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Abstract: The generalized Calogero–Bogoyavlenskii–Schiff equation (GCBSE) is examined and an-
alyzed in this paper. It has several applications in plasma physics and soliton theory, where it
forecasts the soliton wave propagation profiles. In order to obtain the analytically exact solitons,
the model under consideration is a nonlinear partial differential equation that is turned into an
ordinary differential equation by using the next traveling wave transformation. The new extended
direct algebraic technique and the modified auxiliary equation method are applied to the generalized
Calogero–Bogoyavlenskii–Schiff equation to get new solitary wave profiles. As a result, novel and gen-
eralized analytical wave solutions are acquired in which singular solutions, mixed singular solutions,
mixed complex solitary shock solutions, mixed shock singular solutions, mixed periodic solutions,
mixed trigonometric solutions, mixed hyperbolic solutions, and periodic solutions are included with
numerous soliton families. The propagation of the acquired soliton solution is graphically presented
in contour, two- and three-dimensional visualization by selecting appropriate parametric values. It is
graphically demonstrated how wave number impacts the obtained traveling wave structures.

Keywords: modified auxiliary equation method (MAE); generalized Calogero–Bogoyavlenskii–Schiff
equation (GCBSE); analytical solitary wave solutions; new extended direct algebraic method

1. Introduction

Recently, applications of nonlinear evolution equations (NLEEs) have been showing
their imperative rules in physical science, applied science, and design, beginning not long
ago with a widespread interest among various scientists, specialists, and researchers. Evolu-
tion equations can be used to predict the path of a number of physical problems or complex
issues. Due to these abilities, optics, dense-matter physical science, astronomy, biomechan-
ics, high-energy material science, electrical design, synthetic kinematics, electrodynamics,
plasma physical science, gas elements, quantum and sea design, and other fields have
begun to use NLEEs to solve physical problems. Similarly, the study of traveling wave pro-
files by nonlinear partial differential equations is useful in various fields such as quantum
mechanics, fluid mechanics, and many other engineering and science branches [1,2]. Due
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to this, researchers have increased their interest in using them for the understanding and
study of different physical models. For example, Akram et al. [3] discussed the optical soli-
ton solution in fiber optics, a numerical approximation of the time-fractional equation [4],
investigated the water waves in oceanography [5], and the mathematical Noyes–Field
model of the nonlinear homogeneous oscillatory Belousov–Zhabotinsky reaction [6]. The
stochastic form of the Newell–Whitehead–Segel equation [7] and the fractional-order
pseudo-parabolic differential equations [8] were studied by Akgül, and he also analyzed
the effects of the interfacial nanolayer and Lorentz force on a nanofluid flow [9].

Soliton waves are types of pulses that can maintain their shapes while moving at a
constant speed; that is why exchanging information from one electrical source to another is
very smooth and easy due to their use. With the development of technology, optical solitons
have succeeded in making their mark through innovations in fiber optics. Moreover, with
each passing day, soliton innovations are becoming a part of our regular lives in the forms
of Facebook correspondence, Internet websites, Twitter, and so on. Due to the widespread
potentiality of solitons, the researchers have worked on their applications. Afridi worked
on the solution of the generalized Kadomtsev–Petviashvili modified equal-width Burgers
equation [10], analyzed the (2+ 1)-dimensional elliptic nonlinear Schrödinger equation [11],
investigated the Heisenberg spin chain process [12], and determined the number of solu-
tions for the nonlinear Schrödinger equation’s dissipative form [13]. Jhangeer generated
the soliton solutions of the Chen–Lee–Liu governing model [14], double dispersive equa-
tion [15], and also found the solitonic structures of the nonlinear electrical transmission
lattice [16]. Osman used the sine Gordon expansion approach to obtain the different wave
profiles for nonlinear evolution equations [17], studied the nonlinear Schrödinger equation
of higher order and obtained analytical solutions [18], and figured out the solution of the
generalized shallow water-wave equation [19]. Stochastic Fisher type equations [20] and
the (3+1)-dimensional generalized Korteweg–de Vries–Zakharov–Kuznetsov equation [21]
were analyzed by Seadwy. Sachin found soliton solutions for higher-order BKP–Boussinesq
(gBKP-B) equations [22] and Kadomtsev–Petviashvili (KP) equations [23]. Wazwaz discov-
ered optical, exact, dark, and bright solutions of different nonlinear models [24–27]. Tariq
also proposed optical solutions for multiple models [28–31]. Fabio conducted an experimental
study that showed that the perennial solitary waves in quadratic nonlinear environments
could emit resonant dispersive waves in the absence of the larger derivative order [32].
Shen et al. [33] analyzed the nonlocal nonlinear Schrödinger equation and developed the
complex-valued astigmatic cosine–Gaussian soliton solution. The superimposed field of
Laguerre–Gaussian and Hermite–Gaussian solitons were investigated by Song et al. [34].
Guo et al. [35] applied the variational approach on the nonlocal Schrödinger equation
and demonstrated the propagation dynamics of optical breathers in nonlinear media. The
complex-valued hyperbolic–sine–Gaussian beams (CVHSGBs) were discussed and it was
proved that the evolution of CVHSGBs was variable depending on the parameters of a
complex-valued hyperbolic sine function [36,37].

Apart from the benefits of using nonlinear partial differential equations (NLPDE), the
difficulty lies in finding their exact analytical solutions. As a result, a number of different
systems have been designed to find accurate analytical solutions for NLPDEs. These
schemes include the variational iteration method [38], (G′

G )-expansion method [39], soliton
perturbation theory [40], inverse scattering method [41], integral scheme [42], etc. The
present manuscript looks at soliton solutions of the GBSE with the help of the new extended
direct algebraic technique [43] and modified auxiliary equation method [44]. These two
approaches have their own significance, such as the fact that the modified auxiliary equation
method produces exact traveling wave soliton solutions, including trigonometric as well
as hyperbolic functions, whereas the new extended direct algebraic technique generates a
facile and universal system to cover 37 solitonic wave profiles’ solutions, which include
exponential, trigonometric, rational, and hyperbolic functions.
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Consider the following form of the generalized Calogero–Bogoyavlenskii–Schiff equa-
tion (GCBSE) [45],

£xt + £xxxy + 3£x£xy + 3£xx£y + δ1£xy + δ2£yy = 0, (1)

where £ = £(x, y, t) is a continuous function that stands to explain the structure of nonlinear
soliton waves, with spatial components x, y, and t as temporal components, and nonzero
parameters δ1 and δ2. The GCBSE was first calculated by Schiff and Bogoyavlenskii, but
in different ways. A modified Lax formalism was used by Bogoyavlenskii, while Schiff
derived the same equation by reducing the self-dual Yang–Mills equation. The GBSE
has a number of applications in plasma physics and soliton theory, where it predicts the
propagation profiles of soliton waves. Many scientists have worked on the solution of
different forms of this model by using several approaches.

Jarad et al. [45] analyzed the generalized Calogero–Bogoyavlenskii–Schiff equation
and used the Lie symmetry approach and the new auxiliary equation method to find
the analytical solutions. As a result, they obtained few types of soliton solutions such as
trigonometric function and hyperbolic function solutions. It meant that a lot of soliton
types were not found and there is a gap in the literature. In order to address this gap,
the new extended direct algebraic method (NEDAM) and the modified auxiliary equation
method is utilized. The new extended algebraic method is more generalized than the new
auxiliary equation method (NAEM) because the NEDAM depends upon a second-degree
differential equation. However, the NAEM depends on a first-order differential equation.
The NEDAM provides thirty-seven types of soliton solutions which cover almost all types
of soliton families.

In this manuscript, Section 2 contains a detailed description of the proposed techniques.
Section 3 contains all the solutions obtained for the model with the help of different values
of parameters obtained by the applied techniques, and graphs of some of them are also
included in the same section. Section 4 is dedicated to the discussion of the different wave
profiles, and the conclusion of the whole work is explained in detail in Section 5.

2. Description of the Proposed Technique

In this section, we explain the two different analytical approaches that we utilize to
develop the solutions of the generalized Calogero–Bogoyavlenskii–Schiff equation.

Suppose a general nonlinear partial differential equation of the type [43]:

Y(£, £t, £x, £tt, £xx, · · · ) = 0. (2)

Its nonlinear ordinary differential equations (LNODE) are [43]:

Q(R, R′, R′′, · · · ) = 0. (3)

Consider the next traveling wave transformation [43]:

£(x, y, t) = £(Ω), (4)

where Ω = k1(x + y) + k2t. The prime signs in Equation (3) indicate the differentiation’s
order for different attributes.

2.1. New Extended Direct Algebraic Method

This subsection is devoted to explain the general approach of the new extended direct
algebraic method.

Consider the solution of Equation (3) as follows [43]:

£(Ω) =
i

∑
r=0

ar(P(Ω))r. (5)
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The first derivative of P(Ω) has the following value:

P′(Ω) = ln(ρ)
(

ψ + ϑ P(Ω) + ℘(P(Ω))2
)

, ρ 6= 0, 1. (6)

Here, ℘, ϑ, and ψ are real constants, and ω = ϑ2 − 4ψ℘. The general forms of
the solutions of Equation (6) with respect to the present real number parameters are
the following:

1. For ϑ2 − 4ψ℘ < 0 and ℘ 6= 0,

P1(Ω) = − ϑ

2℘
+

√
−ω

2℘
tanρ

(√
−ω

2
Ω
)

, (7)

P2(Ω) = − ϑ

2℘
−
√
−ω

2℘
cotρ

(√
−ω

2
Ω
)

, (8)

P3(Ω) = − ϑ

2℘
+

√
−ω

2℘

(
tanρ

(√
−ω Ω

)
±
√

mn secρ

(√
−ω Ω

))
, (9)

P4(Ω) = − ϑ

2℘
+

√
−ω

2℘

(
cotρ

(√
−ω Ω

)
±
√

mn cscρ

(√
−ω Ω

))
, (10)

P5(Ω) = − ϑ

2℘
+

√
−ω

4℘

(
tanρ

(√
−ω

4
Ω
)
− cotρ

(√
−ω

4
Ω
))

. (11)

2. For ϑ2 − 4ψ℘ > 0 and ℘ 6= 0,

P6(Ω) = − ϑ

2℘
−
√

ω

2℘
tanhρ

(√
ω

2
Ω
)

, (12)

P7(Ω) = − ϑ

2℘
−
√

ω

2℘
cothρ

(√
ω

2
Ω
)

, (13)

P8(Ω) = − ϑ

2℘
+

√
ω

2℘
(
tanhρ

(√
ωΩ

)
± i
√

mn Sechρ

(√
ωΩ

))
, (14)

P9(Ω) = − ϑ

2℘
+

√
ω

2℘
(
− cothρ

(√
ω Ω

)
±
√

mncschρ

(√
ω Ω

))
, (15)

P10(Ω) = − ϑ

2℘
−
√

ω

4℘

(
tanhρ

(√
ω

4
Ω
)
+ cothρ

(√
ω

4
Ω
))

. (16)

3. For ψ℘ > 0 and ϑ = 0,

P11(Ω) =

√
ψ

℘
tanρ

(√
ψ℘Ω

)
, (17)

P12(Ω) = −
√

ψ

℘
cotρ

(√
ψ℘Ω

)
, (18)



Fractal Fract. 2023, 7, 191 5 of 25

P13(Ω) =

√
ψ

℘

(
tanρ

(
2
√

ψ℘Ω
)
±
√

mn secρ

(
2
√

ψ℘Ω
))

, (19)

P14(Ω) =

√
ψ

℘

(
− cotρ

(
2
√

ψ℘Ω
)
±
√

mn cscρ

(
2
√

ψ℘Ω
))

, (20)

P15(Ω) =
1
2

√
ψ

℘

(
tanρ

(√
ψ℘

2
Ω
)
− cotρ

(√
ψ℘

2
Ω
))

. (21)

4. For ψ℘ < 0 and ϑ = 0,

P16(Ω) = −
√
−ψ

℘
tanhρ

(√
−ψ℘Ω

)
, (22)

P17(Ω) = −
√
−ψ

℘
cothρ

(√
−ψ℘Ω

)
, (23)

P18(Ω) =

√
−ψ

℘

(
− tanhρ

(
2
√
−ψ℘Ω

)
± i
√

mnsechρ

(
2
√
−ψ℘Ω

))
, (24)

P19(Ω) =

√
−ψ

℘

(
− cothρ

(
2
√
−ψ℘Ω

)
±
√

mncschρ

(
2
√
−ψ℘Ω

))
, (25)

P20(Ω) = −1
2

√
−ψ

℘

(
tanhρ

(√−ψ℘

2
Ω
)
+ cothρ

(√−ψ℘

2
Ω
))

. (26)

5. For ϑ = 0 and ψ = ℘,

P21(Ω) = tanρ(ψΩ), (27)

P22(Ω) = − cotρ(ψΩ), (28)

P23(Ω) = tanρ(2ψΩ) ±
√

mn secρ(2ψΩ), (29)

P24(Ω) = − cotρ(2ψΩ) ±
√

mn cscρ(2ψ Ω), (30)

P25(Ω) =
1
2

(
tanρ

(
ψ

2
Ω
)
− cotρ

(
ψ

2
Ω
))

. (31)

6. For ϑ = 0 and ℘ = −ψ,

P26(Ω) = − tanhρ(ψΩ), (32)

P27(Ω) = − cothρ(ψΩ), (33)

P28(Ω) = − tanhρ(2ψΩ) ± i
√

mnsechρ(2ψΩ), (34)

P29(Ω) = − cothρ(2ψΩ) ±
√

mn cschρ(2ψΩ), (35)
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P30(Ω) = −1
2

(
tanhρ

(
ψ

2
Ω
)

+ cothρ

(
ψ

2
Ω
))

. (36)

7. For ϑ2 = 4ψ℘,

P31(Ω) =
−2ψ(ϑΩ ln(ρ) + 2)

ϑ2Ω ln(ρ)
. (37)

8. For ϑ = p, ψ = pq, (q 6= 0) and ℘ = 0,

P32(Ω) = ρpΩ − q. (38)

9. For ϑ = ℘ = 0,

P33(Ω) = ψΩ ln(ρ). (39)

10. For ϑ = ψ = 0,

P34(Ω) =
−1

℘Ω ln(ρ)
. (40)

11. For ψ = 0 and ϑ 6= 0,

P35(Ω) = − mϑ

℘
(

coshρ(ϑΩ) − sinhρ(ϑΩ) + m
) , (41)

P36(Ω) = −
ϑ
(

sinhρ(ϑΩ) + coshρ(ϑΩ)
)

℘
(
sinhρ(ϑΩ) + coshρ(ϑΩ) + n

) . (42)

12. For ϑ = p, ℘ = pq, (q 6= 0 and ψ = 0),

P37(Ω) = − mρpΩ

m− qnρpΩ . (43)

Here,

sinhρ(Ω) =
mρΩ − nρ(−Ω)

2
, coshρ(Ω) =

mρΩ + nρ(−Ω)

2
, tanhρ(Ω) =

mρΩ − nρ(−Ω)

mρΩ + nρ(−Ω)
,

cschρ(Ω) =
2

mρΩ − nρ(−Ω)
, sechρ(Ω) =

2
mρΩ + nρ(−Ω)

, cothρ(Ω) =
mρΩ + nρ−Ω

mρΩ − nρ−Ω ,

sinρ(Ω) =
mρiΩ − nρ(−iΩ)

2i
, cosρ(Ω) =

mρiΩ + nρ(−iΩ)

2
, tanρ(Ω) = −i

mρiΩ − nρ(−iΩ)

mρiΩ + nρ(−iΩ)
,

cscρ(Ω) =
2i

mρΩ − nρ(−Ω)
secρ(Ω) =

2
mρΩ + nρ(−Ω)

, cotρ(Ω) = i
mρiΩ + nρ(−iΩ)

mρiΩ − nρ(−iΩ)
,

where m and n are arbitrary constants and m, n > 0. Moreover, they are considered as
parameters of deformation.
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2.2. Modified Auxiliary Equation Method

This subsection is devoted to explain the general approach of the modified auxiliary
equation method.

Suppose the general solution of Equation (3) [44] as:

£(Ω) = α0 +
N

∑
i=1

[αi(zh(Ω) + βiz−h(Ω))], (44)

where Ω = k1(x + y) + k2t and αis, βis are arbitrary constants.
Here, h(Ω) follows the following auxiliary equation,

h′(Ω) =
β + αz−h(Ω) + γzh(Ω)

ln z
. (45)

α, β, γ, and z are constants, with conditions on z as z > 0 and z 6= 1. Further, αis and
βis can also not be zero simultaneously.

The solutions of Equation (45) are obtained as follows:

1. If β2 − 4αγ < 0 and γ 6= 0,

zh(Ω) = −
β +

√
4αγ − β2tan(

√
4αγ − β2Ω

2 )

2γ
,

or

zh(Ω) = −
β +

√
4αγ − β2cot(

√
4αγ − β2Ω

2 )

2γ
. (46)

2. If β2 − 4αγ > 0 and γ 6= 0,

zh(Ω) = −
β +

√
β2 − 4αγ tanh(

√
β2 − 4αγΩ

2 )

2γ
,

or

zh(Ω) = −
β +

√
β2 − 4αγcoth(

√
β2 − 4αγΩ

2 )

2γ
(47)

3. If β2 − 4αγ = 0 and γ 6= 0,

zh(Ω) = −2 + βΩ
2γΩ

(48)

3. Construction of Soliton Structures for Equation (3)

The above-mentioned techniques, new extended algebraic method, and modified
auxiliary equation scheme were applied on the generalized Calogero–Bogoyavlenskii–Schiff
equation.

In order to determine the solution, we used the next traveling wave transforma-
tion [45],

£(x, y, t) = £(Ω), Ω = k(x + y) + ct, (49)

where k is the speed of the soliton and c is the wave number. By plugging the considered
transformation of Equation (49) into Equation (1), we obtained the following ODE:

k3£′′′′ + 6k2£′£′′ + (c + (δ1 + δ2)k)£′′ = 0. (50)

After integrating Equation (50) once,

k3£′′′ + 3k2(£′)2 + (c + (δ1 + δ2)k)£′ = 0. (51)
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Here, by considering W(Ω) = £′(Ω) in Equation (51), we obtained

k3W ′′ + 3k2(W)2 + (c + (δ1 + δ2)k)W = 0. (52)

3.1. Solution with Modified Auxiliary Equation Method

The modified auxiliary equation method was used to form the soliton structures for
Equation (1).

By calculating the homogeneous balancing constant of Equation (52), the solution with
the MAE can be written as follows:

W(Ω) = α0 + α1zh(Ω) + β1z−h(Ω) + α2z2h(Ω) + β2z−2h(Ω). (53)

The system of equations was obtained by plugging solution Equation (53) into
Equation (52) and then calculating the coefficients of different powers of zh(Ω). This
obtained system was an algebraic equation system solved with Mathematica software,
yielding four distinct families of values for α0, α1, α2, β1, and β2. By using these families
one by one, we obtained the results whose integration gave the solutions of the considered
model as follows:

Family 1:

α0 = − 2αγk, α1 = 0, β1 = −2αβk, α2 = 0, β2 = −2α2k,

c = −k
(

δ1 + δ2 − 4αγk2 + β2k2
)

.
(54)

The general solution for family one was

W(Ω) = −2αkz−2h(Ω)
(

α + zh(Ω)
(

β + γzh(Ω)
))

. (55)

Since we know that £(Ω) =
∫

W(Ω)dΩ, the solutions from result Equation (55), after
integration, are given below, where ∆ = β2 − 4αγ.

Case 1: If β2 − 4αγ < 0, γ 6= 0;

£1,1(x, y, t) = −
k
(

β∆ + 2αγ
√
−∆ sin

(
Ω
√
−∆
))

β2 − 2αγ + 2αγ cos
(

Ω
√
−∆
) , (56)

or

£1,2(x, y, t) =
k
(

β∆ + 2αγ
√
−∆ sin

(
Ω
√
−∆
))

β2 − 2αγ− 2αγ cos
(

Ω
√
−∆
) . (57)

Case 2: If β2 − 4αγ > 0, γ 6= 0;

£1,3(x, y, t) =
k
(

β∆ + 2αγ
√

∆ sinh
(

Ω
√

∆
))

β2 − 2αγ + 2αγ cosh
(

Ω
√

∆
) , (58)

or

£1,4(x, y, t) =
k
(

β∆ − 2αγ
√

∆ sinh
(

Ω
√

∆
))

β2 − 2αγ− 2αγ cosh
(

Ω
√

∆
) . (59)
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Case 3: If β2 − 4αγ = 0, γ 6= 0;

£1,5(x, y, t) =
2αγk

(
−4∆ log(βΩ + 2)− 4αβγΩ + 16αγ

βΩ+2 + β3Ω
)

β3 . (60)

Family 2:

α0 =
1
3

(
β2(−k)− 2αγk

)
, α1 = 0, β1 = −2αβk, α2 = 0, β2 = −2α2k,

c = −4αγk3 + β2k3 − δ1k− δ2k.
(61)

The general solution for family two was

W(Ω) = −2α2kz−2h(Ω) − 2αβkz−h(Ω) +
1
3

(
β2(−k)− 2αγk

)
. (62)

Since we know that £(Ω) =
∫

W(Ω)dΩ, the solutions from result Equation (62), after
integration, are given below:

Case 1: If β2 − 4αγ < 0, γ 6= 0;

£2,1(x, y, t) =
1
3

k

(2(4αγ− 3β2) tan−1
(

tan
(

1
2 Ω
√
−∆
))

√
−∆

− 3β

(
1 +

iβ√
−∆

)
log
(
− tan

(
1
2

Ω
√
−∆
)
+ i
)
− 3β

(
1− iβ√

−∆

)
log
(

tan
(

1
2

Ω
√
−∆
)
+ i
)

+ 6β log
(√
−∆ tan

(
1
2

Ω
√
−∆
)
+ β

)
+ 3β log

(
sec2

(
1
2

Ω
√
−∆
))

+

12αγ cos2
(

1
2 Ω
√
−∆
)((

∆
)

tan
(

1
2 Ω
√
−∆
)
+ β
√
−∆
)

√
−∆
(

2αγ cos
(

Ω
√
−∆
)
− 2αγ + β2

)

− 6β tanh−1
(√−∆ tan

(
1
2 Ω
√
−∆
)

β

)
− 3β log

(
−
((

2αγ cos
(

Ω
√
−∆
)

− 2αγ + β2
)

sec2
(

1
2

Ω
√
−∆
)))

− β2Ω

)
,

(63)

or
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£2,2(x, y, t) =
1
3

k

(6β
√
−∆ tan−1

( β tan

(
1
2 Ω
√
−∆

)
√

∆

)
√

∆
− 3β log

(
− 2αγ cos

(
Ω
√
−∆
)

− 2αγ + β2
)
+

2
(

3β2 − 4αγ

)
tan−1

(
cot
(

1
2 Ω
√
−∆
))

√
−∆

+ 6β tanh−1

√−∆ cot
(

1
2 Ω
√
−∆
)

β

− 3β log
(

csc2
(

1
2

Ω
√
−∆
))

−
12αγ sin2

(
1
2 Ω
√
−∆
)((

∆
)

cot
(

1
2 Ω
√
−∆
)
+ β
√
−∆
)

√
−∆
(
− 2αγ cos

(
Ω
√
−∆
)
− 2αγ + β2

)
+ 3β log

((
2αγ cos

(
Ω
√
−∆
)
+ 2αγ− β2

)
csc2

(
1
2

Ω
√
−∆
))

+ 2β2Ω

)
.

(64)

Case 2: If β2 − 4αγ > 0, γ 6= 0;

£2,3(x, y, t) =
1
3

k

(2
(

4αγ− 3β2
)

tanh−1
(

tanh
(

1
2 Ω
√

∆
))

√
∆

− 6β log
(√

∆ tanh(
1
2

Ω
√

∆
)

+ β

)
+

12αβγ log
(

tanh
(

1
2 Ω
√

∆
)
+ 1
)

β
√

∆− ∆
−

12αβγ log
(

1− tanh
(

1
2 Ω
√

∆
))

β
√

∆ + ∆

− 3β log
(

sech2
(

1
2

Ω
√

∆
))
−

6β
√

∆ tan−1
(√

∆ tanh( 1
2 Ω
√

∆)
β

)
√

∆

−
12αγ cosh2

(
1
2 Ω
√

∆
)(

β
√

∆− (∆) tanh
(

1
2 Ω
√

∆
))

√
∆
(

2αγ cosh
(

Ω
√

∆
)
− 2αγ + β2

)
+ 3β log

((
2αγ cosh

(
Ω
√

∆
)
− 2αγ + β2

)
sech2

(
1
2

Ω
√

∆
))
− β2Ω

)
,

(65)

or
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£2,4(x, y, t) =
1
3

k

(
− 6β tanh−1

 β tanh
(

1
2 Ω
√

∆
)

√
∆

− 3β log
(
− 2αγ cosh

(
Ω
√

∆
)

− 2αγ + β2
)
−

6β
√
−∆ tan−1

(√
−∆ coth( 1

2 Ω
√

∆)
β

)
√

∆

+
2
(
4αγ− 3β2) tanh−1

(
coth

(
1
2 Ω
√

∆
))

√
∆

− 3β log
(
−csch2

(
1
2

Ω
√

∆
))

+
12αγ sinh2

(
1
2 Ω
√

∆
)(

β
√

∆− (∆) coth
(

1
2 Ω
√

∆
))

√
∆
(
−2αγ cosh

(
Ω
√

∆
)
− 2αγ + β2

)
+ 3β log

((
2αγ cosh

(
Ω
√

∆
)
+ 2αγ− β2

)
csch2

(
1
2

Ω
√

∆
))

+ 2β2Ω

)
.

(66)

Case 3: If β2 − 4αγ = 0, γ 6= 0;

£2,5(x, y, t) =
1
3

k

(
−

24α2γ2(β2Ω2 + 2βΩ− 4
)

β3(βΩ + 2)
+

24αγ(−∆) log(βΩ + 2)
β3 + 10αγΩ− β2Ω

)
. (67)

Family 3:

α0 = −2αγk, α1 = −2βγk, β1 = 0, α2 = −2γ2k,

β2 = 0, c = −k
(

δ1 + δ2 − 4αγk2 + β2k2
)

.
(68)

The general solution for family three was

W(Ω) = −2βγkzh(Ω) − 2γ2kz2h(Ω) − 2αγk. (69)

Since we know that £(Ω) =
∫

W(Ω)dΩ, the solutions from result Equation (69), after
integration, are given below:

Case 1: If β2 − 4αγ < 0, γ 6= 0;

£3,1(x, y, t) = −k
√
−∆ tan

(
1
2

Ω
√
−∆
)

, (70)

or

£3,2(x, y, t) = k
√
−∆ cot

(
1
2

Ω
√
−∆
)

. (71)

Case 2: If β2 − 4αγ > 0, γ 6= 0;

£3,3(x, y, t) = k
√

∆ tanh
(

1
2

Ω
√

∆
)

, (72)

or

£3,4(x, y, t) = k
√

∆ coth
(

1
2

Ω
√

∆
)

. (73)
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Case 3: If β2 − 4αγ = 0, γ 6= 0;

£3,5(x, y, t) =
1
2

k
(

Ω(∆) +
4
Ω

)
. (74)

Family 4:

α0 = − 2αγk, α1 = 0, β1 = −2αβk, α2 = 0, β2 = −2α2k,

c = −k
(

δ1 + δ2 − 4αγk2 + β2k2
)

.
(75)

The general solution for family four was

W(Ω) = −2βγkzh(Ω) − 2γ2kz2h(Ω) +
1
3

(
β2(−k)− 2αγk

)
. (76)

Since we know that £(Ω) =
∫

W(Ω)dΩ, the solutions from result Equation (76), after
integration, are given below:

Case 1: If β2 − 4αγ < 0, γ 6= 0;

£4,1(x, y, t) = −1
3

k
(

Ω(∆) + 3
√
−∆ tan

(
1
2

Ω
√
−∆
))

, (77)

or

£4,2(x, y, t) =
1
3

k
(

3
√
−∆ cot

(
1
2

Ω
√
−∆
)
− ∆Ω

)
. (78)

Case 2: If β2 − 4αγ > 0, γ 6= 0;

£4,3(x, y, t) =
1
3

k
(

3
√

∆ tanh
(

1
2

Ω
√

∆
)
− ∆Ω

)
, (79)

or

£4,4(x, y, t) =
1
3

k
(

3
√

∆ coth
(

1
2

Ω
√

∆
)
− ∆Ω

)
. (80)

Case 3: If β2 − 4αγ = 0, γ 6= 0;

£4,5(x, y, t) =
1
6

kΩ∆ +
2k
Ω

. (81)

3.2. Solution with New Extended Direct Algebraic Method

The new extended direct algebraic method was used to form the soliton structures for
Equation (1).

According to the new extended direct algebraic method, the solutions of Equation (52)
are given as follows,

W(Ω) = a0 + a1P(Ω) + a2P(Ω)2, (82)

along with,
P′(Ω) = ln(ρ)(ψ + ϑP + ℘(P(Ω))2. (83)

By plugging solution Equation (82) into Equation (52) and then calculating the coef-
ficients of P(Ω) for different powers, we obtained an algebraic system of equations. This
algebraic system was solved by Mathematica software, and it provided the following two
families of values for the constant.
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Here are the results:

a0 = − 2kψ℘ log2(ρ), a1 = −2kϑ℘ log2(ρ), a2 = −2k℘2 log2(ρ),

c = −k
(

δ1 + δ2 + k2ϑ2 log2(ρ)− 4k2ψ℘ log2(ρ)
)

,
(84)

and

a0 = − 1
3

k log2(ρ)
(

2℘ζ + ν2
)

, a1 = −2ζkν log2(ρ), a2 = −2ζ2k log2(ρ),

c = −4℘ζk3 log2(ρ) + k3ν2 log2(ρ)− δ1k− δ2k.
(85)

The general solution of Equation (52) was calculated by plugging Equation (84) into
Equation (82):

W(Ω) = −2k℘ log2(ρ)
(

α + ϑP(Ω) + ℘P(Ω)2
)

. (86)

It should be noted that we could obtain many solutions for W(Ω) by using different Pr
from Equations (7)–(43), given that £(Ω) =

∫
W(Ω)dΩ. Thus, by integrating each solution,

we could determine the solutions for £(Ω).

(1) For ϑ2 − 4ψ ℘ < 0, ℘ 6= 0, the mixed trigonometric solutions were determined as follows:

£1(x, y, t) = −k log2(ρ)
√
−ω tan

(
1
2

Ω
√
−ω

)
, (87)

£2(x, y, t) = k log2(ρ)
√
−ω cot

(
1
2

Ω
√
−ω

)
, (88)

£3(x, y, t) = −1
2

k log2(ρ)
√
−ω

(
(mn + 1) tan

(
Ω
√
−ω

)
± 2
√

mn sec
(

Ω
√
−ω

))
, (89)

£4a(x, y, t) =
1
2

k log2(ρ)
√
−ω csc

(
Ω
√
−ω

)(
(mn + 1) cos

(
Ω
√
−
)
+ 2
√

mn
)

, (90)

£4b(x, y, t) =
1
2

k log2(ρ)
√
−ω

(
(mn + 1) cot

(
Ω
√
−ω

)
− 2
√

mn csc
(

Ω
√
−ω

))
, (91)

£5(x, y, t) = k log2(ρ)
√
−ω cot

(
1
2

Ω
√
−ω

)
. (92)

(2) For ϑ2 − 4ψ ℘ > 0, ℘ 6= 0, the shock solution was determined as follows:

£6(x, y, t) = k log2(ρ)
√

ω tanh
(

1
2

Ω
√

ω

)
. (93)

The singular solution was determined as follows:

£7(x, y, t) = k log2(ρ)
√

ω coth
(

1
2

Ω
√

ω

)
. (94)

The mixed complex solitary-shock solution was determined as follows:

£8(x, y, t) =
1
2

k log2(ρ)
√

ω
(
(mn + 1) tanh

(
Ω
√

ω
)
∓ 2i
√

mnsech
(
Ω
√

ω
))

. (95)

The mixed singular solutions were determined as follows:

£9a(x, y, t) =
1
2

k log2(ρ)
√

ω
(
(mn + 1) coth

(
Ω
√

ω
)
− 2
√

mncsch
(
Ω
√

ω
))

, (96)

£9b(x, y, t) =
1
2

k log2(ρ)
√

ωcsch
(
Ω
√

ω
)(
(mn + 1) cosh

(
Ω
√

ω
)
+ 2
√

mn
)
. (97)
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The mixed shock singular solution was determined as follows:

£10(x, y, t) = k log2(ρ)
√

ω

(
Ω
√

ω− coth
(

1
2

Ω
√

ω

))
. (98)

(3) For ψ℘ > 0 and ϑ = 0, the trigonometric solutions were determined as follows:

£11(x, y, t) = −2k
√

ψ℘ log2(ρ) tan
(

Ω
√

ψ℘
)

, (99)

£12(x, y, t) = 2k
√

ψ℘ log2(ρ) cot
(

Ω
√

ψ℘
)

. (100)

The mixed trigonometric solutions were determined as follows:

£13(x, y, t) = − k℘ log2(ρ)

2
√

ψ℘

(
−
(

ϑ

√
ψ

℘
log
(

1− sin(2Ω
√

ψ℘)

)

∓ ϑ
√

mn
√

ψ

℘
log
(

1− sin(2Ω
√

ψ℘)

))
−
((

ϑ

√
ψ

℘
log
(

sin(2Ω
√

ψ℘) + 1
)

± ϑ
√

mn
√

ψ

℘
log
(

sin(2Ω
√

ψ℘) + 1
))
± 4ψ

√
mn sec(2Ω

√
ψ℘)

))
+

2mnψ tan(2Ω
√

ψ℘) + 4ψΩ
√

ψ℘− 2ψ tan−1
(

tan(2Ω
√

ψ℘)

)
+ 2ψ tan(2Ω

√
ψ℘)

))
,

(101)

£14(x, y, t) =
(k℘ log2(ρ) csc(Ω

√
ψ℘))

4
√

ψ℘

((
sec(Ω

√
ψ℘)

((
2ψ(mn + 1) cos(2

√
ψ℘Ω)

± 2ϑ
√

mn
√

ψ

℘
sin(2Ω

√
ψ℘) tanh−1

(
cos(2Ω

√
ψ℘)

))
∓ 4ψ

√
mn + ϑ

√
ψ

℘
sin(2Ω

√
ψ℘) log(sin2(2Ω

√
ψ℘)

))))
,

(102)

£15(x, t) = 2k
√

ψ℘ log2(ρ) cot
(

Ω
√

ψ℘
)

. (103)

(4) For ψ℘ < 0 and ϑ = 0, the shock-wave solution was determined as follows:

£16(x, y, t) = 2k log2(ρ)
√
−ψ℘ tanh

(
Ω
√
−ψ℘

)
. (104)

The singular solution was determined as follows:

£17(x, y, t) = 2k log2(ρ)
√
−ψ℘ coth

(
Ω
√
−ψ℘

)
. (105)

Some distinct complex combo-type solutions were determined as follows:

£18(x, y, t) = k log2(ρ)
√
−ψ℘

(
(mn + 1) tanh

(
2Ω
√
−ψ℘

)
∓ 2i
√

mnsech
(

2Ω
√
−ψ℘

))
, (106)

£19(x, y, t) =
1
2

k log2(ρ)
√
−ψ℘csch

(
Ω
√
−ψ℘

)
sech

(
Ω
√
−ψ℘

)(
(mn + 1) cosh

(
2Ω
√
−ψ℘

)
∓ 2
√

mn
)

,
(107)

£20(x, y, t) = 2k log2(ρ)
√
−ψ℘ coth

(
Ω
√
−ψ℘

)
. (108)
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(5) For ϑ = 0 and ℘ = ψ , the periodic and mixed-periodic wave solutions were
determined as follows:

£21(x, y, t) = −2kψ log2(ρ) tan(ψΩ), (109)

£22(x, y, t) = 2kψ log2(ρ) cot(ψΩ), (110)

£23(x, y, t) = − kψ log2(ρ)(√
mn± sin(2ψΩ)

)2

(((
m2n2 tan(2ψΩ)± 4

√
mn sin(2ψΩ) tan(2ψΩ)

)

± 2(mn)3/2 sin(2ψΩ) tan(2ψΩ)

)
+ 5mn tan(2ψΩ) + mn sin2(2ψΩ) tan(2ψΩ)

− 2ψΩ
((

mn± 2
√

mn sin(2ψΩ)

)
+ sin2(2ψΩ)

)
+((

2mnψΩ± 2(mn)3/2 sec(2ψΩ)

)
± 4ψΩ

√
mn sin(2ψΩ)

)
+

2ψΩ sin2(2ψΩ) + sin2(2ψΩ) tan(2ψΩ)

)
,

(111)

£24a(x, y, t) =
kψ log2(ρ) csc(ψΩ) sec(ψΩ)

8
(√

mn− cos(2ψΩ)

)2

(((
4m2n2 + 23mn + 3

)
cos(2ψΩ)−

4
√

mn(mn + 2) cos(4ψΩ) + mn cos(6ψΩ)− 12(mn)3/2 − 8
√

mn + cos(6ψΩ)

))
,

(112)

£24b(x, y, t) =
1
2

kψ log2(ρ) csc(ψΩ) sec(ψΩ)
(
(mn + 1) cos(2ψΩ) + 2

√
mn
)
, (113)

£25(x, y, t) = 2kψ log2(ρ) cot(ψΩ). (114)

(6) For ϑ = 0 and ℘ = −ψ, some mixed-periodic and single wave solutions were
determined as follows:

£26(x, t) = 2kψ log2(ρ) tanh(ψΩ), (115)

£27(x, t) = 2kψ log2(ρ) coth(ψΩ), (116)

£28a(x, y, t) = − kψ log2(ρ)(√
mn− sinh(2ψΩ)

)2

(
m2n2 tanh(2ψΩ)− 2mnψΩ+

4ψΩ
√

mn sinh(2ψΩ)− 5mn tanh(2ψΩ) + 2(mn)3/2sech(2ψΩ)+

2ψΩ
(
− 2
√

mn sinh(2ψΩ) + mn + sinh2(2ψΩ)

)
+ mn sinh2(2ψΩ)

tanh(2ψΩ)− 2(mn)3/2 sinh(2ψΩ) tanh(2ψΩ)

+ 4
√

mn sinh(2ψΩ) tanh(2ψΩ)− 2ψΩ sinh2(2ψΩ)−

sinh2(2ψΩ) tanh(2ψΩ)

)
,

(117)

£28b(x, y, t) = kψ log2(ρ)sech(2ψΩ)
(
(1−mn) sinh(2ψΩ) + 2

√
mn
)
, (118)

£29(x, y, t) =
1
2

kψ log2(ρ)csch(ψΩ)sech(ψΩ)
(
(mn + 1) cosh(2ψΩ)∓ 2

√
mn
)
, (119)

£30(x, y, t) = 2kψ log2(ρ) coth(ψΩ). (120)
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(7) For ϑ2 = 4ψ℘, we deduced only one solution as follows:

£31(x, t) =
2k
℘

. (121)

(8) For ϑ = p, ψ = pq, and ℘ = 0,

£32(x, t) = 0. (122)

(9) For ϑ = ℘ = 0,
£33(x, t) = 0. (123)

(10) For ϑ = ψ = 0, we deduced a single solution as follows:

£34(x, t) =
2k
℘

. (124)

(11) For ψ = 0 and ϑ 6= 0, some mixed hyperbolic solutions were determined as follows:

£35(x, t) =
2k m ϑ log2(ρ)

m + cosh(ϑΩ)− sinh(ϑΩ)
, (125)

£36(x, t) = − 2k n ϑ log2(ρ)

n + cosh(ϑΩ) + sinh(ϑΩ)
. (126)

(12) For ϑ = p, ℘ = pq, where q 6= 0 and ℘ = 0, the single solution of the plane form
was determined as follows:

£37(x, t) = −2kmp log(ρ)
n2

(
m2

m− nqρΩp + (m + n) log
(

m− nqρpΩ
))

. (127)

4. Graphical Discussion

This section is devoted to display and illustrating the graphic discussion and physical
aspects of the obtained results.

Figure 1 displays the propagating behavior of solution £3,2 with the parametric values
α = 0.1, γ = 0.5, β = 0.1, δ1 = 0.2, and δ2 = 5. This solution predicts the antikink periodic
behavior of a traveling soliton with an amplitude-increasing fashion and periodicity as the
wave number increases.

Figure 2 displays the propagating behavior of solution £4,3 with the parametric values
α = 0.1, γ = 0.4, β = 0.6, δ1 = 0.5, and δ2 = 0.2. This solution predicts the kink peri-
odic behavior of a traveling soliton with an amplitude-increasing fashion as the wave
number increases.

Figure 3 displays the propagating behavior of the real part of solution £3 with the
parametric values ψ = 0.5, ρ = 5, m = 5, n = 2;℘ = 4, ϑ = 2, δ1 = 0.5, and δ2 = 0.5. This
solution predicts the periodic with antipeaked crests and antitroughs behavior of a traveling
soliton with an amplitude-increasing fashion and periodicity as wave number increases.

Figure 4 displays the propagating behavior of the imaginary part of solution £3 with
the parametric values ψ = 0.5, ρ = 5, m = 5, n = 2,℘ = 4, ϑ = 2, δ1 = 0.5, and δ2 = 0.5.
This solution predicts the periodic with peaked crests and troughs behavior of a traveling
soliton with an amplitude-increasing fashion and periodicity as the wave number increases.

Figure 5 displays the propagating behavior of the real part of solution £18 with the
parametric values ψ = −0.02,℘ = 0.3, ρ = 5, m = 5, n = 6, δ1 = 0.5, and δ2 = 0.5. This
solution predicts the bright compacton with an amplitude-increasing fashion and the
compacton achieves singularity as the wave number increases.

Figure 6 displays the propagating behavior of the imaginary part of solution £18 with
the parametric values ψ = −0.02,℘ = 0.3, ρ = 5, m = 5, n = 6, δ1 = 0.5, and δ2 = 0.5.
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This solution predicts the dark compacton with an amplitude-increasing fashion and the
compacton achieves singularity as the wave number increases.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Three-dimensional, contour, and 2-D profiles of solution £3,2 for different values of pa-
rameter k. (a) Three-dimensional propagation at k = 0.3; (b) Contour propagation at k = 0.3;
(c) Two-dimensional propagation at k = 0.3; (d) Three-dimensional propagation at k = 1.3; (e) Con-
tour propagation at k = 1.3; (f) Two-dimensional propagation at k = 1.3; (g) Three-dimensional
propagation at k = 3.3; (h) Contour propagation at k = 3.3; (i) Two-dimensional propagation at
k = 3.3.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Three-dimensional, contour, and 2-D profiles of solution £4,3 for different values of pa-
rameter k. (a) Three-dimensional propagation at k = 0.3; (b) Contour propagation at k = 0.3;
(c) Two-dimensional propagation at k = 0.3; (d) Three-dimensional propagation at k = 0.5; (e) Con-
tour propagation at k = 0.5; (f) Two-dimensional propagation at k = 0.5; (g) Three-dimensional
propagation at k = 0.7; (h) Contour propagation at k = 0.7; (i) Two-dimensional propagation at
k = 0.7.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Three-dimensional, contour and 2-D profiles for the real part of solution £3 for different
values of parameter k. (a) Three-dimensional propagation at k = 0.1; (b) Contour propagation at
k = 0.1; (c) Two-dimensional propagation at k = 0.1; (d) Three-dimensional propagation at k = 0.3;
(e) Contour propagation k = 0.3; (f) Two-dimensional propagation k = 0.3; (g) Three-dimensional
propagation k = 0.5; (h) Contour propagation k = 0.5; (i) Two-dimensional propagation k = 0.5.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Three-dimensional, contour, and 2-D profiles for the imaginary part of solution £3 for
different values of parameter k. (a) Three-dimensional propagation at k = 0.1; (b) Contour propaga-
tion at k = 0.1; (c) Two-dimensional propagation at k = 0.1; (d) Three-dimensional propagation at
k = 0.3; (e) Contour propagation at k = 0.3; (f) Two-dimensional propagation at k = 0.3; (g) Three-
dimensional propagation at k = 0.5; (h) Contour propagation at k = 0.5; (i) Two-dimensional
propagation at k = 0.5.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Three-dimensional, contour, and 2-D profiles for the real part of solution £18 for different
values of parameter k. (a) Three-dimensional propagation at k = 0.3; (b) Contour propagation at
k = 0.3; (c) Two-dimensional propagation at k = 0.3; (d) Three-dimensional propagation at k = 1.3;
(e) Contour propagation at k = 1.3; (f) Two-dimensional propagation at k = 1.3; (g) Three-dimensional
propagation at k = 3.3; (h) Contour propagation at k = 3.3; (i) Two-dimensional propagation at
k = 3.3.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Three-dimensional, contour, and 2-D profiles for the imaginary part of solution £18 for
different values of parameter k. (a) Three-dimensional propagation at k = 0.3; (b) Contour propaga-
tion at k = 0.3; (c) Two-dimensional propagation at k = 0.3; (d) Three-dimensional propagation at
k = 1.3; (e) Contour propagation at k = 1.3; (f) Two-dimensional propagation at k = 1.3; (g) Three-
dimensional propagation at k = 3.3; (h) Contour propagation at k = 3.3; (i) Two-dimensional
propagation at k = 3.3.

5. Results and Novelty

This section presents the comparison and novelty of this study.
In the recent literature [45], authors developed the trigonometric, singular, periodic,

hyperbolic, and kink solitons while in this study, singular solutions, mixed complex soli-
tary shock solutions, mixed singular solutions, mixed shock singular solutions, mixed
trigonometric solutions, mixed periodic solutions, mixed hyperbolic, antikink periodic,
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kink periodic, periodic with antipeaked crests and antitroughs, periodic with peaked crests
and troughs, bright compacton, and dark compacton were found which were more general-
ized solutions. To our best knowledge, these types of soliton had not been studied before
this study.

The result in this study was

£28a(x, y, t) = − kψ log2(ρ)(√
mn− sinh(2ψΩ)

)2

(
m2n2 tanh(2ψΩ)− 2mnψΩ+

4ψΩ
√

mn sinh(2ψΩ)− 5mn tanh(2ψΩ) + 2(mn)3/2sech(2ψΩ)+

2ψΩ
(
− 2
√

mn sinh(2ψΩ) + mn + sinh2(2ψΩ)

)
+ mn sinh2(2ψΩ)

tanh(2ψΩ)− 2(mn)3/2 sinh(2ψΩ) tanh(2ψΩ)

+ 4
√

mn sinh(2ψΩ) tanh(2ψΩ)− 2ψΩ sinh2(2ψΩ)−

sinh2(2ψΩ) tanh(2ψΩ)

)
,

(128)

while the result from the literature (see Equation (29) in [45]) was

g f (ρ) = −µ

γ
+

√
(µ2 − νγ)

γ
tanh(

√
(µ2 − νγ)

2
)(k(x + y) + ct). (129)

In the above solutions, it is clear that this study presented the more generalized and
novel solutions. One can compare more results adopting the same process.

6. Conclusions

The generalized Calogero–Bogoyavlenskii–Schiff equation was investigated and ana-
lyzed by analytical techniques to obtain and visualize some deep insights. A combination
of the new extended direct algebraic method and modified auxiliary equation method was
applied and thus:

• Numerous types of solitons were obtained which covered almost all kinds of solitary
waves, such as singular solutions, mixed complex solitary shock solutions, mixed
singular solutions, mixed shock singular solutions, mixed trigonometric solutions,
mixed periodic solutions, and mixed hyperbolic solutions.

• The real and imaginary wave propagation of the complex solutions was graphically
displayed. The antikink periodic, kink periodic, periodic with antipeaked crests and
antitroughs, periodic with peaked crests and troughs, bright compacton, and dark
compacton behavior were graphically visualized.

• Two-dimensional, 3D, and contour visualization were presented and we observed the
influence of the parameters on the traveling behavior of the obtained solutions.

• The wave number of the traveling wave profile was responsible for the control of
the amplitude and the traveling behavior of the solitary wave. The singularity of the
soliton wave could be controlled by the wave number parameter.

It is hoped that this study will be useful to researchers and analysts for improving
experimental work; it can be extended to include multiple solitons, lump interaction, and
rogue wave breathers.
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