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Abstract: The results of this research provide fixed-time fractional-order control for Euler–Lagrange
systems that are subject to external disturbances. The first step in the process of developing a new
system involves the introduction of a method known as fractional-order fixed-time non-singular
terminal sliding mode control (FoFtNTSM). The advantages of fractional-order calculus and NTSM
are brought together in this system, which result in rapid convergence, fixed-time stability, and
smooth control inputs. Lyapunov analysis reveals whether the closed-loop system is stable over
the duration of the time period specified. The performance of the suggested method when applied
to the dynamics of the Euler–Lagrange system is evaluated and demonstrated with the help of
computer simulations.

Keywords: fixed-time convergence; sliding mode control; fractional control; Euler–Lagrange system

1. Introduction

In the study and modelling of non-linear dynamical systems, the Euler–Lagrange
formulation, which describes the behaviour of a large group of industrial applications, is
utilized. Over the past few years, there has been a rise in the number of people interested
in the investigation of Euler–Lagrange systems. In general, Euler–Lagrange systems
represent a wide variety of real-world practical systems, such as mobile robot platforms [1],
helicopters [2], aircraft [3], pneumatic muscles [4], robotic manipulators [5], exoskeleton or
bipedal robots [6,7], cranes [8], spacecraft [9], military, automation sector, monitoring, and
even space travel, are just some of the many potential applications for these technologies.
The fact that this is a non-linear system with a large degree of mechanical instability means
that a high level of control and stability is required for it to function properly. For uncertain
Euler–Lagrange systems that are affected by external disturbances, several viable solutions
have been given. Thus, a robust control such as H∞/ H2 control and sliding mode control
can be built to ensure that the system continues to fulfill its intended functions despite
the presence of unknown dynamics. The approach behind robust schemes has several
advantages, such as the control system provides a high performance of tracking and must
be strongly robust to guarantee the required level of stability.

Control of Euler–Lagrange systems is currently receiving a significant amount of inter-
est from researchers [1]. As a solution to the tracking problem, the academic community has
devised a number of different approaches, including the observer-based disturbance estima-
tion [8], the sliding mode control (SMC) [9], proportional–integral (PI) control scheme [10],
and fuzzy control [11]. Additional features are incorporated to account for unknown
parametric uncertainty [12]. When it comes to controlling uncertain non-linear systems,
two of the most common control techniques are known as adaptive control and robust
control approaches [6]. The robust method, in contrast to the adaptive strategy, minimizes
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the computational cost for complex processes while still requiring a fixed upper bound on
the uncertainties.

A type of notable non-linear robust control approach is known as sliding mode control
(SMC) [13–15]. It has the capability to successfully control uncertain non-linear dynamics
with low susceptibility to changes in system parameters and disturbances. There have
been a number of developments in the area of SMC, including terminal SMC (TSMC), non-
singular SMC (NSMC), fast SMC (FSMC), integral SMC (ITSMC), and fast non-singular
FSMC (NFSMC) [16–18]. To further enhance the controller’s functionality, fractional-order
control (FOC) has been integrated with SMC [19–21]. Researchers have found Fo control,
around for three hundred years, is formulated with calculus of a non-integer-order and can
be applied in a wide range of scientific fields [22–25]. A significant number of fractional-
order SMC (FoSMC) methods have also been developed and implemented in various
Euler–Lagrange systems [5,26].

The initial conditions of a non-linear system have a considerable effect on the time
required to achieve convergence in a finite-time [27]. A fixed-time control strategy is an
alternative that may be used to precisely calculate the convergence time notwithstanding
the initial values [28]. Several different finite-time FoSMC algorithms have been utilized
with Euler–Lagrange systems. These methods consider the presence of uncertainties and
disturbances in addition to other factors. For non-linear robotic systems, a dependable
finite-time FoSMC with time delay control was developed. In addition, a finite-time FoSMC
was utilized to make an estimate of the unknowable dynamics of the non-linear robot
by utilizing an adaptive controller for the estimation of unknown dynamics. This was
performed to obtain an accurate prediction of the behaviour of the non-linear robot [29]. In
the face of uncertainty, a class of high-order FoSMC was used to construct a strong control
method [30].

Each of the preceding studies focused on compensating the bounds of bounded un-
certain dynamics using a finite-time sliding mode technique. Avoiding non-singularity,
providing robustness against uncertain dynamics and external disturbances, and guaran-
teeing that the convergence rate is not reliant on the initial circumstances are the primary
benefits of using FoFtNTSM control. This research found that the fractional-order fixed-
time non-singular TSM scheme has not thoroughly been looked into, and that only a few of
works provide fraction-order-based FtNTSM control. As a result, this study analyses the
fixed-time technique for externally perturbed Euler–Lagrange systems. Thus, research was
carried out to develop a fixed-time fractional-order non-singular TSM (FoFtNTSM) for an
externally perturbed uncertain Euler–Lagrange system.

The most important findings of this research can be broken down into these main points:

• The features of a fixed-time non-singular TSM are used to make a sliding surface with
good tracking, low chatter in the control inputs, and a fast rate of convergence.

• The performance of the fixed-time nonsingular TSM control scheme for the uncertain
Euler–Lagrange system under disturbances, is improved upon by employing the
fractional-order method.

• The Lyapunov synthesis proves that the proposed FoFtNTSM method can be used to
perform fixed-time stability analysis of the overall system.

The paper adopts the following structure: Section 2 discusses the literature of the
related schemes. Section 3 presents the preliminaries. Section 4 discusses the system’s
stability as well as its control scheme and modelling. In Section 5, we present the numerical
results and accompanying discussion of the proposed method. The final thoughts are
provided in Section 6.

2. Related Work

Due to the fact that terminal SMC approaches for non-linear dynamics are exceptional
in that they converge in a fixed amount of time, an increasing number of researchers
have been concentrating on this subject over the past several years [22]. An uncertain
microgyroscope system with disturbances was the focus of the authors’ approach in [31],
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which presented a fixed-time FoSMC technique as a solution. The findings of the research
were reported in [32], and one of the main takeaways was the development of a new
synchronized fixed-time TSM technique for use with fractional chaotic systems. The
authors in [33] suggested a non-singular fixed-time sliding mode method as a solution to
the non-linear chaotic system. In order to better accommodate scattered quadrotors, an
improved adaptive fractional-order rapid integral TSMC was devised [34]. The following
strategy was suggested for the unmanned surface vessel: a fixed-time SMC control with
compensation for unmodelled dynamics and unknown disturbances [35]. In [36], the
authors presented a fast fixed-time super-twisting control for the Euler–Lagrange system
with exponential SMC. Additionally, they used a high-order sliding mode finite-time
observer to provide an estimation of the angular velocity and disturbances in the system.
Another observer-based fixed-time robust control technique for the uncertain dynamics of
robot manipulators was presented to obtain good position tracking and robustness [37].
A high-order super-twisting SMC approach using a fixed-time scheme was devised to
deal with a piezoelectric nano-positioning stage [38]. In order to achieve control over a
symmetrically chaotic supply chain system, a super-twisting fixed-time SMC constrained
by a controlled input was developed [39].

One way to account for uncertain dynamics is to use a variety of fractional-order
TSM approaches, including the ones provided, to create robust schemes for a wide range
of linear and non-linear systems. Fractional-order control has been utilized to improve
performance, and a finite-time fractional-order TSM (FTFOSMC) was used in a study to
produce rapid responses and reduce chattering and singularity issues [5]. For applications
involving uncertain robotic systems in the presence of actuator faults, [40] suggested an
adaptive control-based fractional fixed-time SMC scheme. A separate study guaranteed
the trajectory tracking performance of an underactuated autonomous underwater vehicle
using disturbance observer-based fractional-order sliding mode control [41]. Adaptive
fixed-time control was used to create a fractional-order SMC for a non-linear 3-DOF robot
with unknown uncertain dynamics [42].

3. Preliminaries

Definition 1. Many applications of fractional calculus based on the Riemann–Liouville (RL)
formulation were discovered in the literature [43–45]. The following equations give the RL fractional
differentiation as well as the integration of the ηth-order for the f (t) function with constant a [10]

a Iη
t f (t) = 1

Γ(η)

∫ t
a

f (τ)
(t−τ)1−η dτ

aDη
t f (t) = dη f (t)

dtη = 1
Γ(1−η)

d
dt

∫ t
a

f (τ)
(t−τ)η dτ

(1)

where n− 1 < η < n, n ∈ N. Furthermore, Γ(·) is the gamma function defined as

Γ(η) =
∫ ∞

0
e−ttη−1dt

whereas the fractional integral and derivative are represented by the symbols I and D, respectively.

Property 1. The formula that we use for the RL derivative is as follows [46]:

aD1−η
t

(
aDη

t f (t)
)
= ḟ (t) (2)

Property 2. The Riemann–Liouville derivative conforms to the following equality [46]:

aDη
t

(
aD−η

t f (t)
)
= f (t) (3)

The definition of RL fractional derivative and integral is commonly used in control
systems due to the application of its properties, and these properties are helpful to derive
and compute the closed system and stability analysis.
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Lemma 1. If there is a continuous radially bounded function V(x) then the fixed-time convergence
requires the Lyapunov analysis to meet the following conditions [36]:

i. V(x) = 0 ⇔ x = 0, ii. V̇(x) ≤ −λ1Vγ1(x)− λ2V(x)γ2 with λ1, λ2 > 0, 0 < γ1 <
1 and γ2 > 1. Once this happens, we may say the system is fixed-time stable and determine how
long it will take to converge using the formula

T ≤ 1
λ1(1− γ1)

+
1

λ2(γ2 − 1)
(4)

Lemma 2. For δ1, δ2, δ3, ...., δn > 0, the following inequalities exist [47]

n
∑

i=1
|δi|1+r ≥

(
n
∑

i=1
|δi|2

) 1+r
2

, f or 0 < r < 1

n
∑

i=1
|δi|r ≥ n1−r

(
n
∑

i=1
|δi|
)r

, f or r > 1
(5)

4. Fixed-Time Fractional Sliding Mode Control

This section includes a description of the dynamics of Euler–Lagrange systems, con-
tinues with an examination of a fractional-order non-singular sliding manifold, and then
follows up with the development of a proposed FoFtNTSM scheme. Furthermore, Lya-
punov theorem analysis is employed to evaluate the stability of the suggested FoFtNTSM.

Here, we provide the dynamic equation for an Euler–Lagrange system [10]:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ(t) + d(t) (6)

where q ∈ Rn is the angular position, q̇ ∈ Rn is the angular velocity and q̈ ∈ Rn is the
angular acceleration. M(q) ∈ Rn×n represents the inertia matrix and follows the condition
that M(M(q)) ≤ ‖M(q)‖ ≤ M(M(q)) with M and M > 0 as the minimum and maximum
eigenvalues of M(q), respectively. C(q, q̇) ∈ Rn×n are the Coriolis and centripetal forces,
and G(q) ∈ Rn is the gravitational force. d(t) ∈ Rn is the external disturbances, and
τ(t) ∈ Rn is the joint control input.

The dynamics Equation (6) can be rewritten as

q̈ = M−1(q)τ(t) + M−1(q)d(t)−M−1(q)[C(q, q̇)q̇ + G(q)] (7)

Using (6), the tracking error can be computed by the expression q̄ = q− qd as follows

¨̄q = M−1(q)τ(t) + L(q, t) + N(q̇, q, t) (8)

where N(q̇, q, t) = −q̈d − M−1(q)[C(q, q̇)q̇ + G(q)] is the known system’s dynamics.
L(q, t) = M−1(q)d(t) is the lumped disturbances. qd is the desired angular position and q
is the actual angular position.

Assumption 1. Equation (9), that establishes a bounded condition of uncertain dynamics, is
given here

‖L(q, t)‖ ≤ ζ (9)

where ζ is the positive constant.

To achieve the Euler–Lagrange system’s desired fixed-time tracking performance, a
fractional-order sliding surface is proposed here

s(t) = Dβe(t) + k1Dβ−1de(t)cψ1 + k2Dβ−1de(t)cψ2 (10)

where e(t) = ˙̄q(t) + k̄1dq̄(t)cψ11 + k̄2dq̄(t)cψ22 , s(t) ∈ Rn represents the sliding surface,
d•c = | • |ᾱsign(•), k1, k̄1 > 0 and k2, k̄2 > 0. The fractional-order parameter β has a range
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0 < β < 1, while ψ1, ψ2, ψ11 and ψ22 have ranges 0 < ψ1, ψ11 < 1 and ψ2, ψ22 > 1,
respectively.

By taking the time derivative of the sliding surface (10), it can be calculated as

ṡ(t) = Dβ ė(t) + k1Dβde(t)cψ1 + k2Dβde(t)cψ2 (11)

By substituting (8) into (11), one can obtain

ṡ(t) = Dβ

[
M−1(q)τ(t) + L(q, t) + N(q̇, q, t)
+k̄1ψ11|q̄(t)|ψ11−1 ˙̄q(t) + k̄2ψ22|q̄(t)|ψ22−1 ˙̄q(t)

]
+k1Dβde(t)cψ1 + k2Dβde(t)cψ2

(12)

Now that the sliding manifold design is complete, the proposed FoFtNTSM approach
for an uncertain Euler–Lagrange system can be developed to achieve the desired robust
performance in the face of external disturbances. The FoFtNTSM control law τ can be de-
signed as follows with the objective of controlling the uncertain non-linear Euler–Lagrange
system under bounded disturbances:

τ(t) = −M(q)

[
ζ + N(q̇, q, t) + k̄1ψ11|q̄(t)|ψ11−1 ˙̄q(t) + k̄2ψ22|q̄(t)|ψ22−1 ˙̄q(t)
+k1de(t)cψ1 + k2de(t)cψ2 + D−β

[
K1ds(t)cω1 + K2ds(t)cω2

] ] (13)

where |q̄(t)|ψ11−1 = 0 if q̄(t) = 0. K1 > 0 and K2 > 0 are positive constants. ω1 and ω2
are positive constants as 0 < ω1 < 1 and ω2 > 1, respectively. The overall system model is
depicted in Figure 1.

dq

dq

q

q

1
t

2
t

nt

q

q
r1

l1

r2
q

1
q

2

m
2

m1

l2

Figure 1. FoFtNTSM proposed model.

Substitution of (13) in (12), one can obtain

ṡ(t) = Dβ



−ζ − N(q̇, q, t)
−k̄1ψ11|q̄(t)|ψ11−1 ˙̄q(t)− k̄2ψ22|q̄(t)|ψ22−1 ˙̄q(t)
−k1de(t)cψ1 − k2de(t)cψ2

−D−β(K1ds(t)cω1 + K2ds(t)cω2)
+L(q, t) + N(q̇, q, t)
+k̄1ψ11|q̄(t)|ψ11−1 ˙̄q(t) + k̄2ψ22|q̄(t)|ψ22−1 ˙̄q(t)


+k1Dβde(t)cψ1 + k2Dβde(t)cψ2

(14)

By simplifying (14), one can have

ṡ(t) = Dβ

 −ζ + L(q, t)
−k1de(t)cψ1 − k2de(t)cψ2

−D−β(K1ds(t)cω1 + K2ds(t)cω2)


+k1Dβde(t)cψ1 + k2Dβde(t)cψ2

(15)
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ṡ(t) = Dβ

[
−ζ + L(q, t)
−D−β

(
K1ds(t)cω1 + K2ds(t)cω2

) ] (16)

Now the Lyapunov analyses is performed to determine the stability of the closed-loop
system in the following theorems.

Theorem 1. Considering the Euler–Lagrange system described in (6), the sliding manifold proposed
in (10), and the FoFtNTSM controller developed in (13), it is achievable for an uncertain dynamic
system under bounded condition (9) for the angular position to converge in a fixed amount of time.

Proof. The selected Lyapunov candidate in the following expression is given as

V1(t) = 0.5
n

∑
i=1

s2
i (t) (17)

The derivative V̇1(t) can be obtained as

V̇1(t) =
n

∑
i=1

si(t)ṡi(t) (18)

V̇1(t) =
n

∑
i=1

si(t)
{

Dβ

[
−ζ + Li(q, t)
−D−β

(
K1dsi(t)cω1 + K2dsi(t)cω2

) ]} (19)

Simplification of (19) can be written as

V̇1(t) =
n

∑
i=1

si(t)
{
−
(
K1dsi(t)cω1 + K2dsi(t)cω2

)
+ Dβ(−ζ + Li(q, t))

}
(20)

Using the condition given in (9), one can solve (20) as

V̇1(t) ≤ −
n

∑
i=1

si(t)
{

K1dsi(t)cω1 + K2dsi(t)cω2
}

(21)

V̇1(t) ≤ −K1
n
∑

i=1
|si(t)|ω1+1 − K2

n
∑

i=1
|si(t)|ω2+1

≤ −K1
n
∑

i=1

(∣∣si(t)
∣∣2) ω1+1

2 − K2
n
∑

i=1

(∣∣si(t)
∣∣2) ω2+1

2
(22)

According to Lemma 2, one obtains

V̇1(t) ≤ −K1

(
n

∑
i=1
|si(t)|

2

) ω1+1
2

− K2n
1−ω2

2

(
n

∑
i=1
|si(t)|

2

) ω2+1
2

(23)

V̇1(t) ≤ −K1(2V1)
ω1+1

2 − K2n
1−ω2

2 (2V1)
ω2+1

2

≤ −2
ω1+1

2 K1V1
ω1+1

2 − 2
ω2+1

2 K2n
1−ω2

2 V1
ω2+1

2

(24)

As a result of this, the system’s states arrive to s(t) in a fixed-time. In light of Lemma 1,
the following formula may be used to determine the fixed settling time:

T1 =
1

2
ω1+1

2 K1

(
1− ω1+1

2

) +
1

2
ω2+1

2 n
1−ω2

2 K2

(
ω2+1

2 − 1
) (25)

Once the system’s states are on the sliding manifold, the following equation holds
s(t) = 0, obtaining
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Dβe(t) = −k1Dβ−1de(t)cψ1 − k2Dβ−1de(t)cψ2 (26)

Theorem 2. The dynamics of the sliding mode (26) are stable, and the trajectories of its states tend
to zero in a fixed-time.

Choosing the Lyapunov function given by

V2(t) = 0.5
n

∑
i=1

e2
i (t) (27)

The V̇2(t) can be derived as

V̇2(t) =
n

∑
i=1

ei(t)ėi(t) (28)

According to fractional-order Property 1, (28) can be rewritten as

V̇2(t) =
n

∑
i=1

ei(t)D1−β(Dβei(t)) (29)

By substitution of (26) into (29), one can obtain

V̇2(t) =
n

∑
i=1

ei(t)D1−β
[
−k1Dβ−1dei(t)cψ1 − k2Dβ−1dei(t)cψ2

]
(30)

Using to fractional-order Property 2, (30) can be expressed as

V̇2(t) = −
n

∑
i=1

ei(t)
[
k1dei(t)cψ1 + k2dei(t)cψ2

]
(31)

V̇2(t) = −k1
n
∑

i=1
|ei(t)|ψ1+1 − k2

n
∑

i=1
|ei(t)|ψ2+1

= −k1
n
∑

i=1

(
|ei(t)|2

) ψ1+1
2 − k2

n
∑

i=1

(
|ei(t)|2

) ψ2+1
2

(32)

According to Lemma 2, one obtains

V̇2(t) ≤ −k1

(
n

∑
i=1
|ei(t)|

2

) ψ1+1
2

− k2n
1−ψ2

2

(
n

∑
i=1
|ei(t)|

2

) ψ2+1
2

(33)

V̇2(t) ≤ −k1(2V2(t))
ψ1+1

2 − k2n
1−ψ2

2 (2V2(t))
ψ2+1

2

≤ −2
ψ1+1

2 k1V2(t)
ψ1+1

2 − 2
ψ2+1

2 k2n
1−ψ2

2 V2(t)
ψ2+1

2

(34)

According to Theorem 2, the states must eventually approach zero. We prove in the
following that the convergence to zero takes place in a fixed amount of time

T2 =
1

2
ψ1+1

2 k1

(
1− ψ1+1

2

) +
1

2
ψ2+1

2 n
1−ψ2

2 k2

(
ψ2+1

2 − 1
) (35)

The total settling time can be obtained using the relation T = T1 + T2 + T3, where T3

can be obtained from the equation ˙̄q(t) = −k̄1dq̄(t)cψ11 − k̄2dq̄(t)cψ22 when e(t) = 0.
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Remark 1. The suggested FoFtNTSM approach uses fractional-order sliding surface (10) and
robust SMC control scheme (13) to suppress the tracking error to zero in a fixed-time, even if the
dynamics of the uncertain Euler–Lagrange system (6) are affected by external disturbances. This is
because the technique provided here makes use of a sort of fixed-time fractional-order sliding mode
control, a feature that allows for higher performance.

Remark 2. According to Lemma 1, the choice made using the parameters k1, k2, K1 and K2 can
significantly affect the fixed-time T. When a significant value is assigned to any of these parameters,
the rate of convergence will therefore vary as a direct consequence.

5. Results and Discussions

A non-linear robotic manipulator is utilized to realize the Euler–Lagrange system,
demonstrating its simulation performance, and validating the proposed FoFtNTSM method.
To deal with the external disturbances, a 2-DOF robotic manipulator is used. Detailed
simulations demonstrating the FoFxNTSM’s robust performance in the presence of noise
and other external disturbances are provided. Simulations in MATLAB/Simulink are used
to illustrate the findings of this study. The mathematical equation and detailed dynamics of
2-DOF robotic manipulators are described, along with their model parameters (see Table 1),
desired trajectories, and external disturbances [36]

M(q) =
[

M11 M12
M21 M22

]
, C(q, q̇) =

[
C1
C2

]
, G(q) =

[
G1
G2

]
,

τ(t) =
[

u1
u2

]
, qd =

[
0.3 sin(t) + 0.2

0.3 sin(0.5t)

]
, d(t) =

[
2 sin(t) + 0.5 sin(10t)
cos(2t) + 0.5 sin(10t)

]
.

where M11 = m1r2
1 +m1(r2

1 + l2
1)+ 2 cos(q2)m2l1r2 + J1 + J2, M12 = m2r2

2 + cos(q2)m2r2l1 +
J2, M21 = M12, M22 = m2r2

2 + J2, C1 = − sin(q2)m2r2l1q̇1q̇2 − sin(q2)m2r2l1(q̇1 + q̇2)q̇2,
C2 = sin(q2)m2r2l1q̇1q̇1, G1 = cos(q1)(m1r1 + m2l1)g + cos(q1 + q2)m2r2g, G2 = cos(q1 +
q2)m2r2g.

Table 1. 2-DOF robot parameters.

Parameter Description Value

m1 mass of link 2 0.4 kg
m2 mass of link 2 1.2 kg
r1 centroid length of joint 1 0.5 m
r2 centroid length of joint 2 0.85 m
l1 length of the link l 1 m
l2 length of the link 2 1 m
J1 moment of inertia 1 5 kg·m2

J2 moment of inertia 2 5 kg·m2

g gravitational constant 9.8 m/s2

5.1. Scenario-1: Simulation and Comparison of the Proposed Method and FTSMC

This subsection presents the implementation of the suggested FoFtNTSM controller
in the robotic manipulator. The fractional-order value β is selected using a trial-and-error
method. The desired trajectories quickly approach the suitable value of β = 0.9. Moreover,
the appropriate parameters of the proposed control scheme are given in Table 2. When
comparing simulations, fractional-order sliding mode control (FTSMC) [48] is used to
further prove the effectiveness of the planned method. The required parameters of the
compared FTSMC scheme are selected fairly. The compared results of the proposed method
and FTSMC to the dynamics of 2-DOF robotic manipulators are shown in Figures 2–4.
Position accuracy, tracking error and control inputs without chattering are all depicted here.
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Table 2. Proposed scheme parameters.

Parameter Value

k1 28
k2 5
k̄1 5
k̄2 6
ψ1 0.7
ψ2 1.01
ψ11 0.8
ψ22 1.01
β 0.9

K1 0.1
K2 0.1
ω1 0.9
ω2 1.01

q1(0) 0.3
q2(0) 0.1

From the simulations presented in Figures 2–4, the presented FoFtNTSM performs
better than existing methods displaying low tracking errors, fast convergence, and smooth
control inputs. Excellent and robust tracking performances are obtained using the fractional-
order and SMC schemes.

Figure 2. Position tracking.



Fractal Fract. 2023, 7, 355 10 of 15

0 1 2 3 4 5 6 7 8 9 10

0

0.01

0.03

0.05

0.07

0.09

0 1 2 3 4 5 6 7 8 9 10

0

0.02

0.04

0.06

0.08

0.1

Figure 3. Tracking error.

0 1 2 3 4 5 6 7 8 9 10

-100

-50

0

50

100

150

200

250

300

Figure 4. Control input.



Fractal Fract. 2023, 7, 355 11 of 15

5.2. Scenario-2: Comparison under Measurement Noise

This paragraph explains how the suggested FoFtNTSM approach can be used to
control the dynamics of a 2-DOF robotic manipulator in the presence of random measure-
ment noise and bounded external disturbances. This is conducted to ensure the robot
is able to perform its function well. Figures 5–7 show the simulation results comparing
the FoFtNTSM and FTSMC approaches in the presence of disturbances and measurement
noise, with the aim of validating the effectiveness of the proposed approach with regard
to tracking the desired trajectory, minimizing tracking error, and imposing chatter-free
control torque.

Figure 5. Position tracking with noise.

From the results presented in Figures 5–7, the FoFtNTSM obtains improved posi-
tion tracking, quick convergence, and non-chatter control inputs despite the presence of
perturbed dynamics in the existence of measurement noise, while the FTSMC has chatter-
ing problems in the control inputs. This is the case despite the fact that the stud shows
perturbed and noisy dynamics are present.

Subsequently, the proposed scheme’s simulated results are critically evaluated. There-
fore, a brief examination of the controller parameter limits is presented. The proposed gain
values of the controller, as well as stability analyses, are discussed in light of these bound-
aries. By comparing Figures 2 and 3, it is easy to see that the proposed scheme reduces
the angular position error while simultaneously minimizing the necessary convergence
time. Figure 4 also displays the control performance, demonstrating that the proposed
method provides a chatter-free and therefore most applicable control input. As a result, the
performance of the Euler–Lagrange system under measurement noise is superior in terms
of position tracking and control torque.
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Remark 3. The parameters used for the proposed method are the ones that fall within the range
k1, k2 >, k̄1, k̄2 > 0, ψ1, ψ11 ∈ (0, 1), ψ2, ψ22 > 1, 0 < β < 1, K1, K2 > 0, ω1 ∈ (0, 1) and
ω2 > 1. Therefore, if these issues are ignored, the proposed scheme will remain unaffected, and the
system will lose its fixed-time stability. Considering T, it is plainly clear that ki, k̄i and Ki have
an inverse relationship; this is in addition to the fact that ki, k̄i and Ki have a direct relationship
with τ(t) in (13). Therefore, adjusting ki, k̄i and Ki to the appropriate values is necessary to achieve
error convergence within a fixed settling time and overall system stability. As a result, the suitable
tracking performance and fixed-time stability of the system can be achieved using these values. The
parameter values can be chosen adequately because it is known where they fall within their ranges.
Because of this, the procedure for selecting the appropriate value is made possible.

6. Conclusions

A FoFtNTSM has been proposed as a possible solution in an effort to achieve good
tracking results for uncertain Euler–Lagrange systems in the presence of external distur-
bances and measurement noise. To account for the uncertainty of dynamics in the presence
of external disturbances and noise, the proposed scheme employs a robust design. The FoFt-
NTSM converges in a fixed amount of time and achieves the desired tracking performance
as a direct result of utilizing the proposed method. This was conducted to demonstrate that
the designed method is effective. A 2-DOF robotic manipulator was utilized in one of the
applications of the Euler–Lagrange system. The findings demonstrated that the proposed
FoFtNTSM method outperforms the FTSMC method in terms of tracking error and its
convergence, and the ability to mitigate disturbance and noise.

In addition, the investigation of non-smooth non-linearities may be included in this
field of research on the Euler–Lagrange system. The work that was initially envisioned
would need to be substantially expanded in order to accommodate this.
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