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Abstract: Nonlinear fractional differential equations (FDEs) constitute the basis for many dynamical
systems in various areas of engineering and applied science. Obtaining the numerical solutions to
those nonlinear FDEs has quickly gained importance for the purposes of accurate modelling and
fast prototyping among many others in recent years. In this study, we use Hermite wavelets to
solve nonlinear FDEs. To this end, utilizing Hermite wavelets and block-pulse functions (BPF) for
function approximation, we first derive the operational matrices for the fractional integration. The
novel contribution provided by this method involves combining the orthogonal Hermite wavelets
with their corresponding operational matrices of integrations to obtain sparser conversion matrices.
Sparser conversion matrices require less computational load, and also converge rapidly. Using the
generated approximate matrices, the original nonlinear FDE is converted into an algebraic equation
in vector-matrix form. The obtained algebraic equation is then solved using the collocation points.
The proposed method is used to find a number of nonlinear FDE solutions. Numerical results for
several resolutions and comparisons are provided to demonstrate the value of the method. The
convergence analysis is also provided for the proposed method.

Keywords: numerical approximation for FDEs; Hermite wavelets; operational matrix for
fractional derivatives

1. Introduction

The real-valued orders of derivatives and integrals are used in fractional differential
equations (FDEs). These real-valued orders of derivatives and integrals enable FDEs to
model physical and applied scientific phenomena more precisely. However, it is exceed-
ingly challenging to develop analytical solutions to many types of FDEs due to the extra
complexity caused by arbitrary orders of derivation and integration. Therefore, finding
precise and effective numerical solution techniques for the FDEs is essential. In recent years,
certain numerical methods have been used for FDEs, such as the finite difference method [1],
B-spline collocation method [2], differential transform method [3] Adomian decomposition
method [4,5], variational iteration method [6,7], block-by-block method [8], orthogonal
polynomials method [9–11], Galerkin method [12], Bessel collocation method [13], spectral
method [14], reproducing kernel method [15,16], and operational matrix methods [17–19].
Similar to this, several wavelet types are currently being researched for issues including
increased computational cost. Wavelets are mathematical operations that separate data into
various time–frequency components. These functions are created by dilating and shifting
a wavelet function known as the mother wavelet function. The fundamental benefit of
the wavelet basis is that it simplifies the solution of the FDE problem to a set of algebraic
equations. Additionally, the method converges quickly and easily due to the wavelets’
many advantages, including their orthogonality, singularity detection skills, compact sup-
port, and simultaneous representation of data in several resolutions. Many wavelet basis
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functions have been used to solve a wide range of FDEs. Legendre, Haar, Bernoulli, Euler,
CAS, Taylor, Laguree, Chebyshev wavelets of first and second kind are employed in recent
studies elsewhere [20–28].

In this paper we aim to solve nonlinear FDEs using Hermite wavelets. To the best
of our knowledge, Hermite wavelets have not been exploited often. Furthermore, it is
obvious that the orthogonal basis functions will provide sparser operational matrices used
for the numerical approximations of the fractional differential terms. In this paper, we
first obtain the operational matrices for fractional integration using Hermite wavelets
and block-pulse functions (BPF) for function approximation. The operational matrices
for the fractional integration obtained using BPF is not the same as the ones obtained
in [29]. Our approximation produces fewer calculations and an easier conversion from
the nonlinear FDEs in question into the system of algebraic equations. The novelty of
the method lies in the fact that the method combines the orthogonal Hermite wavelets
with their corresponding operational matrices of integration to obtain sparser conversion
matrices, which smoothly convert the FDE to a corresponding algebraic equation in vector-
matrix form. Calculating the algebraic equation for a few colocation points creates a
system of algebraic equations. By solving for the coefficients, the approximate solution
is also obtained. The proposed method consists of simple and clear steps, therefore it is
straightforward to code in any programming language of choice.

The paper is organized as follows: In Section 2, the fundamental definitions of frac-
tional calculus are given. In Section 3, The Hermite wavelets are defined. The operational
matrices for nonlinear FDEs are obtained using Hermite wavelets in Section 4. Conver-
gence analysis is presented in Section 5. The proposed method is presented in Section 6.
Numerical solutions for several nonlinear FDEs are provided in Section 7. The paper is
concluded in Section 8.

2. Foundations

The preliminary definitions for fractional calculus that are utilized in the paper are
presented in this section.

Definition 1. Of the many possible definitions for fractional derivatives, Riemann–Liouville and
Caputo are the most commonly used [30]. The Riemann–Liouville fractional integral operator of
order α ≥ 0 is defined by [30]:

(Iα f )(t) =

{
1

Γ(α)

∫ t
0

f (τ)
(t−τ)1−α dτ α > 0, t > 0

0 α = 0

}
(1)

Riemann–Liouville derivatives possess some disadvantages for modeling real world
phenomena with FDEs. Therefore, a modified fractional differential operator Dα f is more
commonly used, which is proposed by Caputo [30].

Definition 2. The Caputo definition of the fractional derivative operator is given by [30]:

(Dα f )(t) =


dn f (t)

dtn α = n ∈ R
1

Γ(n−α)

∫ t
0

f (n)(τ)
(t−τ)1−n+α dτ 0 ≤ n− 1 < α < n

 (2)

The following expressions relate the Riemann–Liouville operator and Caputo operator:

(Dα Iα f )(t) = f (t) (3)
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and

(IαDα f )(t) = f (t)−
n−1

∑
k=0

f (k)(0+)
tk

k!
(4)

3. Hermite Wavelets (HWs)

Wavelets are defined as a group of wavelike functions. They are formulated by dilating
and translating a so called mother wavelet function Ψ(t). The family of continuous wavelets
can be obtained using translation parameter b and the dilation parameter a, as follows [29]:

Ψa,b(t) = |a|−1/2Ψ

(
t− b

a

)
, a, b ∈ R, a 6= 0. (5)

When we restrict a and b to only have discrete values, we can derive the matching
family of discrete wavelets such that a = a−k

0 , b = nb0a−k
0 where a0 > 1, b0 > 0, which

results in:
Ψkn(t) = |a0|k/2Ψ(ak

0t− nb0) , k, n ∈ Z. (6)

We can define Hermite wavelets on the time interval [0, 1] in [29] as:

Ψnm(t) =

 2(
k+1

2 )
√

π
Hm

(
2kt− 2n + 1

)
, n−1

2k−1 ≤ t ≤ n
2k−1

0, otherwise

, (7)

where n = 0, 1, . . . , 2k − 1, m = 0, 1, . . . , M− 1, and these Hm(t) polynomials, with respect
to the weight function ω(t) = e−t 2

, are Hermite polynomials of degree m. The Hermite
polynomials can be defined using the recurrence formula:

Hm+2(t) = 2tHm+1(t)− 2(m + 1)Hm(t), m = 0, 1, 2, . . . (8)

where H0(t) = 1, H1(t) = 2t. The polynomials have the following property, which is used
in the convergence analysis below:

H′m+1(t) = 2(m + 1)Hm(t). (9)

4. Function Approximation of HWs

If a function y(t) is squarely integrable in [0, 1], we can approximate y(t) using Hermite
wavelets as:

y(t) =
∞

∑
n=0

∑
m∈Z

cnmΨnm(t) = CTΨ(t), (10)

where cnm=〈y(t), Ψnm(t)〉L2
ω [0,1] =

1∫
0

y(t)Ψnm(t)ωn(t)dt, in which 〈., .〉L2
ω [0,1] denotes the

inner product in L2
ω [0, 1] and y(t) can be estimated by the finite series such as:

y(t) ≈
2k−1

∑
n=0

M−1

∑
m=0

cnmΨnm(t) = CTΨ(t), (11)

where Hermite coefficient vector C and Hermite wavelet vector Ψ(t) are given as:

C =
[
c10, c11, . . . c1(M−1), c20, c21, . . . c2(M−1) . . . c2k−10, c2k−11, . . . c2k−1(M−1)

]T
, (12)

Ψ =
[
Ψ10, Ψ11, . . . Ψ1(M−1), Ψ20, Ψ21, . . . Ψ2(M−1) . . . Ψ2k−10, Ψ2k−11, . . . Ψ2k−1(M−1)

]T
(13)
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The Hermite wavelet matrix is defined as:

φm′xm′ = [Ψ(t1) , Ψ(t2) , Ψ(t3) , · · · , Ψ(tm′)], (14)

where m′ = 2k−1M and ti are collocation points. If the collocation points are chosen
as ti = i−0.5

m′ , i = 1, 2, 3, . . . , m′, the Hermite wavelet matrix for k = 2, M = 3, and
α = 0.5 becomes:

φm′xm′ =



1.5958 1.5958 1.5958 0 0 0
−2.1277 0 2.1277 0 0 0
−0.3546 −3.1915 −0.3546 0 0 0

0 0 0 1.5958 1.5958 1.5958
0 0 0 −2.1277 0 2.1277
0 0 0 −0.3546 −3.1915 −0.3546

,

where the Ψ(t) vector can be given as Ψ(t) = 2
3
/
2√
π

[
1 8t− 2 64t2 − 32t + 2 0 0 0

]
for

the first three colocation points and Ψ(t) = 2
3
/
2√
π

[
0 0 0 1 8t− 6 64t2 − 96t + 34

]
for

the next three colocation points for k = 2, M = 3.
The following analysis looks at the uniform convergence requirements for the decom-

position of y(t).

5. Convergence Analysis

Theorem 1: If y on [0, 1] is a continuous function, then |y(t)| < R can be represented by the sum
of an infinite number of Hermite wavelets, then the series uniformly converge to y(t).

Proof

cnm=

1∫
0

y(t)Ψnm(t) dt =
n/2k−1∫

(n−1)/2k−1

y(t)
2(k+1)/2
√

π
Hm

(
2kt− 2n + 1

)
dt. (15)

Using the change of variables as 2kt− 2n + 1 = x and 2kdt = dx, we obtain:

cnm =
2(1−k)/2
√

π

1∫
−1

y
(

x− 1 + 2n
2k

)
Hm(x)dx. (16)

Employing mean-value problem for integral calculus yields:

cnm =
2(1−k)/2
√

π
y
(

z− 1 + 2n
2k

) 1∫
−1

Hm(x)dx for z ∈ (−1, 1). (17)

Using the derivative property of the Hermite polynomials given in Equation (9),
we obtain:

cnm =
2(1−k)/2
√

π
y
(

z− 1 + 2n
2k

) 1∫
−1

H′m+1(x)
2(m + 1)

dx =
2(1−k)/2
√

π
y
(

z− 1 + 2n
2k

)
Hm+1(x)
2(m + 1)

∣∣∣∣1
−1

. (18)

Because y(t) is bounded and n ≤ 2k−1, we can write:

|cnm| ≤
2(1−k)/2
√

π
R
|Hm+1(1)− Hm+1(−1)|

2(m + 1)
≤ 1√

nπ
R
|Hm+1(1)− Hm+1(−1)|

2(m + 1)
. (19)
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Therefore,
∞
∑

n=1

∞
∑

m=0
cnm does absolutely converge. Hence, the HWs expansion of y(t)

given in (10) converges uniformly [29]. �

6. Operational Matrices of HWs

In this section we obtain the fractional operational matrices of Hermite wavelets.
Fractional operational matrices of HWs require less computation with Block Pulse Functions
(BPFs). Consequently, it is simpler to convert the FDE into an algebraic vector-matrix-form
equation. All the numerical calculations are performed using Matlab R2021b in this study.

An m′ set of BPFs is defined as:

bi(t) =
{

1 (i− 1)/m′ ≤ t < i/m′

0 otherwise

}
, (20)

where i = 1, 2, 3, . . . , m′. The functions bi(t) are disjoint and orthogonal. For t ∈ [0, 1),

bi(t)bj(t) =
{

0 i 6= j
bi(t) i = j

}
, (21)

1∫
0

bi(τ)bj(τ) dτ =

{
0 i 6= j
1/m′ i = j

}
, (22)

Any squarely integrable function f (t) defined in [0, 1) can be expanded into an m′ set
of BPFs as:

f (t) =
m′

∑
i=1

fi bi(t) = f T Bm′(t) (23)

where f = [ f1, f2, . . . , fm′ ]
T , Bm′(t) = [b1(t), b2(t), . . . , bm′(t)]

T and fi are given as

fi =
1

m′

i/m′∫
(i−1)/m′

f (t) bi(t) dt.

Definition : Let F = [ f1, f2, . . . fm′ ]
T and G = [g1, g2, . . . gm′ ]

T . By means of BPFs, we have:

FT
m′ . ∗ GT

m′ == f1g1 + f2g2 + . . . + fm′gm′ , (24)

Fn = [ f n
1 , f n

2 , . . . f n
m′ ]

T . (25)

The HW matrix can also be expanded to an m′ set of BPFs as:

Ψ(t) = φm′xm′ Bm′(t). (26)

The Block Pulse operational matrix for fractional integration Fα is defined as [31]:

(IαBm′)(t) ≈ Fα Bm′(t), (27)

where

Fα =
1

mα

1
Γ(α + 2)



1 ξ1 ξ2 ξ3 · · · ξm′−1
0 1 ξ1 ξ2 · · · ξm′−2
0 0 1 ξ1 · · · ξm′−3
...

...
. . . . . .

...
...

0 0 · · · 0 1 ξ1
0 0 · · · 0 0 1


, (28)

with ξk = (k + 1)α+1 − 2kα+1 + (k− 1)α+1.
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The fractional integration of the Hermite wavelet vector Ψ(t) defined in (13) can be
approximated as:

(IαΨ)(t) ≈ Pα
m′×m′ Ψ(t), (29)

where matrix Pα
m′×m′ is called the Hermite wavelet operational matrix.

Using Equations (26)–(29), we obtain:

(IαΨ)(t) ≈ (Iαφm′xm′ Bm′)(t) = φm′xm′ (IαBm′)(t) ≈ φm′xm′F
αBm′(t), (30)

Pα
m′xm′Ψ(t) ≈ (IαΨ)(t) ≈ φm′xm′F

αBm′(t) = φm′xm′F
αφ−1

m′xm′Ψ(t).

The resulting Hermite wavelet operational matrix Pα
m′xm′ becomes:

Pα
m′xm′ ≈ φm′xm′F

αφ−1
m′xm′ (31)

As an example, the Hermite wavelet operational matrix for k = 2, M = 3, and α = 0.5 yields

Pα
m′×m′ =



0.5116 0.1575 −0.0250 0.4582 −0.0754 0.0215
−0.0818 0.2243 0.1287 0.1050 −0.0449 0.0192
−0.2999 −0.2046 0.1854 −0.3533 0.0501 −0.0115

0 0 0 0.5116 0.1575 −0.0250
0 0 0 −0.0818 −0.0818 0.1287
0 0 0 −0.2999 −0.2046 0.1854

.

7. Numeric Solution Examples

This section includes several nonlinear FDE examples to show the effectiveness and
compactness of the suggested approach.

Example 1:

We first analyze the following FDE, which can be used to model a solid material in a
Newtonian fluid [30], defined as:

D2y(t) + D0.5y(t) + y(t) = 8
y(0) = 0, y′(0) = 0.

(32)

Applying the proposed method, we have:

D2y(t) ' CTΨ(t), (33)

D0.5y(t) ' CT P1.5
m′xm′Ψ(t), (34)

y(t) ' CT P2
m′xm′Ψ(t) + y(0) = CT P2

m′xm′Ψ(t). (35)

Using the approximations of (33)–(35) in (32), we obtain:

CTφm′xm′ + CT P1.5
m′xm′φm′xm′ + CT P2

m′xm′φm′xm′ = [8, 8, . . . 8]. (36)

Equation (36) is written for a few collocation points to construct an algebraic system
of equations. The solution of that system provides the values of the coefficient vector C,
which in turn provides the approximate solution.

The absolute errors, calculated as absolute difference between the exact and approx-
imate solutions, is presented for several m’ parameters in Table 1. As can be seen from
Table 1, the Hermite Wavelet Method (HWM) error decreases with the increased resolution.
The absolute errors are approximately on the order of E-4, E-5 for m′ = 48, on the order
of E-5, E-6 for m′ = 96, and on the order of E-6, E-7 for m′ = 192. A comparison with the
Orthogonal Function Method (OFM) [32], Variational Iteration Method (VIM) [4], Adomian
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Decomposition Method (ADM) [4], and the Finite Difference Method (FDM) [1] is presented
in Table 2. As can be seen from the table, the proposed method can be said to converge
better than the other methods. The exact solution and HWM results for t ∈ [0, 1) are
plotted in Figure 1. As can be seen from the figure, the numerical solution follows the exact
solution closely.

Table 1. The absolute errors for HWM for several m′ of example 1.

t m’ = 24 m’ = 48 m’ = 96 m ’= 192

0 5.27 × 10−4 1.40 × 10−4 3.58 × 10−5 9.01 × 10−6

0.1 5.23 × 10−4 1.31 × 10−4 3.32 × 10−5 8.32 × 10−6

0.2 4.15 × 10−4 1.09 × 10−4 2.71 × 10−5 6.56 × 10−6

0.3 3.29 × 10−4 7.49 × 10−5 1.88 × 10−5 4.80 × 10−6

0.4 1.77 × 10−4 4.36 × 10−5 9.96 × 10−6 2.62 × 10−6

0.5 1.94 × 10−4 2.37 × 10−5 3.11 × 10−6 6.66 × 10−7

0.6 1.74 × 10−4 4.29 × 10−5 9.86 × 10−6 2.81 × 10−6

0.7 3.41 × 10−4 7.54 × 10−5 1.90 × 10−5 4.93 × 10−6

0.8 4.26 × 10−4 1.17 × 10−4 2.91 × 10−5 7.17 × 10−6

0.9 5.68 × 10−4 1.43 × 10−4 3.70 × 10−5 9.22 × 10−6

Table 2. Comparison with Orthogonal Function Method (OFM) [32], Variational Iteration Method
(VIM) [4], Adomian Decomposition Method (ADM) [4], and the Finite Difference Method (FDM) [1],
and the exact result of example 1 for α = 1.

t yexact
yHWM

(k = 8,M = 3) yOFM [32] yVIM [4] yADM [4] yFDM [1]

0.1 0.039750 0.039752 0.039754 0.039874 0.039874 0.039473

0.2 0.157036 0.157038 0.157043 0.158512 0.158512 0.157703

0.3 0.347370 0.347371 0.347373 0.353625 0.353625 0.352402

0.4 0.604695 0.604696 0.604699 0.622083 0.622083 0.620435

0.5 0.921768 0.921768 0.921768 0.960047 0.960047 0.957963

0.6 1.290457 1.290456 1.290458 1.363093 1.363093 1.360551

0.7 1.702008 1.702007 1.702007 1.826257 1.826257 1.823267

0.8 2.147287 2.147285 2.147286 2.344224 2.344224 2.340749

0.9 2.617001 2.616999 2.616998 2.911278 2.911278 2.907324

Example 2:

Consider the Riccati FDE [33] given below for 0 < α ≤ 1 and 0 ≤ t < 1:

Dαy(t)− y2(t) = 1 with y(0) = 0. (37)

The exact solution for α = 1 is given as y = tan(t).
The application of HWM to the Riccati FDE requires the approximate expressions

listed below:
Dαy(t) ' CTΨ(t), (38)

y(t) ' CT Pα
m′xm′Ψ(t) + y(0) = CT Pα

m′xm′φm′xm′Bm′ . (39)
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Defining CT Pα
m′xm′φm′xm′ = [a1, a2, · · · , am′ ], we have:

[y(t)]2 = [a2
1, a2

2, · · · , a2
m′ ]Bm′(t). (40)

Combining all approximations in the original Riccati FDE gives:

CTφm′xm′ − [a2
1, a2

2, · · · , a2
m′ ] = [1, 1, . . . , 1]. (41)
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The solution for (41) is obtained as with the previous example through the algebraic
system of equations which is constructed using a few collocation points.

Table 3 presents the method’s absolute errors for a number of m’ parameters. The error
diminishes with an increase in m’, as seen in Table 3. The absolute errors are approximately
on the order of E-5 for m′ = 48, on the order of E-5, E-6 for m′ = 96, and on the order
of E-6, E-7 for m′ = 192. The HWM results and exact solution are given for t ∈ [0, 1) in
Figure 2. The FDE solutions for a few fractional values of α are presented in Figure 3.
Figure 3 demonstrates that, as the fractional α approaches 1, the solution approximates to
the exact solution obtained for integer order Riccati differential equation.

Table 3. The absolute errors for HWM for several m′ of example 2.

t m’ = 12 m’ = 24 m ’= 48 m’ = 96 m’ = 192

0 3.79 × 10−4 4.57 × 10−5 5.67 × 10−6 7.07 × 10−7 8.83 × 10−8

0.1 6.20 × 10−5 3.38 × 10−5 8.23 × 10−6 1.78 × 10−6 4.48 × 10−7

0.2 2.87 × 10−4 7.03 × 10−5 1.51 × 10−5 3.80 × 10−6 9.89 × 10−7

0.3 3.63 × 10−4 9.45 × 10−5 2.67 × 10−5 6.64 × 10−6 1.61 × 10−6

0.4 7.33 × 10−4 1.52 × 10−4 3.84 × 10−5 1.01 × 10−5 2.52 × 10−6

0.5 2.26 × 10−3 3.72 × 10−4 7.51 × 10−5 1.68 × 10−5 3.97 × 10−6

0.6 1.25 × 10−3 3.76 × 10−4 9.34 × 10−5 2.24 × 10−5 5.61 × 10−6

0.7 2.39 × 10−3 5.92 × 10−4 1.36 × 10−4 3.43 × 10−5 8.75 × 10−6

0.8 3.17 × 10−3 8.29 × 10−4 2.26 × 10−4 5.64 × 10−5 1.38 × 10−5

0.9 6.76 × 10−3 1.41 × 10−3 3.58 × 10−4 9.36 × 10−5 2.34 × 10−5
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Example 3:

Consider the FDE [30] given again for 0 < α ≤ 1 and 0 ≤ t < 1:

Dαy(t)− (1− y(t))4 = 0 with y(0) = 0. (42)

The exact solution for α = 1 is given as y(t) = 1− (1 + 3t)−1/3.
The application of HWM to the FDE results in:

CTφm′xm′ − ([1, 1, · · · , 1] + 4 [a1, a2, · · · , am′ ]
+6[a2

1, a2
2, · · · , a2

m′ ]− 4 [a3
1, a3

2, · · · , a3
m′ ] + [a4

1, a4
2, · · · , a4

m′ ]) = 0
, (43)

where CT Pα
m′xm′φm′xm′ = [a1, a2, · · · , am′ ].
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The solution of (43) is obtained as in the previous examples. Table 4 includes absolute
errors for several m’. As expected, larger m’ values provide lower error values. The
absolute errors are approximately on the order of E-5, E-6 for m′ = 48, on the order of E-6,
E-7 for m′ = 96, and on the order of E-6, E-7 for m′ = 192. The exact solution and HWM
solution for α = 1 and m′ = 24 is plotted in Figure 4 to illustrate the accuracy of the method.
The FDE solutions for a few fractional values of α are presented in Figure 5. As can be seen
from Figure 5, as the fractional α approaches 1, the approximate solution obtained for α
approximates to the exact solution.

Table 4. The absolute errors for HWM for several m′ of example 3.

t m’ = 12 m’ = 24 m’ = 48 m’ = 96 m’ = 192

0 1.00 × 10−3 4.47 × 10−4 1.54 × 10−4 4.54 × 10−5 1.24 × 10−5

0.1 1.90 × 10−3 3.63 × 10−4 9.31 × 10−5 2.49 × 10−5 6.20 × 10−6

0.2 6.26 × 10−4 1.73 × 10−4 4.97 × 10−5 1.24 × 10−5 3.00 × 10−6

0.3 4.34 × 10−4 1.08 × 10−4 2.34 × 10−5 5.90 × 10−6 1.53 × 10−6

0.4 1.24 × 10−4 4.97 × 10−5 1.23 × 10−5 2.81 × 10−6 7.05 × 10−7

0.5 1.04 × 10−4 7.99 × 10−6 8.56 × 10−7 6.21 × 10−7 2.10 × 10−7

0.6 2.26 × 10−5 2.09 × 10−6 3.80 × 10−7 2.84 × 10−8 5.79 × 10−9

0.7 5.47 × 10−5 1.25 × 10−5 2.42 × 10−6 6.12 × 10−7 1.64 × 10−7

0.8 6.02 × 10−5 1.51 × 10−5 4.29 × 10−6 1.06 × 10−6 2.58 × 10−7

0.9 9.23 × 10−5 1.98 × 10−5 4.98 × 10−6 1.29 × 10−6 3.23 × 10−7
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Example 4:

Consider the FDE [34] given below for 0 < α ≤ 1 and 0 ≤ t < 1:

Dαy(t) + y2(t)− 1 = 0 with y(0) = 0. (44)

The exact solution for α = 1 is given as y(t) = e2t−1
e2t+1 .
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The application of HW method to the FDE yields:

CTφm′xm′ + [a2
1, a2

2, · · · , a2
m′ ]− [1, 1, · · · , 1] = 0 (45)
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The solution for (45) is obtained as with the previous example through the algebraic
system of equations, constructed using a few collocation points. This example was chosen
to provide comparison with several other numerical methods presented elsewhere. Table 5
gives the results for several m′ values of the proposed method, and also includes the results of
Modified Homotopy Perturbation Method (MHPM) [34] and Iterative Reproducing Kernel
Hilbert Spaces Method (IRKHSM) [35] for α = 1. The results show that HWM produces
smaller errors for the most t values even when m′ = 48, for m′ ≥ 96 HWM is a better approx-
imation method. Table 6 summarizes the comparative results for fractional α = 0.75 of the
proposed method and also of the Reproducing Kernel Method (RKM) [36], Bernstein Polyno-
mial Method (BPM) [37], Iterative Reproducing Kernel Hilbert Spaces Method (IRKHSM) [38],
Haar Wavelet Operational Matrix Method (HWOMM) [39] and Modified Homotopy Pertur-
bation Method (MHPM) [34]. For the fractional α there is not an exact solution, all results
are relatively close to one another. Therefore, the results of the proposed method can be
interpreted as producing an acceptable outcome for the fractional α.

Table 5. Absolute errors for HWM for several m′ and comparison with the Modified Homotopy Perturba-
tion Method (MHPM) [34] and Iterative Reproducing Kernel Hilbert Spaces Method (IRKHSM) [35] for
α = 1.

t m’ = 12 m’ = 24 m’ = 48 m’ = 96 m’ = 192 m’ = 384 MHPM
[34]

IRKHSM
[35]

0.1 6.40 × 10−5 3.24 × 10−5 7.88 × 10−6 1.71 × 10−6 4.31 × 10−7 1.10 × 10−8 0 9.05 × 10−6

0.2 2.44 × 10−4 5.91 × 10−5 1.29 × 10−5 3.25 × 10−6 8.42 × 10−7 1.12 × 10−7 0 1.72 × 10−5

0.3 2.71 × 10−4 6.82 × 10−5 1.85 × 10−5 4.60 × 10−6 1.13 × 10−6 2.10 × 10−7 1.00 × 10−6 2.38 × 10−5

0.4 3.64 × 10−4 8.24 × 10−5 2.06 × 10−5 5.29 × 10−6 1.32 × 10−6 2.82 × 10−7 5.00 × 10−6 2.85 × 10−5
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Table 5. Cont.

t m’ = 12 m’ = 24 m’ = 48 m’ = 96 m’ = 192 m’ = 384 MHPM
[34]

IRKHSM
[35]

0.5 3.92 × 10−4 9.67 × 10−5 2.33 × 10−5 5.68 × 10−6 1.40 × 10−6 3.28 × 10−7 3.90 × 10−5 3.11 × 10−5

0.6 3.35 × 10−4 8.53 × 10−5 2.13 × 10−5 5.29 × 10−6 1.32 × 10−6 3.46 × 10−7 1.93 × 10−4 3.17 × 10−5

0.7 3.05 × 10−4 7.56 × 10−5 1.90 × 10−5 4.75 × 10−6 1.19 × 10−6 3.31 × 10−7 7.37 × 10−4 3.07 × 10−5

0.8 2.62 × 10−4 6.47 × 10−5 1.58 × 10−5 3.95 × 10−6 9.93 × 10−7 2.96 × 10−7 2.33 × 10−3 2.81 × 10−5

0.9 1.84 × 10−4 5.03 × 10−5 1.25 × 10−5 3.06 × 10−6 7.65 × 10−7 2.48 × 10−7 6.37 × 10−3 2.32 × 10−5

Table 6. Comparison with the Reproducing Kernel Method (RKM) [36], Bernstein Polynomial
Method (BPM) [37], Iterative Reproducing Kernel Hilbert Spaces Method (IRKHSM) [38], Haar
Wavelet Operational Matrix Method (HWOMM) [39], and Modified Homotopy Perturbation Method
(MHPM) [34] for α = 0.75.

t m’ = 384 RKM [36] BPM [37] IRKHSM [38] HWOMM [39] MHPM [34]

0.2 0.309974 0.3073 0.3099 0.3100 0.3095 0.3138

0.4 0.481631 0.4803 0.4816 0.4816 0.4814 0.4929

0.6 0.597783 0.5975 0.5977 0.5978 0.5977 0.5974

0.8 0.678849 0.6796 0.6788 0.6788 0.6788 0.6604

The exact and HWM results are plotted in Figure 6 for α = 1. Figure 7 includes plots
for several α. As with the other examples, the fractional approximate solutions approach
the exact result obtained for α = 1 as α approaches 1.
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8. Conclusions

The motivation for this study stems from the need to employ Hermite wavelets for
the numeric solution of nonlinear FDEs. To the best of our knowledge, the HWs have
not been explored much in this regard. The operational matrices required for each of the
fractional terms in the FDE to convert it to an algebraic equation are sparser due to the
orthogonality of the Hermite wavelets. The orthogonality property is essential for the lower
computational load and fast convergence of the method. The HW method is very accurate,
even for the small number of collocation points, as demonstrated in the numerical examples.
The maximum errors are generally on the order of E-5–E-7 for the collocation points up
to m′ = 96. For higher accuracy, the number of the collocation points must be increased.
Additionally, the resulting algebraic equation for numeric approximation is a vector-matrix
equation. The compactness obtained in vector-matrix form facilitates the coding process of
the method. The convergence analysis is also provided for the proposed method.

As can be seen from Figures 3, 5 and 7, the numerical solutions for the fractional
values of α approach the solution obtained for α = 1 as α approaches 1, which verifies the
solutions obtained for fractional α values.

We believe the work presented here can be employed in a wide variety of applications
such as variable-order models, systems of FDEs, systems of integro-fractional differential
equations, optimal control problems, and fractional partial differential equations.
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