
β∗

Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1Φ1(k∗)d∗k∗.

Again, based on Theorem 5, we consider Spm ∈ A to be the unique solution of the Caputo
fractal-fractional model (4). Then, Spm(z∗) is calculated as follows:

Smp(z∗) = Smp0 +
β∗

Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1×

F1(k∗,Smp(k∗),Emp(k∗), Imp(k∗),Slh(k
∗), Ilh(k

∗))d∗k∗.
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We obtain∣∣∣S∗mp(z
∗)− Smp(z∗)

∣∣∣ ≤ β∗
Γ(θ∗)

∫ s

0
k∗β∗−1(z∗ − k∗)θ∗−1|h1(k∗)|d∗k∗

+
β∗

Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1×∣∣∣F1(k∗,S∗mp(k
∗),E∗m(k

∗), I∗m(k
∗),S∗lh(k

∗), Ilh(k
∗))

−F1(k∗,Smp(k∗),Emp(k∗), Imp(k∗),Slh(k
∗), Ilh(k

∗))d∗k∗
∣∣∣,

≤ ε1β∗
Γ(θ∗)

∫ z∗

0
k∗β∗−1(z∗ − k∗)θ∗−1Σ1(k∗)d∗k∗ + ΘA1‖S∗mp − Smp‖,

≤ ε1fΣ1 Σ1(z∗) + ΘA1‖S∗mp − Smp‖.

Therefore,

‖S∗mp − Smp‖ ≤
w1fΣ1 Σ1(z∗)

1−ΘA1
.

If

MF1,Σ1 =
fΣ1

1−ΘA1
,

then ‖S∗mp − Smp‖ ≤ w1 M(F1,Σ1

)Σ1(z∗). In a similar vein, we have

‖E∗mp − Emp‖ ≤ w2 M(F2,Σ2

)Σ2(z∗), ‖I∗mp − Imp‖ ≤ w3 MF3,Σ3 Σ3(z∗),

‖S∗lh − Slh‖ ≤ w4 MF4,Σ4 Σ4(z∗),

‖I∗lh − Ilh‖ ≤ w5 MF5,Σ5 Σ5(z∗),

where

MFi ,Σi =
fΣi

1−ΘAi
, (i ∈ {2, 3, 4, 5}).

Therefore, the Caputo fractal-fractional MSVD model (4) is UHR stable.

5. Numerical Simulation and Discussion
In this section, we present the results of the numerical simulation of the proposed model with

Holling’s Type III using the parameters presented in Table 1 and the initial conditions Smp(0) =
24, 000, Emp(0) = 500, Imp(0) = 100, Slh(0) = 300, Ilh(0) = 100. We also compare the dynamics
of Holling’s Type II and Holling’s Type III using the number of healthy maize, healthy leafhoppers,
infected maize, and infected leafhoppers. In Figures 1 and 2, we present the numerical simulation of
our Caputo fractal-fractional model (4) with an integer order and also for different fractal-fractional
orders. We observe from Figures 1a–d and 2 that the integer-order model (when θ∗ = β∗ = 1) predicts
lower healthy plants and higher unhealthy maize plants than the fractional-fractal order models.
Thus, the integer order exaggerates the impact of MSVD on the maize field. In Figures 3 and 4, we
plot the simulation results by fixing the fractal dimension and varying the fractional order. We
observe that for non-fractal models, higher fractional orders predict lower healthy maize plants
and higher unhealthy plants (see Figures 3a–d and 4, respectively). Moreover, for a fixed fractional
order (see Figures 5a–d and 6), increasing the fractal dimension, similar dynamics are observed as in
fixing the fractal dimension and varying the fractional order. These results further strengthen the
need to employ fractional-fractal models in studying infectious diseases. However, to derive the
most benefit from these models, methods for fitting such models to observed data need to develop
and improve. To study the effect of some epidemiological factors on the dynamics of MSVD in the
maize plants, we solved the fractional-fractal model for varying values of those factors (parameters).
In Figures 7a–d and 8, the impact of the maize field’s invasion rate by the leafhoppers is presented
by varying the invasion parameter b1. We observe that higher invasion rates have a devastating
effect on the maize plants, leading to reduced healthy plants and increased unhealthy plants. This
shows that if farms are projected to reduce the visitation of leafhoppers on farms, there will be
an increase in healthy maize and a better subsequent yield. Further, to study the impact of the
benefit derived from the consumption of maize plants by the leafhopper population, we simulated
the model for varying values of the conversion rate parameter a (Figure 9a–d). It is observed that
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higher conversion rates lead to lower exposed maize plants. This is attributed to the fact that as
more and more of the plants are visited and consumed, fewer remain unvisited/susceptible to
exposure to MSVD. Figures 10a–d and 11 show the dynamics of varying the maize streak virus
transmission rate from infected leafhoppers to maize when the fractal and fractional orders are kept
at 0.95. Thus, we noticed that an increase in the maize streak virus transmission rate from infected
leafhoppers to maize leads to a reduction in healthy maize and healthy leafhoppers but an increase in
infected compartments. Figures 12a–d and 13 show the dynamics of varying the maize streak virus
transmission rate from infected plants to leafhoppers when the fractal and fractional orders are kept
at 0.95. We noticed that an increase in the maize streak virus transmission rate from infected maize to
leafhopper similarly leads to a reduction in healthy maize and healthy leafhoppers but an increase in
infected compartments. Therefore, this indicates that when preventive measures are taken to reduce
βhm and βmh, it will reduce the low-yielding effect of maize due to the maize streak virus disease on
farms. Finally, in Figure 14a–d we present the numerical simulation of the model for the effect of the
Holling’s Type II and Holling’s Type III responses. We observed that Holling’s Type III predicts a
higher population of healthy and unhealthy maize plants than Type II.

Table 1. Parameter Description and Values for the Caputo Fractal-Fractional Model.

Parameter Description Baseline
Value Source

b1 Relative increase rate of leafhoppers 20 [7]
βhm Rate of maize streak virus transmission from infected leafhoppers to maize 0.06 Assumed
βmh Rate of maize streak virus transmission from infected plants to leafhoppers 0.04 [34]
µmp Maize plant mortality due to natural causes 1/120 [35]
µlh Leafhoppers mortality due to natural causes 1/33 [36]
a Rate of conversion of infected leafhopper 0.0045 Assumed
ρ Maize with the ability to resist infection from MSVD 0.001 [7]
ε The percentage of exposed maize 0.50 [7]
α Death of maize plants caused by MSV 0.001 [7]
r The maize plant grows at an intrinsic rate 0.0005 [4,37]

ah∗ Product of leafhopper attack rate and time spent processing maize plant 0.4 [4]
K Carrying capacity 10, 000 [4]
η1 Relative rate of conversion of susceptible maize by leafhopper 0.5 Assumed
η2 Relative rate of conversion of exposed maize by leafhopper 0.25 Assumed
η3 Relative rate of conversion of infected maize by leafhopper 0.17 Assumed

S

(a)

E

(b)
Figure 1. Cont.
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I

(c)

S

(d)
Figure 1. Numerical results of varying both fractal order and fractional order θ∗ = β∗ =

0.95, 0.90, 0.85, 0.80 with fixed fractal dimension.

I

Figure 2. Numerical results of varying both fractal order and fractional order θ∗ = β∗ =

0.95, 0.90, 0.85, 0.80 with fixed fractal dimension on infected leafhoppers.
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E

(b)

Figure 3. Cont.
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I

(c)
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(d)
Figure 3. Numerical results of varying fractional order β∗ = 0.95, 0.90, 0.85, 0.80 with fixed fractal
dimension.

I

Figure 4. Numerical results of varying fractional order β∗ = 0.95, 0.90, 0.85, 0.80 with fixed fractal
dimension on infected leafhoppers.
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Figure 5. Cont.
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I

(c)

S

(d)
Figure 5. Numerical results of varying fractal order θ∗ = 0.95, 0.90, 0.85, 0.80 with fixed fractional
order.

I

Figure 6. Numerical results of varying fractal order θ∗ = 0.95, 0.90, 0.85, 0.80 with fixed fractional
order on infected leafhoppers.
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S

(d)
Figure 7. Numerical results of varying the relative increase rate of leafhoppers.

I

Figure 8. Numerical results of varying the relative increase rate of leafhoppers.
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Crossover effect
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Figure 9. Cont.
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Figure 9. Numerical results of varying the rate of conversion.

S

(a)

E

(b)

I

(c)

S

(d)
Figure 10. The dynamical effect of varying the maize streak virus transmission rate from infected
leafhoppers to maize on each model compartment.
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I

Figure 11. The dynamical effect of varying the rate of maize streak virus transmission from infected
leafhoppers to maize.

(a) (b)

(c) (d)
Figure 12. The dynamical effect of varying the rate of maize streak virus transmission from infected
plants to leafhoppers.
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Figure 13. The dynamical effect of varying the rate of maize streak virus transmission from infected
plants to leafhoppers on infected leafhoppers.

Holling Type III

Holling Type II

(a)

Holling Type II

Holling Type III

(b)

Holling Type II

Holling Type III

(c)

Holling Type III

Holling Type II

(d)
Figure 14. The dynamical effect of Holling’s Type II and Holling’s Type III functional responses.

6. Conclusions
Epidemiological models are essential because they provide helpful biological explanations and

possible ways to prevent and control infectious diseases. We used Holling’s Type III and fractal-
fractional derivatives to improve the model in [7] to examine the dynamics of maize streak virus
disease. The Banach principle, which shows that all continuous functions under a specific norm
belong to the same subclass, was used to study whether or not there are solutions. The Lipschitz
property illustrated that the Caputo fractal-fractional model of maize streak disease had a unique
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solution. The stability test for solutions of the given Caputo fractal-fractional model was studied
using Ulam–Hyers and Ulam–Hyers–Rassias and their extended forms. The numerical strategy for
the fractal-fractional maize streak model was provided by utilizing the Adams–Bashforth approach.
Finally, several simulation results highlight the effect of the fractal-fractional orders and model
parameters on disease dynamics. The increased leafhopper visitation of maize fields is shown to have
devastating effects on healthy plants and hence efforts should be made to protect maize fields. These
efforts could include the use of pesticides and MSVD-resistant strains of maize. Moreover, natural
predators of leafhoppers could be introduced into the maize fields to help control the population of
leafhoppers when they visit. The effect of natural predators of leafhoppers on the dynamics of MSVD
is the subject of our next research on MSVD. Future research directions should aim at developing a
resistant maize varieties mathematical model, using integrated pest management strategies, increase
awareness and education about the disease among farmers, and develop a fractal-fractional reaction–
diffusion model of maize streak virus disease.
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