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Abstract: In this paper, we explain the approximate controllability of ¥-Hilfer fractional neutral
differential equations with infinite delay. The outcome is demonstrated using the infinitesimal
operator, fractional calculus, semigroup theory, and the Krasnoselskii’s fixed point theorem. To begin,
we emphasise the presence of the mild solution and show that the ¥-Hilfer fractional system is
approximately controllable. Additionally, we present theoretical and practical examples.
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1. Introduction

Fractional calculus equations that include not only one but numerous FDy, are highly
concentrated in many physical processes. Because of its astounding uses in exhibiting the
wonders of science and technology, the FD;,;; system has recently received a lot of interest
in its significance. Numerous problems in a number of domains, such as visco-elasticity,
electrical systems, electro-chemistry, fluid flow, and others, can be managed through the use
of fractional systems. There are many uses and applications for the extension of differential
equations and inequalities called differential inclusions, which may be thought of as an in
optimal control theory. Dynamical systems that have velocities that are not just governed
by the system’s state are simpler to investigate when one is skilled at using differential
inclusions. Studies on boundary value issues have been widely conducted. Numerous
studies have been conducted to determine whether there are solutions for FD;;,; systems
and whether there are solutions for FDy;,; inclusions. To validate the discussion of theory
and its application connected to fractional calculus, the given research papers in [1-14] can
be consulted.

A crucial idea in mathematical control theory, controllability, is significant in both pure
and practical mathematics. Nowadays, controllability has an important role in fractional
calculus; thus, researchers have much interest in this area and developing a new concept
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and idea related to control theory, i.e., how to apply control theory in FD;;; systems. Recent
years have seen several researchers make significant progress in their understanding of the
exact and approximate controllability of different types of dynamical systems including
delay or not. The research articles in [15-25] can be used to validate discussions of theory
and practise connected to controllability.

Recently, generic FD,, have been developed, in particular, ones like the FD,, with
respect to another function. Almeida [26] introduced a new form of FDy, in 2017 by
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HDgf;‘P [u(o) —H(p,up)] = Au(o) + Bo(0) + G(Q, ug,fo‘? e(os, us)ds), 0eI' =(0,b],

0

taking into account the Caputo fractional derivative (CFD,,) with respect to an additional
function ¥, or Y-CF Dy, in order to improve the accuracy of objective modelling. Then, the
authors of [27] introduced the so-called ¥-Hilfer fractional derivative (Y-HFDy,), a FDy,
with respect to an another function. The benefits of the ¥-Caputo and ¥-Hilfer models
that are herein proposed include the freedom to select the classical differential operator
and the ¥Y-function, i.e., from the selection of the ¥-function, the classical differentiation
operator may act on the fractional integral operator, or alternatively, the fractional integral
operator may act on the classical differentiation operator. Motivated by these two articles,
researchers have studied more about ¥Y-Caputo and ¥-Hilfer and have developed new
works. In [28], the authors studied the existence, uniqueness, and stability of different
kinds of mild solutions for Y-CFDy;,; systems with an infinitesimal generator, A. In [29],
the researcher discussed the existence and uniqueness of Y-Hilfer neutral FD;;,;; equations
with infinite delay via a fixed point method. Recently, the authors of [30] investigated the
stability and controllability of ¥-HFD, via fixed point theory and a semigroup approach.
This paper is devoted to exploring a new class of Y-Hilfer fractional integro-differential
systems under the influence of impulses. Moreover, we prove the novel stability criteria for
the considered system by using the Grinwall inequality and investigate the controllability
results for the proposed system by using the new piecewise control function.

To our knowledge, no article has been published on the approximate controllability of
Y-HFDy;; equations with infinite delay, and also, motivated by the research in the above
articles, we study the approximate controllability of the systems, given by the following:

)
0 94(0) = o € L2(D,Sw), 0 € (—o0,0],
where A is an infinitesimal generator of the analytic semigroup {T(¢), ¢ > 0} on Y. Dg;é A

denotes the ¥-HFDy, of order 7, 0 < 7 < 1and type ¢, 0 < ¢ < 1. Let u(-) be the
state in a Banach space Y with norm | - || and v(-) be the control function in L?(Z, U),
where U be the Banach space. Here, B is the bounded linear operator from U to Y. Let
Z =10,b],H:Z x Sy — Y is the neutral function, G : Z X Sy, X Y — Y be the appropriate
function, e : T xXZ XSy =+ Yand0 < 91 < 02 < -+ < 9y < b, ¢ : 8 — Sy are the
appropriate functions, where S, is a phase space. The histories u, : (—o0,0] — Y such that
uy(s) = u(o + s) belong to the phase space, S.

The article’s structure is broken down as follows: In Section 2, the fundamentals of
fractional calculus, ¥-Hilfer fractional, and semigroup are discussed. We first establish
the mild solution’s existence in Section 3 before extending to the system’s approximate
controllability. To illustrate our main points, we give an example in Section 4. A few
conclusions are presented towards the end.

2. Preliminaries

Here, we introduce the fundamental terms, theorems, and lemma that are used
throughout the whole text. We introduce a new set

s={ueC(7,Y): hi% (¥(p) — ‘I’(O))(l_n)(l_@u(p) exists and infinite }
[

with norm || - ||s defined by

lute)lls = sup [ (¥(e) - ¥(0)) 0 u(p)]
peT’

where ¥ is an increasing function with ¥/(¢) # 0, Vo € Z.
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Definition 1 ([31]). Suppose G : [0,00) — R] is a real valued function, the Laplace transform is
represented and presented by

L{6(@)}(8) = G(®) = [ ole)e*edo, for <.

Furthermore, if G(8) = L{G(¢) } and G(9) = L{g(0)}, then

e{ ["ale - Dis(rr hio) = 6(2)G(0), ®
Definition 2 ([31]). The Laplace transform of G with respect to ¥ is presented by
Ly{6(0)}(¥) = 6(9) = / " G(0)e ! @-Yg(g)¥ ()dg forall € C.  (3)

Definition 3 ([27]). The Y-Riemann—Liouville fractional integral of order 1 of the function G is
presented by

Y6(8) = s [ ¥ @) ~ @) el @

whereny € (m —1,m).
Definition 4 ([27]). The Y—Riemann—Liouville F Dy, of order 1 of the function G is presented by

. d\" A
DI*6(0) = (grzya5) 1" "C) ©)

:r(ml—n) (‘-}”tﬁ)jﬂ) /:‘1”(@)(‘1’(19)—‘Y(Q))m‘”‘lc(g)dg, ®)

whereny € (m —1,m).
Definition 5 ([26]). The Y-CF Dy, of order 1 is defined by

“DIY6(0) = (, Iy "e" (o))

— rorr (@) — ¥ el (9 (6)a0

T(m =)
where m = [57] + 1 and 6" () = (\F,l(g) d%)nG(Q) in [a, b].

Definition 6 ([27]). The Y-HF Dy, of function G of order nj and type ¢ is presented by

Hpy&¥ _ S(m—n)¥ 1 d\" a-g)n-n)¥
DI a(p) = 11 (G ) 1 (o

Remark 1. The Y-HF Dy, can be written in the following form:

HDZE/"FG('O) — IEJ(rm_W);TDZi_g(n_W);TG(p)

and

sk 4 m—n);¥ n—n);¥
HDZEJK G(p)ZIES ) DZI“ ) G(p),

where —c0 < g < b < co.
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Here, we define the weighted space [27]:

Co(Z,Y) = {u: [0,b] = Y+ (9(p) — ()" (o) € (7, 1)}

Ref. [16]. Next, we define the abstract phase space, Sy,. Let w : (—c0,0] — (0, +o0) be
continuous along Y = [ Em w(g)do < +oo. Then, for every n > 0, we have

S = {(5 :[-n,0] = Y : (o) is bounded and measurable},

and set the space, S, with the norm

||5||[_n,o] = sup |d(7)|l, forall 6 €s.
Te[—n,0]

Here, we define

Sw = {5 t (—00,0] = Y such that for any n > 0, 6[[_, g € S and

[ 0@ = #0) P P ol e < .

—0

If Sy is endowed with
0 1-7)(1—
ol = | (20 =¥ @) D)ol forails € s,

Thus, (S, || - [|y) is a Banach space.
Here, we consider the set

Sl, = {u: (—o0,b] =Y : uely(Z,Y), C€ Sw}.

Let || - ||y in S}, be the seminorm defined as
luwlly = lluolly +sup {[lu(z)]| : T € [0,b]}, u € 85,

Lemma 1 ([16]). Ifu € S, then for o € Z, uo € Sy. Moreover,

Ylule)| < gl < luolly + Y sup s, Y= [ w(edg < o
rel0,0]

Lemma 2 ([9]). Let the linear operator, A, be the infinitesimal generator of a Cy semigroup iff:
(¢c;) Aisclosedand D(A) =Y;
(cii) p(8) is the resolvent set of A containing R and ¥V A > 0, we write

where R(A,A) = (M1 —8) 'z = [° e~ 0T(g)zd.

Definition 7. The Wright-type function is defined as

Wy (o) = i (-2)" zeC
g = KT (—nk+1—1n)
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Proposition 1. The Wright-type function, Wy, is an entire function that satisfies the
following conditions:
1. W,]()>Ofor6>0 Jo Wy (0)d6 =1;
(14+k
2. [T Wy (0)0%d0 = i for k> —1;
3. Joo Wy(6 ZedG_EW( z),z€C.

Lemma 3. The Y-HFDy;,; system (1) is equivalent to the integral equation

_(¥(0) = %(0) " gy —1(0,u(0))] 1 =
u(e) = A=+ (o) + gy ) (Y@ —¥(@)"

x |Au(o) 4+ Bo(o) + G(Q,ug, /Oﬂe(g, s,us)dsﬂ‘lf’(ﬂ)dﬁ,

where ¢ € [0,D].

Proof. The proof is similar to the Lemma 3.1 in [28], so we omitit. [
For any u € Y, define the operators Sf{,’g(g, 8), Q% (0, 0), and Py (o, ¥) by
Pylo o= [ 2y(O)T((¥() —¥(9))6)uas

nglg(P/ 19) _ I(()}r*’l)(lfg)}‘frfp(p, 19)Ll

and

for 0 < ¢ < ¢ < b and the probability density function ¢, (6) =
ie., {;(0) > 0for6 € (0,00) and [;° 7, (0)d6 = 1.

Lemma 4 ([28]). The operator 81'17,’5(@, 8) and QY (0, 8) hold the following properties:
(@) Forany0 < ¢ <y, Sg,’g(g, ®) and Q1 (o, ®) are bounded linear operators with
|S¥ (e 8)ul| < Ul and || @ (e 8)u] < L"|ul

(1=n)(1-7)

oy (F(b)—¥(0)) -
7 T(+E—18) and L" = gy forallu € Y.

(b)  The operators, S@’é(g, ) and QY (0, 9), are strongly continuous for all 0 < 01 < 0 < b;
thus, we write

where L' =

HS\Z’é(Qz, Fu — S@’é(gg, Bul| -0 and HQ@(@, Fu — Q@(ql,ﬂ)un — 0, as 2 — 01-

(c) If T(o) is a compact operator ¥ ¢ > 0, then Sy (0,8) and Q (o, ®) are compact for all
0, >0

(d) If Sg(o,8) and QY (o, 8) are the compact strongly continuous semigroup of bounded linear
operators for g, © > 0, then Sy (0, ®) and Qi (o, ®) are continuous in the uniform operator

topology.
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Lemma 5. Foranyu €Y, u,n € (0,1], we have

Definition 8. A function, w € C([0,b],Y), is called a mild solution of (1) if it satisfies

AQY (o, O)u= A" QU (o, 8)A y, p € T;

nCuI'(2—p)
M Q4 (p, )| < pnur(f+ n(1—p)’

u(0) = S¥(0,0) [po — H(0,u(0))] + H(p,up) + /OQ (F(o) —¥(8))" 'aQ% (0, 0)H(8, us) ¥ (9)dB
+ [7 (¥~ ¥(0)" " QY (0, )80(0) ¥ (8)d0
+ [1 (¥ - ¥(9)" Qo 0)c (e,uer /fe(as»@ds)?%ﬂ)d& for o € [0,] %

Lemma 6 (Krasnoselskii’s fixed point theorem [32]). Let Y be a Banach space. Let © be a
bounded, closed, and convex subset of Y, and let P, Q be maps of ® into Y such that Px + Qy € ®,
for each pair’s x,y € ©. If P is contraction and Q is compact and continuous, then the equation
Px + Qx = x has a solution for D.

We outline a suitable system, its operators, and its underlying presumptions as follows:

TDIE ¥ u(0) = Au(o) +Bo(e), 0 € T' = (0,1],

I (0) = g, (®)

and also define the following:

b *
T = / (¥(b) —¥(0))" " QY (b, 5)8B* QY (b, 8)ds,
0
R(7, %) = (vI+55) 7", v >0,
where B* and Q?Y* are the adjoint of B and Qg,, respectively, and T} is the linear bounded op-

erator.
Then, Vv > 0and uq € Y take

v(0) = B*QY (b, 0)R(7,TY) P(u(-)),
where
P(g()) = - [8@'%@,0) (90— H(0,u(0))] — (b,
—/ (6))" " 2QL (b, 6)H(6,us) ¥ (8)do

_/ )" 'l (b,6)a (w,uw,/owe(w,s,us)ds)‘I”(cS)d(S].

Consider the following hypotheses:
(H1) {T(0) }£=0 is the Co-semigroup , such that sup . ) [ T(0)[| = My, where My > 1.

(Hp) Foro € Z,G(0,-,-) : Sw XY = Y, e(0,s,) : S — Y are continuous functions, and
for eachu € X, G(-,up, [e(p,5,u5)) : T — Yande(-,-,up) : Z x T — Y are strongly
measurable.
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(Hs) There exists an increasing function A : RT — (0,0) and Lg.(-) € L'(Z',R), such

that [|G(e, 11,72)|| < Lex(@A([[71lly + [[72l) for all (¢,71,72) € T x Sy x Y, and 3
a constant M > 0, then

i Loz (@A (Imlly + [l72)
1m

r—o0 Tr

:Ml

(Hy) There exists a constant Ey > 0, such that: |le(o,s, v)|| < Eo(1+ ||v]ly) forall (¢,s,7) €
T X T X Sy.

(Hs) The functionH: Z x S, — Y is continuous, and there exists 0 < y < 1, H € D(A") for
any u € Y, AMH(-,u) is strongly measurable, there exists Ky, Kﬁ > (0 such that:

|88 (o, 1 (p)) — A" (p, 12 () || < Ka(¥(0) = ¥(0)) |11 (0) — a(p)|

|aH(p, u(p))|| < Ka(l +(¥(p) T<o>><1‘”><l‘¢>|u||y),

Y’

and there exists a constant M, such that:

KL (1 !
fim 4T
r—0 r

3. Approximate Controllability
Theorem 1. Assume (Hy)—(Hs) satisfy. Then, Equation (1) has at least a mild solution for 7

with:
nCa—pI(1—pn)
b1A=IT (1 + )

(1-L"k3) |LU'M, + My +L"M;| <1,

Proof. Consider the operator ® : 8], — S/, defined by

®1(0), (—o00,0],
S*(0,0) [p0 -+ (0,u(0))] +H(p, o)
Do) = 4 S5 (Eo) =¥ ()" 'aQY (o, 0)u(p,up) ¥ ()0 ©)

+ Jo (¥(0) —¥(8))17" Qy (e, 8)¥' (0)dvG <19, TN e(ﬂfsrus)ds> ¢
+ Jo (¥(e) = ¥(8))17 Qy (e, 8)Bu(0)¥'(9)dd, ¢ € (0,1]

For ®; € S, we define o by

~ ®1(0) 0 € (—00,0],
d(o) =
0= {S o s

Then, ® € S),. Letuy = [y, + @], 00 < ¢ < b. It can be easily shown that u satisfies
from (8) if f v satisfies yp and
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1) = SYE (0, 0R(O,(0)) + (o, yo + @) + [ (F(6) —(8))"" A} (0, )8 (0, o + B0 ¥'(8)d0
—l—/ 8))1~ 1QT(Q, 9)G ( ,(]/194—&\3[9),/0196(19,5,]/5—i—C/I\)s)dS)‘{”(ﬁ)dﬁ
+ [¥Q) = 1)1 Qe 55" Q) 6, OR(w,TH) s — S (,0) [0~ 10, u(0))]
(oo + ) - /Ob (¥(0) ~¥(6))" A} (0,0)1(0,ys + &) ¥ (o)
- /0 " (¥(b) = ¥(8))1 QL b, (5)G((5, ys + D5, /0 (6,5 ys + <T>s)ds>‘1’/(5)d(5} ¥/ (9)do.

Lets,, ={y €8, :yo € Sw}. Forany y € 8},

I¥lly =llyolly +sup{lly(w)[| : 0 < w < b}
=sup{[ly(w)[| : 0 < w < b}.
Thus, (S}, | - [|y) is a Banach space.

For r > 0, choose Sy = {y € SJ, : ||y|]ly < r}; then, Sy C S/, is uniformly bounded,
and for y € Sy, by Lemma 1,

e +Polly < llvelly + 19elly
<Y(r+LUgo) + @]y
=r (10)

Consider the operator ® : 8, — 8!/, defined by

0, 0 € (—o0,0],

SU* (0, 0)H(0,u(0)) +H(p,yp + B,) + [ (¥(0) —¥()" "

Dly(o) =4 *AQy(p, DH(B,ys + o) ¥ (8)d0

+ [ (¥(e) — ¥ ()1 QY (o, ﬂ)G(l%yﬁ + o, [ e(d,5,ys + QTDs)dS>‘I”(l9)ﬂh‘f’
+ [0 (¥ (o) —¥(8)) ' Qy (0, 8)Bu(0)¥'(8)d8, o€ I.

Here, we prove ® has a fixed point. Then, for p € Z, the operator &' can be decom-

posed:
' = @ + ¥}, where

@ = SY (o, O(O,u0)) + (o, + @) + [ ((p) ~ ¥(8))" 40 o, )R8, 0 + B)¥ ()t
@ = [ ¥(0) - ¥(0)7Q, 0,06 (,30-+ o, [ (05,3 + @.)ds ) ¥'(2)as
+ [((¥0) ~ #(0)71 0y (0. 980(0)¥ (9)a0.

Step 1. We show that ®'(y(¢)) € Sy to prove ®'(Sy) C Sy. We assume that for each
r > 0, there exists ¢ € [0, b], such that

[(@'y)(0)]| > = (11)

Because
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H (CD'y)(Q)H < sup (‘¥(p) _11:(0))(141)(1—6) H
p€[0,b]

S (0 0m(0,u0) | + (o0 +8,)

| [ () = 1) a0 o, 002, v0 + o) ¥ (0)d0]

4| 00 - 407100 006(6,30+ B0, [ 0,5, + s ) (o)

+| [ @ v oo ol (2)a0] |

5
= Z I,

j=1

where

I = sup (¥(p)—¥(0)) IO 518 (p,O)H(O,u(O))H

pe[0,b]
< (¥ () = ¥(0)) O ol

L= sup (¥(p)—¥(0)" (o, y, + &)
0€[0,b]

< (¥(0) = ¥(0) I (14 1],

i = sup (¥(p) = ¥(0) O [ o) (@) a0 oo +®o)¥(0)d0|
pel0,

(a-n-6) 1Ca-w¥a[1 +']T(1 - p)
p10-HIT(1+p)
P =Ty
x/o (Y (o) — ¥(9))" ¥ (8)d9

NCa—Ku[1 +2'|T(1—p)
p1IT (1 + yp)

< (¥(b) — ¥(0))

(F(b) —¥(0)) ¢HE

1= swp ()= ¥(0) 0| [v0) - v@)r 1000

p€(0,b]

X G(ﬂ,yﬁ‘i_@&//
0

< (1) = ¥0) "I Lor (WA + Eo(1+ 1) [ (Flo) ~ ¥(8)" ¥ (8)d0

8 ~
e(d,s,ys + dDS)ds)‘I”(ﬂ)dﬁH

< U"Lar(B)A(r + Eo(1+1')) (¥ (b) —¥(0)) ¢

5= sup (¥(p) = ¥(0) "I [“(¥(0) ~ 1()7 Q)0 Om0(p) ¥ (0)d0]

pE[0,b]

< (¥(b) —¥(0)) T L"%@% [ — Uepo] + L"ZK%% [ — L —I3— 1.

Thus, we obtain the sum, dividing both sides by r and applying the limit as r — oo,

nCa—pyI(1—p)
p1IOT (1 + yp)

1< (1-L"k3) [L'Mz + M, + L”Ml],

Then, we obtain a contradiction to our assumption.
Step 2. To prove that @ is contraction, let y;, y» € Sy, abd we obtain
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Hﬂbi(yl(p)) - qI>’1(yz(p))H

< sup (¥(p) — ¥(0)) D [Hﬂ(p,ylp L B,) —H{o,yzp+ By)

+ [* (o) — (o)

AQ% (p, 19)H HH(ﬂ/yw + Dy) — H(D,y29 + Py)

‘I”(ﬁ)dﬁ]

< () =¥) "I (o + [ (v o)

A1 QY(p, 19)H>

X ||AMH(0, y15 + Dp) — APH(B, Y29 + Py)

¥/ (ﬂ)dﬂ} ,
From the hypotheses (Hs), we obtain

<Ku(¥(p) - T(O))(l_q)(l_g) [y10 = v20lly- (12)

NH(p, 110 + Dp) — AMH(p, y2p + D)

Using Lemmas 12 and 5,

cha (1(p)) — @ (yz(P))H < U (%) = ¥0) Dy — ool

Therefore, ®] is a contraction.
Step 3. To prove @} is completely continuous, first, we have to prove @/, is continuous.
Let

@ = [ (¥(0)~ ¥(0)7 Q0,006 (8,0 + 8o, [

+ [ (20— ¥(9))171 0, (0, )80 () ¥ (9)do.

e(d,s,ys + @s)ds> Y (9)do

Take {y*} C Sy such that y¥ — y € Sy as k — oo. From hypotheses (H,) and (H3), we
can write, for each ¢ € Z,

~ Q ~ ~ Q ~
G(Q,yg—i—@Q,/o e(g,s,y§+¢s)) —>G<Q,yg+<1>g,/0 e(g,s,ys+d>s)> ask — oo forall k € N. (13)

From hypotheses (Hs)
H(5,y§+&>5) —>H(5,y(5—|—cf>{5) ask — oo forall k € N. (14)

Using Lebesgue dominated convergence theorem, for any ¢ € Z, we write
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H CABIGOE (%y)(e)H

<

sup (¥(p) = #(0)) " [ (2(0) —¥(9))" O (0, 0¥ (9)

~ 14 ~ ~ 14 ~
X [G(ﬁ,y§+q>,9,/ e(ﬂ,s,y’sc—i—cbs)dg) —G(ﬁ,yg—kqbﬂ,/ e(ﬁ,s,ys—i—q)s)dg)]dﬂH

sup (¥(p) ¥ (0)) P [* (e QY (0,0)¥'(9)88" QY (b,0)R(, )

S [H<«s,y§+&>5> (5,5 + )
+/b ¥(b) —¥(5))" [AQY(1,6) [B(0,y5 + Bs) —H(3,ys + Bs)]] ¥'(5)d0
+/ —¥(6))"” 1( (5y5+<1>5,/ (szs—i-cbs)dé)
—G(J,W—i-cf)(s,/& e(d,5,ys + B d&) ¥/(s dé]dﬁH

< ko (¥ (0) = ¥(0) 70 [ (o) ¥(0)" ' (0)

~ 4 4 ~
G(ﬂ,y§+d>19,/() e(t?,s,ys +d>s)dg) —G(ﬂ,ylg—i—@g,/o €(l9,S,ys+q>s)dQ>Hdl9

- e - ¥ o) [ (xio) - 1) |

—
€

—~~
Ny

‘H(&,y’g +®5) —H(8,y5 + Pys)

o [ (o) — ¥ ()

; H(6, y& + D5) —H(0,y5 + Ps)

¥ (5)do

AQ?P(b,zF)H

+ [ (¥ ) — %)

o _
G<(5,y§+<135,/0 e(&,s,yls‘+<1>s)d(5>

o _
—G((S,y,5+d>5,/() e(é,s,ys—i—cbs)dé)

‘I”(J)d&} a9,

Apply k — oo from (13) and (14) = || (®4y¥) (0) — (P4y) (0)|| — 0. Hence, @ is con-
tinuous.

Next, we show that {(®}y)(0) : y € S} is equicontinuous in Y. For any y € S; and
0< 01 <02 <b, wehave
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H@’z}/)(ez) — (@hy)(01)

<

sup (¥(p2) = ¥(0) ™ [ (902) (@)™ O} 22, 0)

x G<l9,y19+&>l9,/oge(l9,s,ys+<T>s))‘1’/(l9)dl9

~sup (¥(0) = ¥(0) 0 [ (4en) —(9)" Qhon 0
o _

x G<l9,y19+<1>19,/0 e(ﬁ,s,ys—i—cbs))‘}’/(ﬁ)dﬂ”

+ |[sup (¥(p2) — -0 / Qz Y (02) )11 QL (05, 9)Bu(9) ¥ (8)dd

[ e 0l (1, 9Bo()¥' w)dﬂ\

/Q " (¥(e2) - ¥(2)" ' ez,

< (¥(0) - T<o>>( na- 5)[

(19 Yo +<I>19 e(d,s,ys +d>s)>d19H

[ T (W(or) — ¥(8) ] Q02,0

0

x G(t? Yo +e1>19 e(9,5,ys +d>s)>‘1”(19)d19H

e )" [ (02 ) — Ol o1, 9)]

o

X G<19 Yo +<I>19 e(d,s,ys +<I>S)>‘I”(19)d19H

N /QQZ ' QY (02, 9)B0(8 )‘Y’(ﬁ)dﬁ”
- /0 1 T (¥o) —¥(8)" ) (o2, 19)Bv(19)‘P’(19)d19H
- /091 [Q‘I’<Q 0) — Q?y(m,ﬂ)]Bv(ﬁ)‘I"(ﬂ)dﬂH]
11
ZZL.

From Lemma 4, we obtain

Io < (¥(0) —¥(0)) O L (0)A(F + Eo(1+ 1)) (F(02) — ¥(e1))"

I < (¥(0) — ¥(0)) O L () A + Eo(1+1) | (¥(e2) — ¥(9))" — (Y1) — ¥(8))"].

Therefore, Iy — 0, and I; — 0 as g — 01. Let € be the arbitrary small positive,
we can write
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01—€

iy < sup (¥(0) ~ ) VI [ (w0~ ¥(0)" ' [@h ez ) - Qe 9)

X G<l9,y19 + Dy, /OQ e(d,s,ys + CTDS))‘Y’(ﬁ)dﬂ
+ [ (®0) —¥(8)" 1 [QY (02 9) — (01, 9)]

Je1—€

~ 0 ~ ,
X G 19/%9+<I>19,/ e(8,s,ys + Ps) | ¥ (9)do
0

< (¥(b) — %(0) " Lg (0 A (K + Eo(1+ 1)) /0“_6 (¥(01) —¥(9))" ¥ (8)ds

< sup || Q% (02 8) — QYlo1,0)]|
8€[0,01—€|

+ (T(b) _Y(o))(1*77)(1*5)L//LG’r(b)A(r/ + Eo(l + I‘/)) /

01— €

01

(¥(or) —¥(8))" ' (8)d0.

From Lemma 4, we obtain Is — 0 as g2 — 01 and € — 0. Using a similar procedure,
we obtain that Iy, I1¢ and 111 tend to zero.

We need to show that, for any ¢ € [0,b], ®}(0) = {(P4y)(0) : y € S} is relatively

compactin Y.
Take 0 < ¢ < b; then, for every € > 0and 6 > 0, let y € Sy and define the operator

@ on S, by
@) @) =1 [ [T 65, 6)(¥(0) ~ ¥(9) I T((¥(0) ~ ¥(0)"6)
x G(Q,yg + &, /OQ e(0,5,ys + cf>s)>‘1ﬂ(19)d9dl9
o 7 00,0) (¥(e) ~ ¥(9))" I T((¥(e) ~ ¥(0))"0)B0(0)¥'(9)dodo
= [ [ 0000 (@) — ¥ () T((Fle) — ¥(0))0 +e75 — €Te)
x :G<Q,yg+&>g,/oge((),5,]/s+CT>5)> +Bv(l9): ¥/ (8)d0d?
=T(e1d) [*° [T 0,00 (¥(0) — ¥(9)" " T((¥(0) — ¥(0)) 0 — e70)

e - T,
% |6( 0,0+ By /0 e(0,5,ys +®s) ) + Bo(8) | ¥ (8)dods.

Then, by compactness of T (€'4) for €75 > 0, we obtain that &5 (0) = {(®*°y) (o) :
y € S;} is relatively compact in Y. Furthermore, for any u € S,, we obtain
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@w)(0) - (@50

<sup (¥(0) - ¥(0) 7| [ [0, 0)(70) — ¥(9)" ' T(¥(e) - ¥(0)'0)

x {c:(g,yg+<$Q,/Oge(g,s,ys+cf>s)> +Bv(l9)}‘1”(z9)d6dt9H
+sup (¥(6) ~¥(0) Oy | [ [0, 0)(¥(0) - ¥(0) (0 - ¥(0)"0)
X {G(Q,yg+</I\>Q,/OQE(Q,S,]/S—|—CT>S)> +BU(19)}‘I’/(19)d9d19H
< (¥(b) —¥(0)) MY {Mﬂ (Lo (b)A(r + Eo(1+1))
+ M o] (¥(e) — 20))" (02, 0)00)
My [Lax(B)A(E + Eo(1-+1)) + Malol](¥(e) — (o — )" ([ 02, (000
< (¥(b) —¥(0)) MY {Mq [Loe(B)A(r' + Eo(1+1))
+ Mallol] (¥(6) ~ ¥(0)" " 02, 0)00)

MyLer(b)A(r' 4+ Eo(1 + 1)) + Ms||v
ko OIAGs Eol D)+ Melol] ) i ey,

where fooo 62,(0)do = ﬁ From the absolute continuity of the Lebesgue integral,
we obtain

H (®5y) (@) — (®5y) (0) H S 0ased— 0.

Thus, there is a relatively compact set that is arbitrarily close to the set @ (o) for ¢ > 0.
Therefore, from the Arzela—Ascoli theorem, it can be observed that @/ (o) is relatively
compact in Y. Hence, the Krasnoselskii fixed point theorem (Lemma 6) ® has a fixed point
in Sy, which is the mild solution of the system (1). O

Here, we focus on the approximate controllability of Equation (1).

Theorem 2. Suppose that (Hy)—(Hs) hold and G and H are a uniformly bounded function. Fur-
thermore, the corresponding linear Equation (8) is approximately controllable on ZL; then, system (1)
is approximately controllable on L.

Proof. Let u" be a fixed point of ® in Sy; using Theorem 1, any fixed point u* is a mild
solution of system (1), such that
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(o) =S¥ (0,0)[go — H(O,u(0)] + H(p ) + [ (¥(0) —¥(0))" QY (0, )1(0,1}) ¥'(&)d0
A )"~ QY (o, 9)88" QY (b, )R(7,Th)

x [m — (¥(b) - T(O))( ey [s$'5<e,o> (g0 — H(0,u(0))] +H(p, u))

+ / )" aQY (b, 0)R(5,u}) ¥ (8)ds
+/ )" QL (b, 6)a < ul /Owe(w 5,1 )ds>‘Y’( )d(S”‘I”(ﬁ)dﬁ
+/ '7 1Q‘I’(Q )G (Q,ug‘,/Oqe(g,s,ug\)ds>‘1”(19)d19

Define

P(ut) = uy - [s’“(e 0) [go — H(0,u(0))] + (o, )
w [ )" Al (b, 6)H(5,1) ¥ (6)do
+/ )11l (b, 6)G ( W, /Owe(w s )ds)‘f”(&)dd}
We have (I — T4R(7,%5)) = AR(A, T5), then
w2 (0) = S (5,0)[po — H(Ou(0)] +5(0,d) + [ (¥(0) —¥(0))" QY0 0)(0,u}) ¥ (0)a0

[ )" QY (v, 0128 OY (b, p)R(1, )
x [m - S@C<e,o> 90— 1(0,u(0))] — H(b,u)
[ () - ¥ (0)" Q0,08 (6 1) ¥ (o)

_/b (F(b) —¥(5))" ' QL (b,6)G ( uy, '/Owe(w s, ul )ds)‘Y’( )d&]‘i”(ﬁ)dﬁ

+/ ) 1Q\y(Q ®)G (Q,ug,/Oge(g,s,ug\)ds)‘P’(ﬁ)dﬁ
= SU*(b,0) [po — H(O,u(0))] + H(b, ) +/Ob (F(b) —¥(8))" " aQL (b, )H (9, us) ¥’ (8)d0
—i—/ )~ lQT(Q )G (Q,ué‘,/oge(g,s,uﬁ‘)ds)‘I”(t?)dﬁ

+TGR(A, Tg) P(u')
= Sq’é(b 0) [‘PO — H(0, u(O))] +H(b, uf}) + /Ob (T(b) —T(ﬂ))nilAQ@(b, ﬂ)H(ﬂ,ug)T/(ﬂ)dﬁ

+/ ¥(9)" 1Q7I;(Q,19)G(Q,u2‘, '/Oge(g,s,ué‘)ds)‘l”(ﬁ)dﬂ

+P(ut) — AR(A, B P(u?)
=u; — aR(A, T P(uM).
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Using Dunford-Pettis theorem, there is a subsequence {G <(5 ul 5 fo e(d,s, uﬁ‘)) } that

converges weakly to {G(&, us, fo‘?e(é, s, us)ds>} in LY(Z,Y), and similarly, {H(5,u})}

also converges.
Consider the following:

W=~ | S0, 0)[gu — H(O,u(0))] ~ (o)
— /Oh (F(b) —¥(5))" ' aQlL (b, 5)H(5,us) ¥ (6)db
= /Ob (¥(b) —‘i’(&))”lQ\';(b,(S)GG,u,;, /Oge(é,s,us)ds>‘l"(5)d(5].

We obtain
IP(u) ]

sup (¥(b) — ¥(0)) "1 5)[ (b, ) +/ —¥(6))" ' AQY (b, 6)H(5, ) ) ¥ (6)dd
+/ 6))" ' QL (b, 6)c (5,%, e(6,5,u)ds ) ¥' (5

( o.up) + / ()" 4 QY (5, 0)8(8,u,) ¥/ ()
+/ ()" " QL (b,6)G (5,u5,/Oge(é,s,us)ds>‘1’/((5)d(5)] H

< (¥ >—‘P<0>>< D0 )~ (o)

+/ (6))7'aQ% (b, 6) H H(6,u}) — (6, u5)|[ ¥ (6)ds

(5)d5]

—I—/ )77 lQ‘Y b,6) H ((5 u(;,/O e(d,s,u; )ds) —G(&,u5,/()ge(5,s,us)ds>"F/

From the uniform boundedness of {G*(-,-,)} and {H"(,-)}, there exists G, H €
LY(Z,Y), such that

G(é,ug‘, /Owe(é,s,ué)ds) — G(é,u5, /Owe(é,s,us)ds> as A — 0,

H(&,ug\) — H(d,u5) as A — 0.

Furthermore, approximating controllability of system (8), we obtain AR(A, ‘Ig) — Oas
A — 07 in the strong continuous topology. Thus, we can obtain thatas A — 07,

s (5) = | < ARG 5) @) + AR(A, 58) (Pe) = W)
< [IAR (A, So)WI| + [[(P) W) — 0.
Hence, system (1) is approximately controllableonZ. O

4. Application
4.1. Application 1

Observe these systems of Y-HFDy;;; with infinite delay:
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Hp3&Y [u(Q, o)+ /OHH(Z, a)u(p,z)dz} = a—iu(g, o) +Wu(o,0)
G<Q,/Q Gi(w —o)u dw/ / Gy (w, 0,7 — w)u(r, a)dwda), (15)

u(0,0) = up(7), 0 €0, 7],
u(o,0) =u(o,m) =0, 0€7Z,
u(g,0) =¢(g,0), 0 <0 <m, g€ (—0o,0],

N

Here, 1 D%";‘F is the Y-HF Dy, of order %, G:7Z xSy XY — Yisa continuous function,
and Gy and G; are the required functions. Let Y = L2([0, ]) be endowed with the usual
norm || - ||;2, and define the operator A: D(A) C Y — Y by

D(A) = {a € Y : a,d are absolutely continuous and a” € Y, a(0) = a(r) = 0},

and Au = Also, we can observe that A has a discrete spectrum; the eigenvalues are

ayz
m?,m € N, with the eigen vectors e, (z) = \/%sin(mz).
Furthermore, the infinitesimal generator A generates a uniformly bounded analytic
semigroup {T(0)},>0onY,ie,
> 2
T(g)a= ) e " %aemem, a€y,

m=1

where ||T(¢)|| < e ¢ for all ¢ > 0. Therefore, we give x;, = 1, which implies that
SUP pe [0,00) IT(0)|| = 1, and hypotheses (Hj) is satisfied. Take

u(o)(c) =u(o, 0
v(0)(0) = ¢(o,

)
)
G(Q/ug,/oge((?,s,us)ds> / Gi(w —o)u wada)/ / Gy (w, 0,7 — w)u (r,a)dwda),
/Oee(g,s,us)ds:/o LWG2(errr_w)u(V,U)dde_

Suppose w(f) = exp(26), 6 < 0; then, ffoo w(0)d6 = %, and we must obtain:

0
lolly = [ (¥@) = 2©@) """ u(e)o(e)]] o0

We can make a Banach space (S}, || - ||y) and satisfy Lemma 1. Also, the corresponding
functions F, Fy, and F; are satisfied (Hz), (H3).
Take ¥(0) = /0 +1, x; = 1; then, we obtain (9):

Mo(va-1Pi<n

T(3)

Hence, according to Theorem 1, system (1) has a mild solution on [0, 1].
Here, let B : U — U be an operator with U = L2([0, r]), defined by

(Bv)(0)(y) = Wp(y,0), 0 <y < 7.

With the choice of A, B, and G, system (15) can be expressed as
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Hp3GY [u(o) — H(p,up)} = Au(o) + G(Q,ug, /Oge(g, s,us)ds> +Bv(0), 0 € (0,1],
Ié}rfﬂ)(lfé)u(o) — ¢O/ (16)

Thus, the assumptions (H;)—(Hs) are satisfied. Furthermore, the linear system (8)
corresponding to (15) is approximately controllable and satisfies Theorem 1. Therefore,
the corresponding system (15) obeys Theorem 2; hence, it is approximately controllable.

4.2. Application 2

In this part, we examine the Hilfer-fractional-differential-equation-based IVP and
demonstrate how fractional derivatives with respect to another function might be advanta-
geous. Consider the mild solution of system (1),

u(0) = S¥¥(0,0) o~ 0,u(0))] + H(p.uy) + [ (¥(0) ¥(0))"™'AQY o 0)(8,w0) ¥ (0)d0
+ [ (40~ ¥(9)" Q4o (@) (0)a0

+ /: (¥(o) — ‘~I’(19))'7_1 Q?I,(Q, 19)G(Q, U, ./O'ﬂe(g,s,us)ds)f’(l&‘)dﬁ, for o € 10,b]. (17)

In the realm of digital signal processing (DSP), digital filters play a very important role.
In reality, the way that the digital filter is implemented is exceptional; this is one of the key
reasons why DSP is becoming more and more well liked. Typically, we categorise filters
based on their two primary uses: signal separation and signal restoration. If a tiny signal
is affected together with agitation, sound, disturbance, or other signals, the use of filters in
signal separation is crucial, for instance, if there was a gadget that could calculate the electrical
activity of a baby’s heart (EKG) while it was still in the womb. The gross indication may
possibly be influenced by means of the inhalation and pulse of the mother. One can use a
filter for segregating these signals with the target that those may be explored individually.

When a signal is distorted in some way, we could use signal restoration. For instance,
sound recordings made using the equipment may be separated, especially when it comes to
describing the sound’s occurrence. Similarly, there is still another technique for advanced
channels that is referred to as recursion. Currently, we use convolution to apply a filter;
each application in earnings is defined by balancing the models and combining them.
Motivated by the filter system presented in [33-35], we present the digital filter system
corresponding to the mild solution in (1). Digital filters are the back bone for any signal
processing application. Many bio-medical signals related to the human body are, nowadays,
acquired for various informative feature extractions. Most of the mentioned signals, in
general, possess a low frequency by nature. These signals describe information pertaining
to various disorders and diseases for which the accuracy is of high concern. The efficiency
of any digital signal processing filtering system relies on the ability to reject noise.

Figure 1 describes the following:

1. Product modulator 1 accepts the input u(p) and H(-) produces the output H(p, 1,).

2. Product modulator 2 accepts the input H(+,u,) and A and gives out put AH().

3. Product modulator 3 accepts the input Qi (p,¥) and AH(-, ) produces the output
QUL AH(-).

4. Product modulator 4 accepts the input Q@AH( . up) and ¥Y-function, and obtains the
output (¥(p) —¥(8))"~" QAH(, u,)¥'(9).

5. Product modulator 5 accepts the input v(p) and B, and produces the output Bv(p).

6. Product modulator 6 accepts the input Q4 (o, ®) and Bv(p), and gives the output

BQY (0, 9)v(p).
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7. Product modulator 7 accepts the input u(p) and e(-), and gives the output e(-,u,)
over the period (0, p).
8.  The integrator executes the input G(- - - ) and [ e(-,u,) and produces the output

G (Q, U, fog e(os, us)ds) over the period of time (0,p), V p € [0, b].
9.  Product modulator 8 accepts the input Q?}, (p,¥) and G(Q, Uy, fOQ e(g, s,us)ds) and

gives the output Q?P (p,9)G (Q, Uy, fog e(o,s,us) ds) )

10. Product modulator 9 accepts [¢y + H(0,u(0))] and Sf},’é (p,0) at time p = 0, and pro-
duces SI°(p,0) [0 + H(0,u(0))].
11. The integrators execute the following value:

-1
(Y(o) — ¥(8))" Qy(p,0)[A(8,u9) + Bu(p) + Glo,up, [§ e(p,s,u6))ds]¥'(8),
and produces the integral value over the period p.
Finally, we turn all outputs from the integrators to the summer network and the
output of u(p) is obtained; it is bounded and approximately controllable.

-function
Q.9

H() A

u(p)

|

4

() -
e()

u(p) Integrator Integrator

$o @ @

H(0,u(0)) 51 (p,0) IH(.) Output u(p)

Figure 1. Filter system model.

5. Conclusions

In this work, we studied about the approximate controllability of Y-HF D;;,;; equations
with infinite delay by using a fixed point method. The major results were established
by applying the semigroup theory, ¥-HF Dy, and fixed point theorem. Two applications
(theoretical and filter system) were provided to illustrate the principle. In the future, we
will focus on the exact controllability of Y-HF Dy;,; systems and real-life applications using
fractional differential systems via a fixed point approach.
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