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Abstract: In this work, the existence and uniqueness solution of the fractional nonlinear mixed
integro-differential equation (FrNMIoDE) is guaranteed with a general discontinuous kernel based
on position and time-space L2[Ω] × C[0, T], T < 1. The FrNMIoDE conformed to the Volterra-
Hammerstein integral equation (V-HIE) of the second kind, after applying the characteristics of
a fractional integral, with a general discontinuous kernel in position for the Hammerstein integral
term and a continuous kernel in time to the Volterra integral (VI) term. Then, using a separation
technique methodology, we developed HIE, whose physical coefficients were time-variable. By
examining the system’s convergence, the product Nystrom technique (PNT) and associated schemes
were employed to create a nonlinear algebraic system (NAS).

Keywords: fractional nonlinear (linear) integro-differential equation; discontinuous kernel; nonlinear
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1. Introduction

Due to the vast number of applications that can be found for fractional nonlinear/linear
integro-differential equations FrNIoEs/FrLIoEs containing time-dependent coefficients in
physics, engineering, and other scientific domains, their significance has been growing
steadily over the past several decades. These equations are ideal for accurately representing
a variety of events that occur in the real world because they capture both the non-local and
local behavior of a large number of complex systems. Hermann [1] introduced some appli-
cations of fractional calculus to the field of physics. Oyedepo et al. [2] presented a numerical
solution to the linear FrLIoDE problem by employing the method of standard least squares.
Bernstein piecewise polynomials were exploited by Osama and Sarmad [3] in order to find
an approximate solution to the FrLIoDE problem. In Daşcıoğlu and Bayram [4], approxi-
mate solutions to FrLIoDEs were found by using Laguerre polynomials. Mohammed [5]
utilized the approach of least squares in conjunction with a shifted Chebyshev polynomial
in order to solve the FrLIoDE problem. In [6], Mahdy et al. investigated the numerical
solution of FrLIoDE by employing the least squares approach and supplementing it with
a shifted Laguerre polynomial. In order to locate the numerical solution of FrLIoDE with
the Caputo derivative, Nanware et al. [7] used the Bernstein polynomial to solve it. The
least square technique and the homotopy perturbation method were both proposed by
Oyedepo et al. [8] to discuss the solution to the FrIDE problem. Several techniques are used
in efficient ways to solve IE and FrIE. For instance, Basseem and Alayani [9] solved a nonlin-
ear quadratic mixed IE of the second kind with a singular kernel by employing the Toeplitz
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matrix method in conjunction with the PNT. A quadrature scheme was implemented
by I. Katani [10] for the numerical outcomes of the second type of the Fredholm integral
(FI) model. Al-Bugami [11] employed the Simpson and Trapezoidal methods to perform
numerical representations based on an integral model that utilized 2D surface crack layers.
In order to obtain numerical computing results for the second kind of nonlinear integral
model that has a continuous kernel, Brezinski and Zalglia [12] employed the extrapolation
method. Baksheesh [13] suggested making use of the Galerkin scheme in order to find the
approximate solution for the VIEs of the second kind. The sinc-collocation method was
utilized by Alkan and Hatipoglu [14] to find solutions of V-FIDEs of fractional order. Mosa
et al. [15] researched the semigroup scheme to evaluate uniqueness and existence based on
the partial and fractional integro models of heat performance in the Banach space using the
Adomian decomposition scheme. An effective methodology for finding an approximate
solution using the wavelet collocation method to FrFIDEs was proposed by Bin Jebreen
and Dassios [16]. Using the extended cubic B-spline, Akram et al. [17] interpreted the collo-
cation strategy in order to solve the fractional partial integro-differential problem. After
employing the Riemann–Liouville fractional integral and fractional derivative, Abdelkawy
et al. [18] used the Jacobi–Gauss collocation method to achieve an approximate solution
for a variable-order of FrLIoDE with a weakly singular kernel. This was accomplished by
applying the Jacobi–Gauss collocation method. Khalil [19] used a Jacobi polynomial for
a solution of coupled system of fractional differential equations. Some different numerical
methods for NLIoEs are introduced in Abdou [20].

This paper is divided into 12 sections. In Section 2, we derive the fractional mixed
integral equation from the phase lag mixed integral equation. In Section 3, using a mixed
NIE of the second kind with local conditions, we establish FrNIoDE, using the Caputo-
fractional integral. In addition, the existence of a unique solution is guaranteed. In Section 4,
the convergence of this solution is established and proved. In Section 5, the technique of
separation variables method is applied to change the problem to HNIE of the second kind
where its coefficients are parameters of time. PNT is employed in Section 6 to obtain the
NAS. Then, we discuss the existence and uniqueness solution of NAS in Section 7. While
the convergence system is considered in Section 8, the estimated error of PNT is discussed
in Section 9. Illustrative numerical examples are involved to demonstrate the propriety
and effectuality of the technique and some conclusions are stated in Sections 10 and 11. In
Section 12, we propose some parameters for our future work.

2. Time Fractional and Phase Lag Integral Equation

The integral equations play an important role in the phase-lag problems with local
conditions. Consider, in the time fractional calculus, the phase lag integral equation:

ϕ(x, t + q) =

f (x, t) + λ
∫ t

0

∫
Ω k(|x− y|)G(t, τ)γ(y, τ, ϕ(y, τ))dydτ, (0 ≤ q� 1),

(1)

with conditions
ϕ(x, 0) = V1(x),

∂

∂t
[ϕ(x, t)]t=0 = V2(x), (2)

where f (x, t) is a known function in the space L2[Ω]× C[0, T], T < 1 represents the free
term of the problem, λ is a constant that depends on the kind of material (in applied
mathematics and has many physical meanings). The function G(t, τ) is a smooth kernel in
time, while k(|x− y|) is a singular kernel in position, which will be taken as a logarithmic
form and Carleman function, γ(x, t, ϕ(x, t)) is a known nonlinear function of the unknown
function ϕ(x, t), V1(x) and V2(x) are two given initial position functions, the constant q is
a small quantity that represents the delay of time.

Here, the aim of this research is to predict the near future, by studying fractional
derivatives, and using the initial conditions, where it is known that the differential deriva-
tives express the breaking of the ionic bond between the particles of the substance, and
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that the use of fractional time enables the researcher to deepen this study. The past time is
studied when q is negative.

Abdou and Raad [21] and Mosal et al. [22] discussed the solution of mixed IE with
nonlocal conditions. However, in this research, the above is developed by studying the
fractional delay over time for a local phase-lag problem of a FrNMIoDE with continuous
kernel in time and singular kernel in position.

Using Taylor’s expansion, in the fractional calculus, to have

ϕ(x, t + q) ∼= ϕ(x, t) + qα

Γ(α+1)
∂α

∂tα ϕ(x, t) + qα+1

Γ(α+2)
∂α+1

∂tα+1 ϕ(x, t)+

qα+2

Γ(α+3)
∂α+1

∂tα+1 ϕ(x, t)+, . . . , (n− 1) < α < n.
(3)

In this work, we have focused on n = 2

ϕ(x, t + q) = ϕ(x, t) +
qα

Γ(α + 1)
∂α

∂tα
ϕ(x, t) +

qα+1

Γ(α + 2)
∂α+1

∂tα+1 ϕ(x, t). (4)

Using the basic formula of the Caputo-fractional integral

Iα
a f (x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, (5)

((
Iα
a Iβ

a

)
f
)
(x) =

(
Iα+β
a f

)
(x) =

1
Γ(α + β)

∫ x

a
(x− t)α+β−1 f (t)dt, (6)

and ∫ t

0

∫ τn−1

0
. . .
∫ τ2

0

∫ τ1

0
f (τ)dτdτ1 . . .dτn−2dτn−1 =

1
Γ(n)

∫ t

0
(t− τ)n−1 f (τ)dτ. (7)

In the view of Equations (1) and (4), we have

qα+1

Γ(α+2)

(
∂α

∂tα ϕ(x, t)− ∂
∂t ϕ(x, 0)

)
+ qα

Γ(α+1) I1−α ϕ(x, t) +
∫ t

0 ϕ(x, τ)dτ

−λ
∫ t

0

∫ τ1
0

∫
Ω G(t, τ)k(|x− y|)γ(y, τ, ϕ(y, τ))dydτ1dτ =

∫ t
0 f (x, τ)dτ.

(8)

Applying Equations (5)–(7) in Equation (8), we obtain

µ1 ϕ(x, t) + µ2
∫ t

0

(
1 + α

qα (t− τ)α
)

ϕ(x, τ)dτ

+µ3
∫ t

0

∫
Ω (t− τ)α+1G(t, τ)k(|x− y|)γ(y, τ, ϕ(y, τ))dydτ = F(x, t),

where

µ1 = qα+1

Γ(α+2) , µ2 = qα

Γ(α+1) , µ3 = − λ
2Γ(α)

F(x, t) = 1
Γ(α)

∫ t
0 (t− τ)α f (x, τ)dτ + qα+1V1(x)

Γ(α+2)Γ(α+1) tα + qα+1

Γ(α+2)V2(x).
(9)

In order to guarantee the existence of a unique solution of the considered problem of
Equation (1) or its equivalent in Equation (9), we assume the following conditions:

(i) The unknown function ϕ(x, t) and its derivatives are in the space L2(Ω)× C[0, T]
and its norm is defined as

‖ϕ(x, t)‖ = max
0≤t≤T

∫ t

0


∫
Ω

ϕ2(x, τ)dx


1/2

dτ.
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(ii) For the constant Q, the known function γ(x, t, ϕ) satisfies the following conditions:

‖γ(x, t, ϕ)‖ ≤ Q‖ϕ(x, t)‖.
‖γ(x, t, ϕ1)− γ(x, t, ϕ2)‖ ≤ Q‖ϕ1(x, t)− ϕ2(x, t)‖

(iii) The given function f (x, t) satisfies

‖ f (x, t)‖ = max
0≤t≤T

∫ t

0


∫
Ω

f 2(x, τ)dx


1/2

dτ ≤ B, B is a constant.

(iv) The two functions Vi(x) for the constants Di , i = {1, 2} satisfy the following:

|V1(x)| ≤ D1 and |V2(x)| ≤ D2.

(v) The position kernel in the space L2(Ω) satisfies

‖k(|x− y|)‖ =
{∫

Ω

∫
Ω

k2(|x− y|)dxdy
}1/2

= C, C is a constant.

(vi) The continuous function G(t, τ) in time satisfies

max
0≤t≤T

|G(t, τ)| = E, E is a constant.

3. Existence and Uniqueness

To prove the existence and uniqueness of Equation (9), it can be written in the following
integral operator form

χϕ(x, t) = χ1 ϕ(x, t)− χ2 ϕ(x, t) + V2(x)

+V1(x)
Γ(α)

∫ t
0 (t− τ)∝−1dτ + α(α+1)

qα+1

∫ t
0 (t− τ)α f (x, τ)dτ.

χ1 ϕ(x, t) = (α+1)
q
∫ t

0 ϕ(x, τ)dτ + α(α+1)
qα+1

∫ t
0 (t− τ)α ϕ(x, τ)dτ

χ2 ϕ(x, t) = λα(α+1)
2qα+1

∫ t
0

∫
Ω (t− τ)α+1G(t, τ)k(|x− y|)γ(y, τ, ϕ(y, τ))dydτ.

(10)

Theorem 1. The solution of Equation (9) exists and is unique under the condition:

(α + 1)Tqα + αTα+1 +
λα(α + 1)Tα+2

2(α + 2)
ECQ < qα+1. (11)

The following lemmas must be proved to satisfy the above theorem.

Lemma 1. The operator χ maps the space L2(Ω)×C[0, T] onto itself under the conditions (i)–(vi).

Proof. From Equation (10), we obtain

‖χϕ(x, t)‖ ≤ ‖χ1 ϕ(x, t)‖+ ‖χ2 ϕ(x, t)‖+ |V2(x)|

+ |V1(x)|
Γ(α)

∣∣∣∫ t
0 (t− τ)∝−1dτ

∣∣∣
+ α(α+1)

qα+1

∣∣∣∫ t
0 (t− τ)α f (x, τ)dτ

∣∣∣
(12)

Using conditions (i)–(v) and Cauchy–Schwartz inequality, we have

‖χϕ(x, t)‖ ≤ δ‖ϕ(x, t)‖+ D1Tα

Γ(α + 1)
+ D2 +

αBTα+1

qα+1 (13)
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where

δ =
(α + 1)Tqα + αTα+1 + λα(α+1)Tα+2

2(α+2) ECQ

qα+1 . (14)

It is obvious that the operator χ maps the ball Br ∈ L2[−1, 1] × C[0, T] onto it-
self where

r =
σ

1− δ
, σ =

D1Tα

Γ(α + 1)
+ D2 +

αBTα+1

qα+1 .

The inequality (13) involves the boundedness of the operator χ under the condition
δ < 1. �

In the previous Lemma, we considered that the discontinuous kernel (t− τ)∝−1, for all t,
τ ∈ [0, T], satisfies for every continuous function h(t, τ), |h(t, τ)| ≤ constants, the following∫ t

0 (t− τ)α−1h(t, τ)dτ or
∫ t2

t1
(t− τ)α−1h(t, τ)dτ, 0 < t1 ≤ t2 ≤ t, max

t

∫ t
0 (t− τ)α−1dτ, exists.

Lemma 2. If conditions (i)–(vi) are satisfied, then χ is a contraction operator in Banach space
L2[−1, 1]× C[0, T].

Proof. Let two functions ϕ1(x, t) and ϕ2(x, t) be two solutions of (9), and then, the
Formula (10) leads to the

‖χϕ1(x, t)− χϕ2(x, t)‖ ≤ ‖χ1(ϕ1(x, t)− ϕ2(x, t))‖+
‖χ2(ϕ1(x, t)− ϕ2(x, t))‖.

Using conditions (i)–(iv) and Cauchy–Schwarz inequality, we deduce that

‖χϕ1(x, t)− χϕ2(x, t)‖ ≤ δ‖ϕ1(x, t)− ϕ2(x, t)‖ (15)

It follows that for δ < 1, χ is a contraction operator of Equation (10). Hence, there exists a
unique solution in L2[Ω] by a Banach fixed point theorem for every t ∈ C[0, T], T < 1. �

4. Convergence of Solution

For this aim, take the straightforward iteration {ϕ1(x, t), ϕ2(x, t), ..., ϕn(x, t), ... } ⊂
ϕ(x, t). Then, use Equation (9), to have

qα+1

Γ(α+2) (ϕn(x, t)− ϕn−1(x, t)) + qα

Γ(α+1)

∫ t
0 (ϕn−1(x, τ)− ϕn−2(x, τ))dτ

+ 1
Γ(α)

∫ t
0 (t− τ)α(ϕn−1(x, τ)− ϕn−2(x, τ))dτ

= λ
2Γ(α)

∫ t
0

∫
Ω(t− τ)α+1G(t, τ)k(|x− y|)(γn(y, τ, ϕn−1(y, τ))−

γn(y, τ, ϕn−2(y, τ)))dydτ,

(16)

let
ϕn(x, t) = ∑n

i=0 ψi(x, t),

where
ψn(x, t) = ϕn(x, t)− ϕn−1(x, t),

ψ0(x, t) = 1
Γ(α)

∫ t
0 (t− τ)α f (x, τ)dτ.(n ≥ 1).

(17)

Lemma 3. A sequence {ϕn(x, t)} of Equation (17) is uniformly convergent under the condition
δ < 1.
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Proof. By applying Cauchy–Schwarz and using (17) in (16), we obtain

qα+1

Γ(α+2)‖ψn(x, t)‖ ≤
∣∣∣ qα

Γ(α+1)

∫ t
0 dτ

∣∣∣‖ψn−1(x, t)‖+
∣∣∣ 1

Γ(α)

∫ t
0 (t− τ)αdτ

∣∣∣×
‖ψn−1(x, t)‖+ λN

2Γ(α)

∣∣∣∫ t
0

∫
Ω (t− τ)α+1G(t, τ)k(|x− y|)dydτ

∣∣∣‖ψn−1(x, t)‖
(18)

Taking n = 1, the above formula becomes

‖ψn(x, t)‖ ≤ δ
Tα+1B

Γ(α + 1)
,

and then

‖ψn(x, t)‖ ≤ δn Tα+1B
Γ(α + 1)

, δ < 1. (19)

The sequence {ψn(x, t)} is uniformly convergent by Equation (19). Additionally, it
gives the sequence’s ϕn(x, t) = ∑n

i=0 ψi(x, t) convergent solution.
As n→ ∞, ϕn(x, t)→ ϕ(x, t) , hence the solution ϕ(x, t) is uniformly convergent

under the condition δ < 1. This demonstrates the lemma. �

5. Separation of Variables Technique

We discover that researchers are drawn to the unknown potential function, which is
connected to time and place, in the issues of mathematical physics. The unknown function
can be obtained using a variety of approaches. Time division is one of these techniques,
converting the mixed integral problem into an algebraic system of integral equations.

Some researchers use the separation technique method which is a powerful math-
ematical tool that allows us to transform FrNIoE with time-dependence into a class of
integral equations with coefficients on time only. This technique simplifies the problem
by separating the time-dependent part from the integral part, enabling us to handle the
integral equations more efficiently. The unknown and well-known functions are shown in
the separation form as

ϕ(x, t) = N(t)ψ(x), f (x, t) = g(x)M(t),

γ(x, t, ϕ(x, t)) = γ1(t, N(t))γ2(x, ψ(x)).
(20)

Hence, after using (20), the Formula (9) yields,

µ1(t)ψ(x)− µ2(t)
∫

Ω k(|x− y|)γ2(ψ(y), y)dy = µ3(t)g(x)

+qα+1 V1(x)
Γ(α)

∫ t
0 (t− τ)∝−1dτ + qα+1V2(x),

(21)

where

µ1(t) = qα+1N(t) + (α + 1)qα∫ t
0 N(τ)dτ + α(α + 1)

∫ t
0 (t− τ)αN(τ)dτ.

µ2(t) = λ
2 α(α + 1)

∫ t
0 (t− τ)∝+1G(t, τ)γ1(τ, N(τ))dτ,

µ3(t) = α(α + 1)
∫ t

0 (t− τ)∝ M(τ)dτ.

(22)

Equation (21) considers HIE of the second kind with coefficients specifying the time
domain µi(t), i = {1, 2, 3}. Here, µ1(t) and µ2(t) indicate the time term of the unknown
function ϕ(x, t). Meanwhile, µ3(t) describes the time in the free term f (x, t).

6. Product Nystrom Technique (PNT)

To solve integral equations with continuous or disconnected kernels, several numerical
approaches have been utilized. The PNT is the best approach for solving singular integral
equations for the following reasons: the singular term vanishes instantly, turned into simple
integrals that can be solved rapidly, and then creates a NAS. The relative error approach
has a lower degree of convergence than the other methods.
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Here, by using the product integration, we approximate the integral part of Equation (21)
by a suitable Lagrange interpolation polynomial. For this, let x = xm and the integral part
can be written as ∫

Ω k(|xm − y|)γ2(ψ(y), y)dy = ∑N
n=0 Im,nγ2(ψ(yn), yn)

= ∑
N−2

2
n=0

∫ y2n+2
y2n

k(|xm − y|)γ2(ψ(y), y)dy.
(23)

Without sacrificing generality, we take Ω = [−1, 1], xm = ym = −1 + mh,
m = 1, 2, 3, . . . , N where h = 2

N and N is an even number.
The Lagrange interpolation polynomial is used to approximate the nonsingular com-

ponent of the integral throughout each interval [y 2n, y2n+2] at the points 2n, 2n + 1 and
2n + 2. As a result, the integral term of (23) becomes

1∫
−1

k(|xm − y|)γ2(ψ(y), y)dy =

∑
N−2

2
n=0

∫ y2n+2
y2n

k(|xm − y|)


(y2n+1−y)(y2n+2−y)

(y2n+1−y2n)(y2n+2−y2n)
γ2(ψ(y2n), y2n)

+ (y2n−y)(y2n+2−y)
(y2n−y2n+1)(y2n−y2n+1)

γ2(ψ(y2n+1), y2n+1)

+ (y2n−y)(y2n+1−y)
(y2n−y2n+2)(y2n+1−y2n+2)

γ2(ψ(y2n+2), y2n+2)

dy.

(24)

Comparing Equations (23) and (24), we deduce

Im,0 = 1
2h2

∫ y2
y0

k(|xm − y|)(y1 − y)(y2 − y)dy,

Im,2n+1 = 1
h2

∫ y2n+2
y2n

k(|xm − y|)(y− y2n)(y2n+2 − y)dy,

Im,2n = 1
2h2

[ ∫ y2n+2
y2n

k(|xm − y|)(y2n+1 − y)(y2n+2 − y)
+
∫ y2n

y2n−2
k(|xm − y|)(y− y2n−1)(y− y2n−2)dy

]
,

Im,N = 1
2h2

∫ yN
yN−2

k(|xm − y|)(y− yN−2)(y− yN−1)dy.

(25)

Introduce the following notations

αn(ym) =
1

2h2

∫ y2n

y2n−2

k(|xm − y|)(y− y2n−2)(y− y2n−1)dy,

βn(ym) =
1

2h2

∫ y2n

y2n−2

k(|xm − y|)(y2n−1 − y)(y2n − y)dy,

and
ζn(ym) =

1
2h2

∫ y2n

y2n−2

k(|xm − y|)(y− y2n−2)(y2n − y)dy, (26)

then
Im,0 = β1(xm),

Im,2n+1 = 2ζn+1(xm),

Im,2n = αn(xm) + βn+1(xm),

Im,N = αN/2(xm).

(27)

By substituting in Equation (21), we obtain

µ1(t)ψ(xm)− µ2(t)
N
∑

n=0
Im,nγ2(ψ(yn), yn) = µ3(t)g(xm)

+ qα+1

Γ(α+1){V1(xm)tα + V2(xm)Γ(α + 1)}.
(28)

Equation (28) represents the NAS which gives an approximate solution of Equation (4)
in a certain domain of time.
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7. The Existence of a Unique Solution of NAS

To prove the existence of a unique solution of Equation (28), we write it in the following
operator form

‖χψ(xm)‖ = µ2(t)
µ1(t)

N
∑

n=0
Im,nγ2(ψ(yn), yn) +

µ3(t)
µ1(t)

g(xm)

+ qα+1

µ1(t)Γ(α+1){V1(xm)tα + V2(xm)Γ(α + 1)},
(29)

where the following assumptions are held:

(a) The parameters µi(t) satisfy max
t
|µi(t)| ≤ Ai∀t ∈ [0, T], T < 1, i = {1, 2, 3} where Ai

are constants.

(b) ‖g(xm)‖l2 =
[
∑∞

m=0|g(xm)|2
] 1

2 ≤ B.

(c) sup
m
|Vi(xm)| ≤ Di, i = {1, 2} where Di are constants.

(d) ‖Im,n‖l2 =
[
∑∞

n=0 ∑∞
m=0 I

2(|xm − xn|)
] 1

2 ≤ C.
(e) The unknown function ψ(xm) is in the space l2 and its norm is defined as

‖ψ(xm)‖ =
[

∞

∑
m=0
|ψ(xm)|2

] 1
2

(f) For the constant Q, the known function γ2(xm, ψ(xm)) satisfies the following conditions:

‖γ2(xm, ψ(xm))‖ ≤ Q‖ψ(xm)‖

and
‖γ2(xm, ψ1(xm))− γ2(xm, ψ2(xm))‖ ≤ Q‖ψ1(xm)− ψ2(xm)‖.

Theorem 2. The approximate solution of the NAS of Equation (28) exists and unique under
the condition

A2C Q < A1. (30)

The following lemmas must be proved to satisfy the above theorem.

Lemma 4. The operator χ maps the space l2 onto itself under the conditions (a)–(f).

Proof. From Equation (29), applying Cauchy–Minkowski inequality, we obtain

‖χψ(xm)‖ ≤
∣∣∣ µ2(t)

µ1(t)

∣∣∣‖γ2(ψ(ym), ym)‖
[
∑∞

n=0 ∑∞
m=0 I

2(|xm − xn|)
] 1

2 +∣∣∣ µ3(t)
µ1(t)

∣∣∣‖g(xm)‖+ qα+1

|µ1(t)|Γ(α+1){|V1(xm)|Tα + Γ(α + 1)|V2(xm)|,
(31)

using the conditions (a)–(f), we obtain

‖χψ(xm)‖ ≤
A2

A1
Q‖ψ(xm)‖C +

A3

A1
B∗ +

qα+1

A1Γ(α + 1)
[D1Tα + D2Γ(α + 1)], (32)

so, we have
‖χψ(xm)‖ ≤ δ∗‖ψ(xm)‖+ σ∗ (33)

where
δ∗ =

A2

A1
Q C. (34)
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It is obvious that the operator χ maps the ball B∗r ∈ l2 × C[0, T] onto itself where

r =
σ∗

1− δ∗
, σ∗ =

A3

A1
B∗ +

qα+1

A1Γ(α + 1)
[D1Tα + D2Γ(α + 1)].

The inequality (33) involves the boundedness of the operator χ under the assumption
δ∗ < 1. �

Lemma 5. If conditions (a)–(f) are satisfied, then χ is a contraction operator in Banach space l2.

Proof. Let two functions ψ1(xm) and ψ2(xm) be two solutions of (29), and then, the
Formula (31) leads to

‖χψ1(xm)− χψ2(xm)‖ ≤
∣∣∣∣µ2(t)
µ1(t)

∣∣∣∣∣∣∣∣∑N
n=0 Im,n

[
γ2(xm, ψ1(xm))
−γ2(xm, ψ2(xm))

]∣∣∣∣. (35)

Using conditions (a)–(f) and Cauchy–Minkowski inequality, we obtain

‖χψ1(xm)− χψ2(xm)‖ ≤ δ∗‖ψ1(xm)− ψ2(xm)‖. (36)

It follows that for δ∗ < 1, χ is a contraction operator of a system (36). Hence, there
exists a unique solution in l2 by a Banach fixed point theorem for every t ∈ C[0, T].

8. Convergence of the Approximate Solution of NAS

To discuss the convergence of the system (28), we state the following theorem.

Theorem 3. The NAS (28) for all values of time t ∈ [0, T], T < 1 is convergent in the Banach
space l2 under the condition δ∗ < 1.

Proof. We construct the sequence {ψz(xm)}, and using Equation (29), we have

µ1(t)(ψz(xm)− ψz−1(xm)) = µ2(t)∑N
n=0 Im,n

[
γ2(ψz−1(yn), yn)
−γ2(ψz−2(yn), yn)

]
, (37)

consider

ψz(xm) =
z

∑
s=0

ηs(xm),

where
ηz(xm) = ψz(xm)− ψz−1(xm), η0(xm) = µ3(t)g(xm).(z ≥ 1). (38)

By applying Cauchy–Schwarz and using (38) in (37), we obtain

A1‖ηz(xm)‖ ≤ A2CQ‖ψn−1(x, t)‖.

Taking n = 1, the above formula becomes

‖η1(xm)‖ ≤ δ∗A3B,

and then
‖ηz(xm)‖ ≤ (δ∗)z A3B, δ∗ < 1. (39)

The sequence {ηz(xm)} is uniformly convergent by Equation (39). Additionally, it
gives the sequence’s ψz(xm) = ∑z

s=0 ηz(xm) convergent solution.
As z→ ∞, ψz(xm)→ ψ(xm) , hence the solution ψ(xm) is uniformly convergent under

the condition δ∗ < 1. This demonstrates the lemma. �
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9. The Error of the Product Nystrom Technique

The following two definitions are used to calculate the error of this technique:

Definition 1. The Nystrom method is said to be convergent of order r in the interval [−1, 1], if
and only if, for N sufficient large, there exists a constant K > 0 independent of N such that

‖ψ(x)− ψN(x)‖ ≤ KN−r (40)

Definition 2. The estimated error of this method can be calculated in the form

RN =

∣∣∣∣ ∫ 1

−1
k(|xm − y|)γ2(ψ(y), y)dy−∑N

n=0 Im,nγ2(ψ(yn), yn)

∣∣∣∣, (41)

As N → ∞ , RN → 0 . In this case, the approximate solution of (28) is equivalent to
the exact solution of (21) in the space L2[−1, 1]× C[0, T], T < 1.

10. Numerical Results

In this section, some numerical applications are considered to show the accuracy and
applicable of the proposed methods.

Example 1.

ϕ(x, t + 0.03) = f (x, t) + 0.01
∫ t

0

∫ 1

−1
k(|x− y|)τ3t3 ϕ2(y, τ)dydτ, (42)

with conditions

ϕ(x, 0) = x,
∂ϕ(x, 0)

∂t
= 0.5x2. (43)

Then, by taking

ϕ(x, t + 0.03) = ϕ(x, t) +
0.030.75

Γ(1.75)
∂0.75

∂t0.75 ϕ(x, t) +
0.031.75

Γ(2.75)
∂1.75

∂t1.75 ϕ(x, t),

and k(|x− y|) = |x− y|−υ, we obtain

0.031.75

Γ(2.75)

(
ϕ(x, t)− 0.5x2)− 0.031.75x

Γ(2.75)Γ(0.75)

∫ t
0 (t− τ)−0.25dτ

+ 0.030.75

Γ(1.75)

∫ t
0 ϕ(x, τ)dτ + 1

Γ(0.75)

∫ t
0 (t− τ)α ϕ(x, τ)dτ

− λ
2Γ(0.75)

∫ t
0

∫ 1
−1 (t− τ)1.75|x− y|−υτ3t3 ϕ2(y, τ)dydτ

= 1
Γ(0.75)

∫ t
0 (t− τ)α f (x, τ)dτ,

(44)

where f (x, t) is given by putting ϕ(x, t) = X(x)N(t), X = x2, N(t) = t + 0.5 as an exact
value. We have the following two cases:

Case (i): if f (x, t) and the unknown function ϕ(x, t) have the same function of time
where M(t) = t + 0.5.

Case (ii): if f (x, t) and the unknown function ϕ(x, t) have different time function in
which M(t) = 0.7et.

The absolute errors in case (i) with some values of x ∈ [−1, 1] are shown in Table 1
and the approximate solution ϕ(x, t) = (t + 0.5)x2 is represented by Figure 1 while the
errors for different T are shown by Figures 2–6. The errors in case (ii) are shown in Table 2
and Figures 7 and 8.



Fractal Fract. 2023, 7, 656 11 of 20

Table 1. The error for different. ν. of the approximate solution in case (i) in which
X(x) = [0.5625, 0.2500, 0.0625, 0.2500, 0.5625] at the given points above reduced to 10−5.

T X Error (ν=0.01) Error (ν=0.47)

0.0

–0.75 2.000 × 10−10 2.000 × 10−10

−0.5 1.000 × 10−10 1.000 × 10−10

0.25 1.000 × 10−11 1.000 × 10−11

0.5 0.000 0.000
0.75 0.000 0.000

0.1

−0.75 0.000 0.000
−0.5 1.000 × 10−10 1.000 × 10−10

0.25 1.000 × 10−11 1.000 × 10−11

0.5 1.000 × 10−10 1.000 × 10−10

0.75 0.000 0.000

0.5

−0.75 8.000 × 10−10 1.200 × 10−9

−0.5 9.000 × 10−10 1.300 × 10−9

0.25 8.400 × 10−10 1.400 × 10−10

0.5 9.000 × 10−10 1.200 × 10−9

0.75 9.000 × 10−10 1.200 × 10−9

0.9

−0.75 8.770 × 10−8 1.294 × 10−7

−0.5 8.460 × 10−8 1.326 × 10−7

0.25 8.533 × 10−8 1.337 × 10−8

0.5 8.480 × 10−8 1.327 × 10−7

0.75 8.750 × 10−8 1.293 × 10−7
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Table 2. The error for different. ν. of the approximate solution in case (ii).

T X Error (ν = 0.01) Error (ν = 0.47)

0.0

–0.75 0.000 0.000
−0.5 1.000 × 10−10 1.000 × 10−10

0.25 0.000 0.000
0.5 0.000 0.000

0.75 1.000 × 10−10 1.000 × 10−10

0.1

−0.75 2.000 × 10−10 2.000 × 10−10

−0.5 1.000 × 10−10 1.000 × 10−10

0.25 1.000 × 10−11 1.000 × 10−11

0.5 0.000 0.000
0.75 2.000 × 10−10 2.000 × 10–10

0.5

−0.75 9.000 × 10−10 1.300 × 10−9

−0.5 9.000 × 10−10 1.400 × 10−9

0.25 8.400 × 10−10 1.300 × 10−10
0.5 1.000 × 10−9 1.200 × 10−9

0.75 9.000 × 10−10 1.300 × 10−9

0.9

−0.75 8.770 × 10−8 1.293 × 10−7

−0.5 8.460 × 10−8 1.326 × 10−7

0.25 8.532 × 10−8 1.337 × 10−8

0.5 8.480 × 10−8 1.326 × 10−7

0.75 8.740 × 10−8 1.293 × 10−7
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The error increases with time and decreases by increasing the number of iterations,
see Figures 3–8.
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Example 2. Consider Equation (41) with k(|x− y|) = ln|x− y|, we obtain

0.031.75

Γ(2.75)

(
ϕ(x, t)− 0.5x2)− 0.031.75x

Γ(2.75)Γ(0.75)

∫ t
0 (t− τ)−0.25dτ + 0.030.75

Γ(1.75)

∫ t
0 ϕ(x, τ)dτ

+ 1
Γ(0.75)

∫ t
0 (t− τ)α ϕ(x, τ)dτ

− λ
2Γ(0.75)

∫ t
0

∫ 1
−1 (t− τ)1.75ln|x− y|τ3t3 ϕ2(y, τ)dydτ

= 1
Γ(0.75)

∫ t
0 (t− τ)α f (x, τ)dτ.

(45)

Here, f (x, t) = (0.1 + sint )g(x) is given by putting ϕ(x, t) = X(x)N(t), X = x3,
N(t) = 0.3 cos t as an exact value.

The rate of errors is evaluated using the following formula: Rate =
∣∣∣log2

Error(2N)
Error(N)

∣∣∣.
By increasing N, the error decreases and the rate of convergence is given below, see

Tables 3–6.

Table 3. Convergence rate in both methods with fixed time T = 0.0.

N Mean Error Rate

4 2.4 × 10−10 0.49
8 1.7 × 10−10 0.79
16 9.8 × 10−11 0.16
32 8.8 × 10−11 ---

Table 4. Convergence rate in both methods with fixed time T = 0.3.

N Mean Error Rate

4 4.8 × 10−10 0.94
8 2.5 × 10−10 1.32
16 1.0 × 10−10 0.12
32 9.2 × 10−11 ---

Table 5. Convergence rate in both methods with fixed time T = 0.6.

N Mean Error Rate

4 5.8 × 10−8 0.16
8 6.5 × 10−8 3.92
16 4.3 × 10−9 2.10
32 1.0 × 10−9 ---

Table 6. Convergence rate in both methods with fixed time T = 0.9.

N Mean Error Rate

4 8.9 × 10−7 2.89
8 1.2 × 10−7 3.79
16 8.7 × 10−9 1.92
32 2.3 × 10−9 ---

The approximate solution is shown in Figure 9, and the absolute errors with different
time are shown in Figures 10 and 11.
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11. Conclusions

Fractional calculus has proved to be a valuable tool for modeling and analyzing
numerous phenomena with non-local and memory-dependent characteristics. In this
research, we focus on the study of fractional nonlinear integral equations with a time-
dependent coefficient using the separation technique method. By employing this approach,
we aim to transform the integral equation into a class of integral equations with coefficients
on time, which can be subsequently solved using the Nystrom method. From the previous
work and discussion, we can establish the following:

• The separation technique method is a powerful mathematical tool that allows us to
transform fractional nonlinear integral equations with time-dependent coefficients into
a class of integral equations with coefficients on time only. This technique simplifies
the problem by separating the time-dependent part from the integral part, enabling us
to handle the integral equations more efficiently.

• We present the Nystrom method as a numerical scheme to solve the sub-equations
derived from the separation process. The Nystrom method efficiently discretizes
the integral equation using a set of points and exploits the smoothness of the kernel
functions to achieve high accuracy and computational efficiency. We discuss the
convergence analysis and error estimates associated with the Nystrom method for the
proposed fractional integral equations.

• In the Carleman kernel, when decreasing ν, the solution becomes better, see Table 1.
• The error increases with time, see Figures 3–8.
• The error decreases by increasing the number of iterations, see Tables 3–6.
• CPU Time for Intel® Core(TM) i7 CPU M 620 @ 2.67 GHz (64-bit Operating system) in

example 2 takes the following:
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N Time in Seconds Memory

4 10.4 59 M.

8 14.34 219.19 M.

16 34.32 215.9 M.

• The error is the same to an extreme degree between positive and negative values for x
in the region of integration. We note that the maximum error occurs at the ends of x
values while it takes the minimum in the middle, see Figure 2.

12. Future Work

We will attempt to solve Equation (1) as a phase-lag problem with a history memory
function in the sense of general form of fractional calculus and differ between the three
following cases of time: terrestrial (T < 1), eternal (T > 1), and isthmus lives (T = 1).
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