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Abstract: In the last few years, reaction–diffusion models associated with discrete fractional calculus
have risen in prominence in scientific fields, not just due to the requirement for numerical simulation
but also due to the described biological phenomena. This work investigates a discrete equivalent of the
fractional reaction–diffusion glycolysis model. The discrete fractional calculus tool is introduced to the
discrete modeling of diffusion problems in the Caputo-like delta sense, and a fractional discretization
diffusion model is described. The local stability of the equilibrium points in the proposed discrete
system is examined. We additionally investigate the global stability of the equilibrium point by
developing a Lyapunov function. Furthermore, this study indicates that the L1 finite difference
scheme and the second-order central difference scheme can successfully preserve the characteristics
of the associated continuous system. Finally, an equivalent summation representing the model’s
numerical formula is shown. The diffusion concentration is further investigated for different fractional
orders, and examples with simulations are presented to corroborate the theoretical findings.

Keywords: fractional discrete-time reaction–diffusion systems; L1 finite difference scheme; local
stability; Lyapunov function; global stability

MSC: 39A12; 39A30; 39A60; 39B82

1. Introduction

Reaction–diffusion equations have recently gained popularity due to their applicability
to a wide range of biological and chemical processes as well as their unique characteristics
in terms of the propagation speed and the new oscillations not seen in standard two-species
reaction–diffusion systems. The biochemical process that converts glucose to pyruvate
is known as glycolysis, which is present in the vast majority of living creatures today [1].
Throughout this process, two molecules of pyruvate are generally created for every molecule
of glucose. The prevalence of glycolysis in a wide range of animals on Earth suggests that it is
a primitive metabolic route [2]. Glycolysis is a series of reactions that divide pyruvates (three-
carbon molecules) into two components in order to obtain energy from glucose. The same
reaction strategy underpins all glycolysis models. The model differs due to differences in
the mechanism for the main enzyme reaction. Because such systems have spatial variables,
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they are widely utilized to analyze certain unusual behaviors, which can include self-
replicating spikes, self-excitation, and spatiotemporal chaos. The need to comprehend
dynamics is emphasized for this model in order to actualize a broader range of real-world
scenarios. Numerous significant attempts have been made to explore the behavior of the
reaction–diffusion glycolysis model. The application of a linear control rule to synchronize
the reaction–diffusion glycolysis model is discussed in [3]. In [4], the numerical solution of a
general glycolysis reaction–diffusion system was studied. In addition, the stability of the
Selkov–Schnakenberg reaction–diffusion system was addressed in [5].

In modern-world experiences, fractional-order nonlinear equations are often employed
to simulate a variety of physical phenomena [6–9]. Due to its numerous applications in the
fields of chemistry, biology, physics, technology, thermal technology, electricity, mechanics,
data processing, electrohydraulics, population modeling, machine learning, and control,
the concept of fractional calculus continues to attract the attention of scientists. [10–13].
Due to its use in and relevance to many fields of research and engineering, fractional
reaction–diffusion models have gained attention in recent years. In this field, for example,
in [14], a pair fractional reaction–diffusion model was explored. In fractional reaction–
diffusion systems, they examined nonlinear oscillations and the stability domain. In [15],
a solution to a specific fractional reaction-diffusion problem was proposed. In addition,
several breakthroughs have been made in the research on the dynamics of the fractional
reaction diffusion glycolysis model, for example, see [16–18]. In the works described earlier,
the fractional component is dedicated to the time partial derivative; nevertheless, in some
circumstances, the standard Laplacian cannot imitate the diffusion, and the mean square
movement of the diffusing components does not progress linearly over time. Following
numerous findings in biological systems, emphasis has been placed on fractional subdif-
fusion, which is defined as the mean square movement of a population propagating as
a sublinear power law in time. It is now widely known that if particles are confined for
arbitrarily extended periods of time, subdiffusion occurs (see [19–21]).

Discrete reaction–diffusion systems have received less attention than continuous
reaction–diffusion systems. Discrete reaction–diffusion systems are formed of cells or
lattices that contain chemical processes and are linked together via mass transfer across
their membranes. Discrete reaction diffusion systems are more tightly linked to biological
systems than continuous systems, and in reaction to a small disturbance, they may exhibit
extremely intriguing and diverse patterns in a two-dimensional space [22–24]. However,
fractional discrete reaction diffusion equations have received little attention [25]. In [26],
a fractional discrete diffusion equation was proposed. The chaotic behavior of a variable-
order fractional diffusion equation on discontinuous time scales was examined in [27].
In [28], the global dynamics for a class of discrete fractional epidemic models with reaction–
diffusion were also investigated. Apparently, we have a gap in our understanding of the
dynamics of such systems.

In recent decades, both integer and noninteger fractional orders of the well-known
glycolysis reaction diffusion model have received extensive study. The majority of this work
has focused on the dynamics and behavior of solutions ([29–32]). However, to the authors’
knowledge, this is the first investigation of the dynamics and stability of the discrete
fractional reaction–diffusion glycolysis model. This prompted us to study the stability
of the equilibrium state in a discrete fractional-order reaction–diffusion glycolysis model.
A discrete fractional glycolisis reaction diffusion model in the Caputo-like delta sense is
described in this study, employing a second-order central difference scheme and an L1
finite difference scheme. Both the local and global stability were explored, and simulations
were conducted to test the model’s applicability.

The following is a summary of the paper’s content. Section 2 provides an introduction
to fractional discrete calculus, as well as the fundamental concepts associated with the
delta Caputo h-discrete difference operator. The mathematical model under examination
is described in Section 3. The analysis of the local stability of the equilibrium state for
the presence and absence of diffusion is highlighted in Section 4. The global stability of
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the equilibrium state, which relies on the fractional orders of the investigated model, is
discussed in Section 5. Section 6 includes numerical simulations that back up the findings.
Section 7 outlines a number of results.

2. Preliminaries

This section provides the necessary terminology and stability theory for the fractional
discrete calculus.

Definition 1 ([33]). Given that z : N→ R, the forward difference operator ∆ is stated by

∆z(r) = z(r+ 1)− z(r); r ∈ N. (1)

Also, the recursive identification of the operator ∆n, n = 1, 2, 3, . . . is ∆nz(r) = ∆(∆n−1z(r)), r ∈ N.
In particular, the second-order difference operator of the function z(t) is provided by

∆2z(r) = z(r+ 2)− 2z(r+ 1) + z(r). (2)

Theorem 1 ([33]). We have the summation by parts formulae for the following two functions:
z; y : R→ R and a; b ∈ N; a < b;

b−1

∑
=a

z()∆y() = z()y()|ba−
b−1

∑
=a

y( + 1)∆z(), (3)

b−1

∑
=a

z( + 1)∆y() = z()y()|ba−
b−1

∑
=a

y()∆z(). (4)

Definition 2 ([34,35]). Let z ∈ (h̄N)a → R. For a given ϑ > 0, the ϑ−th order h̄-sum is given by

h̄∆−ϑ
a z(t) =

h̄
Γ(ϑ)

s= a
h̄

∑
t
h̄−ϑ

(t− σ(sh̄))(ϑ−1)z(sh̄), σ(sh̄) = (s + 1)h̄, t ∈ (h̄N)a+ϑh̄,

the initial value is a ∈ R, and the h̄-falling factorial function is specified by

t
(ϑ)
h̄ = h̄ϑ Γ( th̄ + 1)

Γ( th̄ + 1− ϑ)
,

while
(h̄N)a+ϑh̄ = {a+ (1− ϑ)h̄, a+ (2− ϑ)h̄, . . . }.

Definition 3 ([36,37]). Considering a function z(t) given on (h̄N)a and for a particular ϑ > 0,
the Caputo h̄-difference operator is represented by

C
h̄ ∆ϑ

az(t) =h̄ ∆−(n−ϑ)
a ∆n

h̄z(t), (5)

where ∆n
h̄z(t) =

z(t+ h̄)− z(t)

h̄
.

Lemma 1 ([34]). The following inequality holds

C
h̄ ∆ϑ

az
2(t) ≤ 2z(t + ϑh̄)C

h̄ ∆ϑ
az(t), t ∈ (h̄N)a+ϑh̄, (6)

where 0 < ϑ ≤ 1.

Let us consider the nonlinear fractional-order difference system:
C
h̄ ∆ϑ

az(t) = ψ(t+ h̄ϑ, z(t+ h̄ϑ)), t ∈ (h̄N)a+ϑh̄. (7)
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Theorem 2 ([38]). Assume that the equilibrium point of (21) is z∗. z∗ is asymptotically stable if all
of the eigenvalues of ψ′(z∗) are found in Sϑ

h̄ , where

Sϑ
h̄ =

{
w ∈ C : |Arg(w)| > ϑπ

2
or |w| > 2ϑ

h̄ϑ
cosϑ

(
Arg(w)

ϑ

)}
. (8)

Theorem 3 ([34]). Assume that the equilibrium point of the system (21) is z = 0. If there is a
positively definite and decreasing scalar function, the equilibrium point is asymptotically stable,
such that C

h̄ ∆ϑ
aV(t, z(t)) ≤ 0.

3. The Fractional Discrete Glycolysis Reaction–Diffusion System

The model under consideration is approximated employing two commonly used
approaches in this section. This is, to our knowledge, the first discrete model in the
literature. The glycolysis reaction–diffusion system, as previously stated, was provided as
a model. Refs. [4,5] cite it as follows:

∂z

∂t
= d1∆z+ bw− z+ z2w, z ∈ Ω, t > 0,

∂w

∂t
= d2∆w+ a− bw− z2w, z ∈ Ω, t > 0,

∂z = ∂w = 0 , z ∈ ∂Ω, t > 0,
u(z, 0) = z0(z) > 0, w(z, 0) = w0(z) > 0, z ∈ Ω.

(9)

In this case, the variables z(z, t) and w(z, t) denote the chemical concentrations, d1 and d2 are
the diffusion coefficients, a is the dimensionless input flow, and b is the dimensionless con-
stant rate for the low activity state. Ω is a bounded domain in Rn with sufficiently smooth
boundaries. For a two-cell system, this model has some stability findings (see [39,40]).
The Sel’klov model, which has attracted a lot of interest recently ([41–43]), is known to exist
for b = 0.

Researchers have investigated time-fractional systems extensively; hence, the follow-
ing fractional-time Glycolysis reaction-diffusion system was presented:{

C
0 Dδ

t z− d1∆z = bw− z+ z2w, z ∈ Ω, t > 0
C
0 Dδ

tw− d2∆w = a− bw− z2w, z ∈ Ω, t > 0,
(10)

where ∆ = ∑n
i=1

∂2

∂z2
i

, 0 < δ ≤ 1 is the fractional order, and C
0 Dδ

t describes the Caputo

fractional derivative. d1, d2, and σ are strictly positive constants with the same initial
conditions and Neumann boundary conditions.

Relying on the model (10) and the method of discretization employed in [26], provided

that z ∈ [0, L], we obtain zi+1 = zi + k, i = 0, . . . , m, and by applying (1) , ∂2z(z,t)
∂z2 and

∂2w(z,t)
∂z2 may be approximated as

∂2z(z, t)
∂z2 ≈ zi+1(t)− 2zi(t) + zi−1(t)

k2 ,

∂2w(z, t)
∂z2 ≈ wi+1(t)− 2wi(t) +wi−1(t)

k2 .

By defining the second-order difference operator of zi and wi, we obtain
∂2z(z, t)

∂z2 ≈ ∆2zi−1(t)

k2 ,

∂2w(z, t)
∂z2 ≈ ∆2wi−1(t)

k2 .
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Thus, we introduce the following discrete-time reaction–diffusion fractional glycolysis system:
C
h̄ ∆ϑ

t0
zi(t) =

d1

k2 ∆2zi−1(t+ h̄ϑ) + bwi(t+ h̄ϑ)− zi(t+ h̄ϑ) + z2
i (t + h̄ϑ)wi(t+ h̄ϑ),

C
h̄ ∆ϑ

t0
wi(t) =

d2

k2 ∆2wi−1(t+ h̄ϑ) + a− bwi(t+ h̄ϑ)− z2
i (t+ h̄ϑ)wi(t+ h̄ϑ),

(11)

with the periodic boundary conditions{
z0(t) = zm(t), z1(t) = zm+1(t),
w0(t) = wm(t), w1(t) = wm+1(t),

(12)

and the initial condition

zi(t0) = φ1(zi) ≥ 0, wi(t0) = φ2(zi) ≥ 0.

4. Local Stability

To analyze the asymptotic stability of the previously stated discrete fractional glycoly-
sis model, we consider the single equilibrium produced by this system:

d1

k2 ∆2z∗ + bw∗ − z∗ + z2∗w∗ = 0,
d2

k2 ∆2w∗ + a− bw∗ − z2∗w∗ = 0.
(13)

Considering Theorem 1, the unique equilibrium point of system (11) is provided by

(z∗,w∗) =
(

a,
a

a2 + b

)
. (14)

4.1. Local Stability of the Free Diffusions System

In this section, we provide sufficient conditions for the system’s local asymptotic
stability. {

C
h̄ ∆ϑ

t0
z(t) = bw(t+ h̄ϑ)−w(t+ h̄ϑ) + u2(t+ h̄ϑ)w(t+ h̄ϑ),

C
h̄ ∆ϑ

t0
w(t) = a− bz(t+ h̄ϑ)− z2(t+ h̄ϑ)w(t+ h̄ϑ).

(15)

Theorem 4. The conditions that follow must be satisfied for system (15) to be locally asymptotically
stable at the positive steady state (z∗,w∗):

• If
(

a2 − b2

a2 + b2 − (a2 + b2)

)2

≥ 4
(
a2 + b2) and

a2 − b2

a2 + b2 < a2 + b2.

• If
(

a2 − b2

a2 + b2 − (a2 + b2)

)2

< 4
(
a2 + b2) and

a2 − b2

a2 + b2 ≤ a2 + b2.

Proof. The characteristic equation for the eigenvalues is discovered around this stable state
using linear stability analysis:

J(z∗,w∗) =


∂ψ

∂z

∂ψ

∂w
∂Ψ
∂z

∂Ψ
∂w

 =


2a2

a2 + b2 − 1 a2 + b2

− 2a2

a2 + b2 − (a2 + b2)

, (16)

with
ψ(z,w) = bw(t+ h̄ϑ)− z(t+ h̄ϑ) + z2(t+ h̄ϑ)w(t+ h̄ϑ), (17)

and
Ψ(z,w) = a− bw(t+ h̄ϑ)− z2(t+ h̄ϑ)w(t+ h̄ϑ). (18)
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From the Jacobian matrix, we can see that

tr(J) =
2a2

a2 + b2 − (a2 + b2)− 1, det(J) = a2 + b2, (19)

and J(z∗,w∗) has the characteristic equation given by

Λ2 − tr(J)Λ + det(J) = 0, (20)

or its discriminant is

NΛ = tr2(J)− 4det(J) =
(

a2 − b2

a2 + b2 − (a2 + b2)

)2

− 4
(

a2 + b2
)

. (21)

As a consequence, we may conclude the following according to the sign of (21).

• If NΛ > 0, it is evident that det(J) > 0. Thus, the sign of tr(J) determines the eigen-
values’ negativity, and the eigenvalues Λ1 and Λ2 are real and may be expressed as

Λ1 =
tr(J)−

√
NΛ

2
, Λ2 =

tr(J) +
√
NΛ

2
. (22)

– If tr(J) < 0, we have

Λ1 =
tr(J)−

√
NΛ

2
< 0. (23)

Hence, Arg(Λ1) = π. The two eigenvalues are real; therefore, Arg(Λ1) = Arg
(Λ2) = π. As a result, (z∗,w∗) is asymptotically stable according to Theorem 2.

– If tr(J) > 0, then we have

Λ2 =
tr(J) +

√
NΛ

2
> 0. (24)

Therefore, Arg(Λ2) = 0, and based on Theorem 2, system (15) is unstable.

• If NΛ < 0, then

Λ1 =
tr(J)− i

√
−NΛ

2
, Λ2 =

tr(J) + i
√
−NΛ

2
. (25)

We may examine the solutions relying on the sign of tr(J).

– If tr(J) < 0 or tr(J) > 0, consequently, system (15) is asymptotically stable
following the same case that was previously analyzed.

– If tr(J) = 0, then

Arg
(
−i
√
−NΛ

2

)
= Arg

(
i
√
−NΛ

2

)
=

π

2
,

and system (15) is asymptotically stable.

• If NΛ = 0, it is impossible for tr(J) to equal zero, since det(J) > 0. The sign of the
eigenvalues and that of tr(J) are the same. As a consequence, (z∗,w∗) is unstable if
tr(J) > 0, and it is asymptotically stable for all ϑ ∈ (0, 1], if tr(J) < 0.

The proof is complete.

4.2. Local Stability of the Diffusion System

The steady state (z∗,w∗) may be stable in the presence of diffusion under specific
parameter conditions. We follow the same procedure as in [44], beginning by examining
the eigenvalues of this equation:

∆2zi−1(t+ h̄ϑ) + Λizi(t+ h̄ϑ) = 0, (26)



Fractal Fract. 2023, 7, 587 7 of 14

with the periodic boundary conditions:

z0(t) = zm(t), z1(t) = zm+1(t). (27)

We obtain
C
h̄ ∆ϑ

t0
zi(t) =

d1

k2 Λizi(t+ h̄ϑ) + bwi(t+ h̄ϑ)− zi(t+ h̄ϑ) + z2
i (t+ h̄ϑ)wi(t+ h̄ϑ),

C
h̄ ∆ϑ

t0
wi(t) =

d2

k2 Λiwi(t+ h̄ϑ) + a− bwi(t+ h̄ϑ)− z2
i (t+ h̄ϑ)wi(t+ h̄ϑ).

(28)

When linearizing system (28) about the steady state (z∗,w∗), we obtain the following.

Ji =

−
d1
k2 Λi +

2a2

a2 + b2 − 1 a2 + b2

− 2a2

a2 + b2 − d2
k2 Λi − (a2 + b2)

. (29)

Then, the following result is obtained.

Theorem 5. We suppose that(
a2 − b2

a2 + b2 − (a2 + b2)

)2

> 4
(

a2 + b2
)

and
a2 − b2

a2 + b2 < a2 + b2;

system (11) is asymptotically stable at the steady state (z∗,w∗), if the following hold:

• If d1 < d2 and d1
k2 Λ1 ≥

2a2

a2 + b2 − 1.

• If d1 > d2 and d1
k2 Λ1 ≥

2a2

a2 + b2 − 1,

and in addition, the eigenvalues

µj(Λi) =
tr(Ji) +−

√
tr(Ji)2 − 4dert(Ji)

2
, j = 1, 2,

satisfy Arg(µj(Λi)) >
ϑπ

2
.

Proof. We linearize the system to investigate its local asymptotic stability. By applying
basic linear operator theory and taking the system’s fractional nature into account, we
may argue that (u∗, v∗) is asymptotically stable if the eigenvalues of the linearized system
satisfy the conditions of Theorem 2. We obtain

Ji =

6 d1
k2 Λi +

2a2

a2 + b2 − 1 a2 + b2

− 2a2

a2 + b2 6 d2
k2 Λi − (a2 + b2)

 = J − µ(Λi)I, (30)

which has the eigenvalue equation

µ2(Λi)− tr(Ji)µ(Λi) + det(Ji) = 0, (31)

where

tr(Ji) = −
(

d1

k2 +
d2

k2

)
Λi +

a2 − b2

a2 + b2 − (a2 + b2), (32)

and

det(Ji) =
d1

k2
d2

k2 Λ2
i +

(
d1

k2 (a2 + b2)− d2

k2

(
a2 − b2

a2 + b2

))
Λi + a2 + b2, (33)

and its discriminant is
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Ni = tr2(Ji)− 4det(Ji)

=

(
−
(

d1

k2 +
d2

k2

)
Λi +

a2 − b2

a2 + b2 − (a2 + b2)

)2

− 4
(

d1

k2
d2

k2 Λ2
i +

(
d1

k2 (a2 + b2)− d2

k2

(
a2 − b2

a2 + b2

))
Λi + a2 + b2

)
,

=

(
d1

k2 −
d2

k2

)2
Λ2

i − 2
(

d1

k2 −
d2

k2

)(
a2 − b2

a2 + b2 + (a2 + b2)

)
Λi + ∆Λ.

The stability of (z∗,w∗) depends on the sign of ∆1i. The discriminant of ∆1i in relation to
Λi is

NΛi = 4
(

d1

k2 −
d2

k2

)2( a2 − b2

a2 + b2 + (a2 + b2)

)2

− 4
(

d1

k2 −
d2

k2

)2
((

a2 − b2

a2 + b2 − (a2 + b2)

)2

− 4
(

a2 + b2
))

= 32
(

a
(

d1

k2 −
d2

k2

))2
.

Clearly, NΛi > 0, and because d1 6= d2, we distinguish two cases,

• If d1 < d2, then
(

a2 − b2

a2 + b2 − (a2 + b2)

)2

> 4
(
a2 + b2), and the two solutions of the

equation NΛi = 0 are both negative. Thus, NΛi > 0, and the roots of (31) are
µ1(Λi) =

tr(Ji) +
√

tr(Ji)2 − 4det(Ji)

2
,

µ2(Λi) =
tr(Ji)−

√
tr(Ji)2 − 4det(Ji)

2
.

(34)

It should be noted that the solutions are real, and µ(Λi)1 < 0. In addition, if d1
k2 Λ1 ≥

2a2

a2 + b2 − 1, then µ(Λi)2 < 0. This leads to

|Arg(µ1(Λi))| = |Arg(µ2(Λi)2)| = π, (35)

which ensures (z∗,w∗) is asymptotic stability.

• If d1 > d2, we have d1
k2 Λ1 ≥

2a2

a2 + b2 − 1. This returns us to the previous scenario

Again, for d1
k2 Λ1 −

3( a
5 )

2−5

1+( a
5 )

2 , det(Ji) > 0; hence, λ1 and λ2 are negative and must meet

the conditions of Theorem 2.

5. Global Stability

In this section, we show how the constant steady-state solution is globally asymptoti-
cally stable.

Theorem 6. If
−bw∗ + 2w∗z∗2 ≤ 0, (36)

then system (11) is globally asymptotically stable.

Proof. To demonstrate this result, we employ the identical Lyapunov function as in [28].
We consider the following function for this purpose:

l(z) = z− 1− ln(z),



Fractal Fract. 2023, 7, 587 9 of 14

where this function has a strict global minimum, i.e., l(1) = 0. Let the following be a
nonnegative function:

L(t) = L1(t) + L2(t),

where

L1(t) =
m

∑
i=1

z∗l

(
zi
z∗

)
, L2(t) =

m

∑
i=1

w∗l
(wi
w∗

)
.

First, we calculate L1(t)

C
h̄ ∆ϑ

t0
L1(t) =

m

∑
i=1

C
h̄ ∆γ

t0
z∗l

(
zi(t)

z∗

)
,

≤
m

∑
i=1

(
1− z∗

zi(t+ h̄ϑ)

)
C
h̄ ∆γ

t0
zi(t),

≤
m

∑
i=1

(
1− z∗

zi(t+ h̄ϑ)

)
(

d1

k2 ∆2zi−1(t+ h̄ϑ) + bwi(t+ h̄ϑ)− zi(t+ h̄ϑ)

+ z2
i (t+ h̄ϑ)wi(t+ h̄ϑ)),

≤
m

∑
i=1

(
1− z∗

zi(t+ h̄ϑ)

)
(bwi(t+ h̄ϑ)− bw∗ − zi(t+ h̄ϑ) + z∗

+ z2
i (t+ h̄ϑ)wi(t+ h̄ϑ)− z2∗w∗)

+
d1

k2

(
1− z∗

zi(t+ h̄ϑ)

)
(zi+1(t+ h̄ϑ)− 2zi(t+ h̄ϑ) + zi−1(t+ h̄ϑ)).

Using (6), we obtain

C
h̄ ∆ϑ

t0
L1(t) ≤

m

∑
i=1

bw∗
(

1− z∗

zi(t+ h̄ϑ)

)(
1− wi(t+ h̄ϑ)

w∗

)

− z2∗w∗
(

1− z∗

zi(t+ h̄ϑ)

)(
1−

z2
i (t+ h̄ϑ)wi(t+ h̄ϑ)

z2∗w∗

)

+ z∗
(

1− z∗

zi(t+ h̄ϑ)

)(
1− zi(t+ h̄ϑ)

z∗

)
+

m

∑
i=1

d1

k2 (zi+1(t+ h̄γ)

− 2zi(t+ h̄γ) + zi−1(t+ h̄γ))− d1

k2 z
∗
(
zi+1(t+ h̄ϑ)

zi(t+ h̄ϑ)
+

zi−1(t+ h̄ϑ)

zi(t+ h̄ϑ)
− 2
)

,

≤
m

∑
i=1
−bw∗

(
l

(
z∗

zi(t+ h̄ϑ)

)
+ l

(
wi(t+ h̄ϑ)

w∗

)
− l

(
wi(t+ h̄ϑ)z∗

w∗zi(t+ h̄ϑ)

))
+ z2∗w∗

(
l

(
z∗

zi(t+ h̄ϑ)

)
− l

(
wi(t+ h̄ϑ)zi(t+ h̄ϑ)

z∗w∗

)
+ l

(
z2(t+ h̄ϑ)w(t+ h̄ϑ)

z2∗w∗

))
− z∗

(
l

(
z∗

zi(t+ h̄ϑ)

)
+ l

(
zi(t+ h̄ϑ)

z∗

))
+

d1

k2 (zm+1(t+ h̄ϑ)− 2zm(t+ h̄ϑ) + z0(t+ hγ)− z1(t+ h̄ϑ))

− z∗
d1

k2

(
zi+1(t+ h̄ϑ)

zi(t+ h̄ϑ)
− 2 +

zi−1(t+ h̄ϑ)

zi(t+ h̄ϑ)

)
,

≤
m

∑
i=1

(−bw∗ + z2∗w∗ − z∗)l

(
z∗

zi(t+ h̄ϑ)

)
− bw∗l

(
zi(t+ h̄ϑ)

z∗

)
− z∗l

(
wi(t+ h̄ϑ)

w∗

)
+ z2∗w∗l

(
z2(t+ h̄ϑ)w(t+ h̄ϑ)

z2∗v∗

)
− z2∗w∗l

(
wi(t+ h̄ϑ)zi(t+ h̄ϑ)

z∗w∗

)
+ z∗l

(
wi(t+ h̄ϑ)z∗

w∗zi(t + h̄ϑ)

)
− z∗

d1

k2

(
zi+1(t+ h̄ϑ)

zi(t+ h̄ϑ)
− 2 +

zi−1(t+ h̄ϑ)

zi(t+ h̄ϑ)

)
.
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Now, we have

C
h̄ ∆ϑ

t0
L2(t) =

m

∑
i=1

C
h̄ ∆ϑ

t0
w∗l

(
wi(t)

w∗

)
,

≤
m

∑
i=1

(
1− w∗

wi(t+ h̄ϑ)

)
C
h̄ ∆ϑ

t0
wi(t),

≤
m

∑
i=1

(
1− w∗

wi(t+ h̄ϑ)

)(
d2

k2 ∆2wi−1(t+ h̄ϑ) + a− bwi(t+ h̄ϑ)− z2
i (t+ h̄ϑ)wi(t+ h̄ϑ)

)
,

≤
m

∑
i=1

(
1− w∗

wi(t+ h̄ϑ)

)(
bw∗ + z2∗w∗ − bwi(t+ h̄ϑ)− z2

i (t+ h̄ϑ)wi(t+ h̄ϑ)
)

,

+
d2

k2

m

∑
i=1

(
1− w∗

wi(t+ h̄ϑ)

)
(zi+1(t)− 2zi(t) + zi−1(t)) + o(1),

≤
m

∑
i=1

bw∗
(

1− w∗

wi(t+ h̄ϑ)

)(
1− wi(t+ h̄ϑ)

w∗

)

+w∗z2∗
(

1− w∗

wi(t+ hγ)

)(
1−

wi(t+ h̄ϑ)z2
i (t+ h̄ϑ)

w∗u2∗

)

+
m

∑
i=1

d2

k2 (wi+1(t+ h̄ϑ)− 2wi(t+ h̄ϑ) +wi−1(t+ h̄ϑ))

− d2

k2 w
∗
(
wi+1(t+ h̄ϑ)

wi(t+ h̄ϑ)
+

wi−1(t+ h̄ϑ)

wi(t+ h̄ϑ)
− 2
)

,

≤
m

∑
i=1
−bw∗

(
l

(
w∗

wi(t+ h̄ϑ)

)
+ l

(
wi(t+ h̄ϑ)

w∗

))

+w∗z2∗
(
−l
(

w∗

wi(t+ h̄ϑ)

)
+ l

(
z2∗

z2
i (t+ h̄ϑ)

)
− l

(
wi(t+ h̄ϑ)z2

i (t+ h̄ϑ)

w∗z2∗

))

+
d2

k2 (wm+1(t+ h̄ϑ)− 2wm(t+ h̄ϑ) +w0(t+ h̄ϑ)−w1(t+ h̄ϑ))

−w∗
d2

k2

(
wi+1(t+ h̄ϑ)

wi(t+ h̄ϑ)
− 2 +

wi−1(t+ h̄ϑ)

wi(t+ h̄ϑ)

)
,

≤
m

∑
i=1

(−bw∗ −w∗z2∗)l

(
w∗

wi(t+ h̄ϑ)

)
− bw∗l

(
wi(t+ h̄ϑ)

w∗

)
+w∗z2∗l

(
z2

i (t+ h̄ϑ)

z2∗

)

−w∗z2∗l

(
wi(t+ h̄ϑ)z2

i (t+ h̄ϑ)

w∗z2∗

)
−w∗

d2

k2

(
wi+1(t+ h̄ϑ)

wi(t+ h̄ϑ)
− 2 +

wi−1(t+ h̄ϑ)

wi(t+ h̄ϑ)

)
.

According to [28], we have

zi+1(t+ h̄ϑ)

zi(t+ h̄ϑ)
− 2 +

zi−1(t+ h̄ϑ)

zi(t+ h̄ϑ)
≥ 0,

wi+1(t+ h̄ϑ)

wi(t+ h̄ϑ)
− 2 +

wi−1(t+ h̄ϑ)

wi(t+ h̄ϑ)
≥ 0.

We conclude that
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C
h̄ ∆ϑ

t0
L(t) = C

h̄ ∆ϑ
t0
L1(t) +

C
h̄ ∆ϑ

t0
L2(t),

≤
m

∑
i=1

(−bw∗ + z2∗w∗ − z∗)l

(
z∗

zi(t+ h̄ϑ)

)
+ (−bw∗ + 2w∗z∗2)l

(
zi(t+ h̄ϑ)

z∗

)
− (bw∗ + z∗)l

(
wi(t+ h̄ϑ)

w∗

)
− (bw∗ +w∗z∗2)l

(
w∗

wi(t+ h̄ϑ)

)
− z2∗w∗l

(
wi(t+ h̄ϑ)zi(t+ h̄ϑ)

z∗w∗

)
− z∗

d1

k2

(
zi+1(t+ h̄ϑ)

zi(t+ h̄ϑ)
− 2 +

zi−1(t+ h̄ϑ)

zi(t+ h̄ϑ)

)
−w∗

d2

k2

(
wi+1(t+ h̄ϑ)

wi(t+ h̄ϑ)
− 2 +

wi−1(t+ h̄ϑ)

wi(t+ h̄ϑ)

)
.

Hence, since −bw∗ + 2w∗z∗2 ≤ 0, then,

C
h̄ ∆ϑ

t0
L(t) ≤ 0

and C
h̄ ∆ϑ

t0
L(t) = 0 if and only if (zi,wi) = (0, 0). (z∗,w∗) is therefore globally asymptotically

stable under condition (36) according to Theorem 3.

6. Simulations

Here, we demonstrate several simulations that illustrate certain theoretical aspects
of the stability of the discrete fractional glycolysis reaction–diffusion system. Matlab was
used to carry out all of the simulations in this section.
By changing the characteristics and order of the system, we are able to observe how it
behaves. When we use the numerical solution shown below, system (11) looks like:

zi(nh̄) = φ1(zi) +
h̄ϑ

Γ(ϑ) ∑n
r=1

Γ(n− r+ ϑ)

Γ(n− r+ 1)
[d1

zi+1((r− 1)h̄)− 2zi((r− 1)h̄) + zi−1((r− 1)h̄)
k2

+bzi((r− 1)h̄) + z2
i ((r− 1)h̄)wi((r− 1)h̄)],

wi(nh̄) = φ2(zi) +
h̄ϑ

Γ(ϑ) ∑n
r=1

Γ(n− r+ ϑ)

Γ(n− r+ 1)
[d2

wi+1((r− 1)h̄)− 2wi((r− 1)h̄) +wi−1((r− 1)h̄)
k2

+a− bzi((r− 1)h̄)−wi((r− 1)h̄)− z2
i ((r− 1)h̄)wi((r− 1)h̄)],

1 ≤ i ≤ m,
n > 0.

(37)

Example 1. To demonstrate our point, we consider the following parameter values: (d1, d2, a, b) =
(1, 2, 0.1, 0.01), N = 100, h̄ = 0.1, t ∈ [0, 10], and z ∈ [0, 20] and the boundary conditions (z0(t),
w0(t)) = (3, 1), (z1(t),w1(t)) = (3, 1). Also, we provide the following appropriate initial conditions:

φ1(zi) = 3.5 +
cos(πzi)

5
,

φ2(zi) = 2 +
cos(πzi)

5
.

We can see that all of the solutions to our model ultimately reach the same unique positive equilibrium
(z∗,w∗) = (0.1, 4). The unique equilibrium is hence asymptotically stable. For a, which denotes the
dimensionless input flow, and b, which denotes the dimensionless constant rate for the low activity
state, the conditions in Theorem 6 are clearly demonstrated, and this numerical finding is consistent
with our earlier theoretical conclusions.

The results stated previously for various fractional orders are supported by Figures 1–3, which
describe the dynamic behavior of the system (11) and show that as the fractional order ϑ approaches
1, the model’s solution becomes more stable as it rapidly converges to the unique equilibrium.
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Figure 1. The state trajectories of r zi(t) and wi(t) for ϑ = 0.1.
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Figure 2. The dynamic behaviors of zi(t) and wi(t) for N = 10, (a, b, d1, d2) = (1, 2, 0.1, 0.01) and
ϑ = 0.1.
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Figure 3. The dynamic behaviors of zi(t) and wi(t) for N = 10, (a, b, d1, d2) = (1, 2, 0.1, 0.01) and
ϑ = 0.9.

7. Conclusions

In this study, a discrete equivalent of the fractional reaction–diffusion glycolysis model
was investigated using the second-order central difference and L1 finite difference schemes.
This unique approach’s capacity to keep the system confined and positive should be
emphasized. Moreover, the local stability of the discrete system was explored. The results
were consistent with those of the continuous system that serves as a continuous analog.
This suggests that the discrete system generated by the considered schemes can preserve
as continuous system characteristics like the positivity, boundedness, and global stability
of the equilibrium point, which are first evaluated as a way to assess the stability of



Fractal Fract. 2023, 7, 587 13 of 14

discrete fractional reaction diffusion systems using Lyapunov functions. Additionally,
computations and simulations show the effectiveness and viability of the suggested system.
In addition, the Lyapunov functional and the linearization approach may be utilized to
solve the stability issue in discrete fractional reaction–diffusion models. More importantly,
the results of this study might be easily extended to a variety of reaction–diffusion discrete
fractional spatiotemporal systems, as well as other dynamical problems including chaos
and synchronization control.
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