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Abstract: Due to the lack of timely protection measures against infectious diseases, or based on
the particularity of the transmission of some infectious diseases and the time-varying connections
between people, the transmission dynamics of infectious diseases in the information society are
becoming more and more complex and changeable. A fractional-order epidemic mathematical model
with network weighting and latency is proposed in this paper, and the stability near the disease-free
equilibrium point and endemic equilibrium point are discussed separately. Subsequently, an event-
triggered impulsive control strategy based on an infection rate threshold is put forward. By selecting
the appropriate control gain, the Zeno phenomenon can be eliminated on the premise of ensuring
the stability of the control error system. Finally, the theoretical results were validated numerically
and some conclusions are presented. These findings contribute to future research on the limited-time
event-triggered impulsive control of infectious diseases.

Keywords: fractional-order epidemic network model; equilibrium point; stability analysis; event-
triggered impulsive control

1. Introduction

The development of human society has been threatened by a multitude of infectious
diseases. From the smallpox virus in its early stages to recent outbreaks, such as bird flu,
AIDS, and COVID-19, the emergence of large-scale infectious viruses consistently inflicts
significant damage upon human life and property. These successive tragedies have served
as a wake-up call for researchers to engage in continuous investigations of various infectious
viruses. These investigations play a crucial guiding role in formulating epidemic prevention
and control policies to study the process of virus transmission, construct a mathematical
model that can describe the dynamic behavior of infectious disease transmission, and even
reveal its transmission mechanism.

The most typical work undertaken to study the dynamic behavior of infectious dis-
ease spread in networks is to construct mathematical differential equations for infectious
diseases. The most representative result is the models established by Pastor-Satorras and
Vespignani [1] based on the average field theory, namely, SIS and SIR models. Later, re-
searchers further studied the stability and transmission threshold of SIS epidemic models
with non-monotonic morbidity [2,3], multiple pathogenic strains [4], infectious agents [5],
and cure functions [6].

With the in-depth study of the law of epidemic transmission, scholars found that some
people do not quickly appear infected after contact with infected persons, but after some
time, they become sick and infected. We often refer to this phenomenon as the incubation
period. Due to the latent nature of some diseases, researchers also proposed time-delay
infectious disease network models [7–10] and analyzed the influence of infection delay on
transmission threshold and bifurcation dynamic behavior caused by time delay in detail. In
addition, since people’s awareness of epidemic information influences disease transmission
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to a large extent, studies showed that the more individuals acquire disease transmission
information, the fewer the number of patients will be [11–14]. In conclusion, this kind of
incubation period without infectious disease (infection delay) has a great impact on the
dynamic behavior of the disease transmission. It can generate more complex dynamic
behavior, such as periodic oscillation, bifurcation, or chaos, which is of great significance in
both mathematical theory and biology.

Moreover, with the development of research, it was found that the link strength
between individuals can seriously influence epidemic transmission. The stronger the
connection between two nodes, the more susceptible people become infected and the
faster information about the disease becomes available to unknown people. In [15–18],
some methods are provided to assess the spread of disease in weighted networks. An
improved epidemiological SIS model based on adaptive weighted networks is proposed
in [19], showing that as the closeness between individuals decreases, the disease will fade
away. A new method based on edge weights is proposed to estimate prevalence thresholds
and prevalence scales on networks with generality and weight distributions in [20]. It
was found in [21] that the weights can promote epidemic transmission by expanding
the basic reproduction number, and for different network structures, the impact of the
internal infection rate on epidemic prevalence is greater than that of the cross-infection rate.
Therefore, in order to realistically simulate the epidemic transmission process, in this study,
we constructed an epidemic mathematical model on weighted networks and considered
the impacts of link strength values on disease transmission.

With the rapid development of fractional-order differential equations, many researchers
have tried to use fractional differential equation modeling. A fractional-order differential
equation has the memory characteristic, that is, the fractional order system not only con-
siders the current moment state but also the previous moment state. The most prominent
characteristic of the immune system in the human body is memory; therefore, it is more real-
istic to apply fractional differential equations to model the epidemic transmission dynamics.
Applying fractional-order Lyapunov stability theory, researchers studied the stability of an
HIV/AIDS fractional-order infectious disease model [22], COVID-19 fractional-order infec-
tious disease model [23], and Caputo fractional-order SIS/SIR model [24,25]. Meanwhile, a
novel parameter estimation method based on improved particle swarm optimization was
proposed [26], which was extended to various fractional infectious disease models. It can
be found from the above research results that fractional-order models are very suitable
for simulating epidemic transmission dynamics. Thus, this study intended to establish a
fractional-order network epidemic model with time delay. The effects of time delay and
fractional-order parameters on disease transmission dynamics were studied, especially the
complex dynamic behaviors caused by time delay, which can be a good supplement to the
existing research.

Impulsive control is a kind of discontinuous control method that can make the system
state change suddenly. It has good application prospects in a system that cannot bear
continuous control input or cannot provide continuous control input. It is well known
that traditional impulsive control is triggered by time, and the information sampling and
transmission of the system are frequently carried out, which may lead to the waste of
system resources. Event-triggered impulsive control is a much more effective control
method that can overcome this shortcoming. Compared with general impulsive control,
the impulsive time of the event-triggered impulsive control is determined by the preset
conditions related to the system’s state, which makes the impulsive control strategy more
flexible. Meanwhile, the control input of the event-triggered impulsive control is only
determined by some event-triggered conditions related to the system’s state. Due to many
factors that affect the transmission characteristics of infectious diseases, the applications
of an event-triggering mechanism in the research field of infectious diseases are relatively
few [27,28]. In study [27], although the application of event-triggering control to the SIS
infectious disease model achieved effective control, it only considered the event triggering
based on a single parameter, namely, infection rate. This study intended to propose a
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control method based on a single-factor event-triggering mechanism, taking the infection
rate threshold as the trigger condition and selecting appropriate control gains to achieve
effective disease control.

This paper is arranged as follows. Definitions of Caputo fractional calculus, some
important lemmas, and model descriptions are given in Section 2. In Section 3, the stability
of the equilibrium of the fractional-order infectious system with time delay is analyzed in
detail. Section 4 proposes an event-triggered impulsive control method and analyzes the
controlled system’s dynamical behavior. In Section 5, a numerical example is shown to
illustrate the correctness of the above theoretical results. Some conclusions are provided in
Section 6, and some advice about further research is also given.

2. Preliminaries and Model Description

First, a definition of Caputo fractional-order calculus and some important lemmas are
provided. Subsequently, descriptions of a fractional-order infectious model with time delay
are introduced.

2.1. Preliminaries

Definition 1 [29]. Suppose that k > 0; t > t0 > 0; and k, t0, t ∈ R. The Caputo fractional
derivative is given by

c
t0

Dk
t f (t) =

1
Γ(n− k)

∫ t

t0

f n(ζ)

(t− ζ)k+1−n dζ, n− 1 < k < n, n ∈ N+,

where t0 denotes the initial time and Γ(•) is the gamma function.

Remark 1. For a smooth function f = f (t), its Caputo fractional-order derivative is given by

c
t0

Dk
t f (t) =

1
Γ(1− k)

∫ t

t0

f n(ζ)

(t− ζ)k dζ,

where 0 < k < 1 is the fractional-order parameter.
For simplicity, in this paper, the Caputo fractional derivative c

t0
Dk

t is always rewritten as Dk.

Lemma 1 [30]. If there exists a continuous Φ(t) that satisfies DkΦ(t) ≤ sΦ(t) for t ≥ t0, then

Φ(t) ≤ Φ(t0)Ek[s(t− t0)
k],

where 0 < k < 1 and s is a constant.

Lemma 2 [31]. For 0 < k < 1 and t ≥ t0, 0 ≤ Ek[w(t− t0)
k] ≤ 1 holds if w < 0.

Lemma 3 [32]. If the function ϕ(t) ∈ Rn is derivable, then Dk(ϕT(t)ϕ(t)) ≤ 2ϕT(t)Dk ϕ(t)
holds for ∀t ≥ t0 and 0 < k < 1.

Lemma 4 [33]. For u, v ∈ Rn and m > 0, then 2uTv ≤ 1
m uTu + kvTv holds.

Lemma 5 [34]. For a fractional-order time-delay system Dkx(t) = φ(x(t), x(t − τ)), where
φ(•) ∈ Rn is a nonlinear function that satisfies the Lipschiz condition, 0 < k < 1, x(t) ∈ Rn, and
τ ∈ R is a constant. If a positive definite matrix P and a positive semi-definite matrix Q exist, and
the following condition

xT(t)PDkx(t) + xT(t)Qx(t)− xT(t− τ)Qx(t− τ) ≤ 0

is satisfied, then the system is Lyapunov stable.
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2.2. Model Descriptions

In an epidemic network, nodes can be classified into three classes: susceptible nodes
(S), infected nodes (I), and recovery nodes (R). Figure 1 illustrates their transmission law. a
represents the constant population input rate, d represents the natural mortality rate of the
population, β denotes the infection rate of susceptible individuals, α denotes the recovery
rate of infected individuals, and γ represents the probability from recovery to susceptibility.
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Figure 1. Propagation law between nodes between nodes.

In a social network, the connection weight between node i and another node j is
denoted as ωij. If there is a connection between node i and node j, then ωij 6= 0; conversely,
if there is no connection, then ωij = 0. In this paper, it should be noted that we only
concentrate on undirected networks, which means ωij = ωji. Previous research showed
that the weight of nodes plays a significant role in disease transmission.

From Figure 1, it can be observed that the susceptibility of a node i to infection by its
neighboring infected nodes is λI = 1− (1− β)ωij , as determined by the weight assigned
to each connection in the social network. In cases where multiple infected nodes p are

present among their neighbors, the total probability of infection is 1−
p
Π
j=1

(1− λI), which is

calculated as a product of these individual probabilities. Based on this disease transmission
relationship, a fractional-order SIR network model is proposed in the following:

DkSi(t) = a− dSi(t)−
[

1−
p
Π
j=1

(1− λI)

]
Si(t)Ii(t) + γRi(t),

Dk Ii(t) = −dIi(t) +
[

1−
p
Π
j=1

(1− λI)

]
Si(t)Ii(t)− αIi(t),

DkRi(t) = αIi(t)− dRi(t)− γRi(t).

(1)

It is important to note that for certain diseases, there exists a latency period before
an individual becomes infected. Consequently, assuming the presence of this incubation
period τ ≥ 0, model (1) can be appropriately adjusted to incorporate a time-delayed SIR
epidemiological model:

DkSi(t) = a− dSi(t)−
[

1−
p
Π
j=1

(1− λI)

]
Si Ii(t− τ) + γRi(t),

Dk Ii(t) = −dIi(t) +
[

1−
p
Π
j=1

(1− λI)

]
Si(t)Ii(t− τ)− αIi(t),

DkRi(t) = αIi(t)− dRi(t)− γRi(t).

(2)

where 0 ≤ τ and the initial condition is [Si(η), Ii(η), Ri(η)], where η ∈ [−τ, 0].
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3. Stability Analysis of the Equilibrium Points
3.1. The Existence and Boundedness of Solutions

For simplicity, by letting β̃ = 1−
p
Π
j=1

(1− λI), system (2) can be transformed to

DkSi(t) = a− dSi(t)− β̃Si(t)Ii(t− τ) + γRi(t),
Dk Ii(t) = −dIi(t) + β̃Si(t)Ii(t− τ)− αIi(t),
DkRi(t) = αIi(t)− dRi(t)− γRi(t).

(3)

For system (3), there always exists a disease-free equilibrium point E0 = ( a
d , 0, 0).

When τ = 0, system (3) can be written as

DkSi(t) = a− dSi(t)− β̃Si(t)Ii(t) + γRi(t),
Dk Ii(t) = −dIi(t) + β̃Si(t)Ii(t)− αIi(t),
DkRi(t) = αIi(t)− dRi(t)− γRi(t).

Based on the next-generation matrix method [35], we can calculate the basic reproduc-

tion number R0 = aβ̃
d(d+α)

.
For system (3), the endemic equilibrium point E∗ = (S∗i , I∗i , R∗i ) is presented as follows:

S∗i =
d + α

1−
p
Π
j=1

(1− λI)

=
d + α

β̃
,I∗i =

d + γ

β̃
· aβ̃− d(d + α)

d2 + dα + dγ
,R∗i =

α

β̃
· aβ̃− d(d + α)

d2 + dα + dγ
.

It is obvious that S∗i > 0. When R0 = aβ̃
d(d+α)

> 1, then I∗i > 0, R∗i > 0, and there exists

a unique endemic equilibrium point E∗ for system (2). When R0 = aβ̃
d(d+α)

< 1, then I∗i < 0,
R∗i < 0, and system (2) has no unique endemic equilibrium point.

Let Ni(t) = Si(t) + Ii(t) + Ri(t); from Equation (3), this yields

Dk Ni(t) = a− dNi(t). (4)

Applying the Laplace transform, Equation (4) can be transformed to

skL[Ni(t)]− sk−1Ni(0) =
a
s
− dL[Ni(t)]. (5)

Thus, we can obtain that

Ni(s) =
sk Ni(0) + a
sk+1 + sd

=
sk−1Ni(0)

sk + d
+

a
sk+1 + sd

. (6)

Applying the inverse Laplace transform, Equation (6) yields

Ni(t) = Ek,1(−dtk)Ni(0) + aE0,1(−dt0). (7)

Since lim
t→∞

Ek,1(−dtk) = 0 and E0,1(−dt0) = 1
1+d , then from (7), we can obtain that

lim
t→∞

Ni(t) =
a

1 + d
,

which means that the solutions of Equation (3) are bounded.
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3.2. Stability Analysis of the Equilibrium

A. Stability analysis of disease-free equilibrium point

For system (3), its linearization equation at the equilibrium point is

DkSi(t) = (−d− β̃I∗i )Si(t)− β̃S∗i Ii(t− τ) + γRi(t),
Dk Ii(t) = β̃I∗i Si(t) + β̃S∗i Ii(t− τ)− (d + α)Ii(t),
DkRi(t) = αIi(t)− dRi(t)− γRi(t).

(8)

Applying the Laplace transform yields

λkY1(λ) = (−d− β̃I∗i )1(λ) + λk−1φ1(0)− β̃S∗i e−λτ(Y2(λ) +
∫ 0
−τ e−λτφ1(t)dt) + Y3(λ),

λkY2(λ) = β̃I∗i Y1(λ) + β̃S∗i e−λτ(Y2(λ) +
∫ 0
−τ e−λτφ2(t)dt)−

[
(d + α)Y2(λ) + λk−1φ2(0)

]
,

λkY3(λ) = αY2(λ)−
[
(d + γ)Y3(λ) + λk−1φ3(0)

]
.

(9)

For Equation (9), let

B(λ)

 Y1(λ)
Y2(λ)
Y3(λ)

 =

 ψ1(λ)
ψ2(λ)
ψ3(λ)

,

Then, we can obtain that

B(λ) =

λα + d + β̃I∗i β̃S∗i e−λτ −γ

−β̃I∗i λα − β̃S∗i e−λτ + d + α 0
0 −α λα + d + γ

,

and its characteristic polynomial is

det(B(λ)) = (λk + d + β̃I∗i )(λ
k − β̃S∗i e−λτ + d + α)(λk + d + γ)− αγβ̃I∗i + β̃I∗i (λ

k + d + γ)β̃S∗i e−λτ . (10)

If τ = 0, Equation (9) can be transformed to

det(B(λ)) = (λk + d + β̃I∗i )(λ
k − β̃S∗i + d + α)(λk + d + γ)− αγβ̃I∗i + β̃I∗i (λ

k + d + γ)β̃S∗i .

Since the disease-free equilibrium is E0 = ( a
d , 0, 0), then

det(B(λ)) = (λk + d)(λk − β̃
a
d
+ d + α)(λk + d + γ).

Therefore, if R0 < 1, the roots of det(B(λ)) are all negative. Hence, when τ = 0,
system (3) is asymptotically stable at the disease-free equilibrium point.

If τ > 0, let λ = δi; then, Equation (9) can be transformed to

det(B(λ)) = ((δi)k + d)((δi)k − β̃
a
d

e−δτi + d + α)((δi)k + d + γ) = 0 (11)

Separating the real and imaginary parts of Equation (11) produces

(−1)kδ2k = (2d + γ)(d + α + m cos δτ) + d(d + γ),
(−δ2)

k
= − d(d+γ)(d+α+m cos δτ)

d+d+r+d+α+m cos δτ ,

m sin δτ(−δ2)
k
+ d(d + γ) sin δτ = 0,

m sin δτ(d + γ)δk + d sin δτδk = 0,

with m = β̃ a
d .

Consequently, sin δτ = 0 and cos δτ = ±1. Then,

− d(d + γ)(d + α + m cos δτ)

d + d + r + d + α + m cos δτ
= (2d + γ)(d + α + m cos δτ) + d(d + γ).
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Thus, we can conclude that cos δτ = −1 and

(−δ2)
k
= −

d(d + γ)(d + α− β̃ a
d )

d + d + r + d + α + m cos δτ
.

Therefore, if R0 = aβ̃
d(α+d) < 1, then (−δ2)

k
= − d(d+γ)(d+α−β̃ a

d )
d+d+r+d+α+m cos δτ < 0; therefore, the

roots of (11) have a negative real part and the system is stable.

If R0 = aβ̃
d(α+d) > 1,then (−δ2)

k
= − d(d+γ)(d+α−β̃ a

d )
d+d+r+d+α+m cos δτ < 0; similarly, the roots of

Equation (10) have a positive real part and the system is unstable.
From the above arguments, we have the following theorem.

Theorem 1. For system (3), the disease-free equilibrium point E0 = ( a
d , 0, 0) is locally stable when

R0 = aβ̃
d(α+d) ≤ 1 and unstable when R0 = aβ̃

d(α+d) > 1.

B. Stability analysis of the endemic equilibrium point

When τ = 0, at the endemic equilibrium E∗ = (S∗i , I∗i , R∗i ), Equation (10) can be
transformed to

det(B(λ)) = (λk + d + β̃I∗i )(λ
k − β̃S∗i + d + α)(λk + d + γ)− αγβ̃I∗i + β̃I∗i (λ

k + d + γ)β̃S∗i
= (λk)

3
+ Q1(λ

k)
2
+ Q2λk + Q3,

with p = β̃I∗i , q = β̃S∗i ,

Q1 = 3d + p + α + γ− q,
Q2 = (2d + p + α− q)(d + γ) + (d + α− q)(d + p)d + p(d + γ)q,
Q3 = (d + α− q)(d + p)(d + γ)− αγp + p(d + γ)q.

According to the Routh–Hurwitz stability criteria, if αβ̃− d(d + α) > 0, e.g., R0 =
aβ̃

d(α+d) > 1, then Q1 > 0, Q2 > 0, Q3 > 0, and Q1Q2 −Q3 > 0. That is to say, the roots of
det(B(λ)) = 0 all have a negative real part. Therefore, there exists an endemic equilibrium
for system (2) and the system is locally stable at the endemic equilibrium when τ = 0.

When τ > 0, Equation (10) can be transformed to

det(B(λ)) = (λk + d + β̃I∗i )(λ
k − β̃S∗i e−λτ + d + α)(λk + d + γ)− αγβ̃I∗i + β̃I∗i (λ

k + d + γ)β̃S∗i e−λτ

= (λk)
3
+ Q1(λ

k)
2
+ Q2λk + Q3,

with p̃ = β̃I∗i , q̃ = β̃S∗i e−λτ ,

Q̃1 = 3d + p + α + γ− q,
Q̃2 = (2d + p + α− q)(d + γ) + (d + α− q)(d + p)d + p(d + γ)q,
Q̃3 = (d + α− q)(d + p)(d + γ)− αγp + p(d + γ)q.
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For system (3), by applying Lemma 5 and letting xi = (Si, Ii, Ri)
T, P =

1 0 0
0 1 0
0 0 1

,

and Q =

0 0 0
0 1 0
0 0 0

, then

xT
i PDkxi + xT

i Qxi − xT
i (t− τ)Qxi(t− τ)

= SiDkSi + IiDk Ii + RiDkRi + I2
i − I2

i (t− τ)

= Si

[
(−d−

∼
βI∗i )Si −

∼
βS∗i Ii(t− τ) + γRi

]
+ Ii

[∼
βI∗i Si +

∼
βS∗i Ii(t− τ)− (d + α)Ii

]
+Ri(αIi − dRi − γRi) + I2

i − I2
i (t− τ)

≤ (−d− 1
2

∼
βI∗i −

1
2

∼
βS∗i +

1
2 γ)S2

i
+ ( 1

2

∼
βI∗i + 1

2

∼
βS∗i −

1
2 α + 1− d)I2

i
+( 1

2 α− d− 1
2 γ)R2

i
− I2

i (t− τ)

≤ (−d− 1
2

∼
βI∗i −

1
2

∼
βS∗i +

1
2 γ)S2

i
+ ( 1

2

∼
βI∗i + 1

2

∼
βS∗i −

1
2 α + 1− d)I2

i
+( 1

2 α− d− 1
2 γ)R2

i
.

Thus, if −d − 1
2 β̃I∗i −

1
2 β̃S∗i + 1

2 γ < 0, 1
2 β̃I∗i + 1

2 β̃S∗i −
1
2 α + 1 − d < 0, and 1

2 α −
d − 1

2 γ < 0 are satisfied, system (7) is locally stable at the endemic equilibrium E∗ =
(S∗i , I∗i , R∗i ).

C. Lyapunov stability analysis of the equilibrium point

Theorem 2. For system (3), if ∀P > 0, Q ≥ 0, and both Q + 1
2 Pβ− Pd− Pα ≤ 0 and 1

2 Pβ−
Q ≤ 0 are satisfied, then the equilibrium points are Lyapunov stable; if Q + 1

2 Pβ− Pd− Pα < 0
and 1

2 Pβ−Q < 0 are satisfied, then the equilibrium points are globally Lyapunov asymptotic stable.

Proof. Based on Lemma 5, choose P > 0 and Q ≥ 0, then,

Ii(t)PDk Ii(t) + Ii(t)QIi(t)− Ii(t− τ)QIi(t− τ)

= Ii(t)P
[
−dIi(t) +

∼
βSi(t)Ii(t− τ)− αIi(t)

]
+ Ii(t)QIi(t)− Ii(t− τ)QIi(t− τ)

= (Q− Pd− Pα)I2
i
(t) + PβSi(t)Ii(t)Ii(t− τ)−QI2

i
(t− τ)

≤ (Q− Pd− Pα)I2
i
(t) + PβIi(t)Ii(t− τ)−QI2

i
(t− τ)

≤ (Q− Pd− Pα)I2
i
(t) + 1

2 Pβ(I2
i
(t) + I2

i
(t− τ))−QI2

i
(t− τ)

= (Q + 1
2 Pβ− Pd− Pα)I2

i
(t) + ( 1

2 Pβ−Q)I2
i
(t− τ).

Thus, if Q + 1
2 Pβ− Pd− Pα ≤ 0 and 1

2 Pβ− Q ≤ 0 are satisfied, then for system (3),
the equilibrium points are Lyapunov stable; if Q + 1

2 Pβ− Pd− Pα < 0 and 1
2 Pβ−Q < 0

are satisfied, then the equilibrium points are globally Lyapunov asymptotic stable. �

4. Event-Triggered Impulsive Control

Event-triggered impulsive control is only activated when a specific event occurs, such
as government intervention to combat an infectious disease once the number of infected
individuals surpasses a predetermined threshold. In this section, we propose a single-factor
event-triggered impulsive control approach to effectively manage infectious diseases by
selecting an appropriate control gain, where the threshold of infection rate serves as the
trigger condition.

For system (3), the following event-triggered impulsive control is suggested:

DkSi(t) = a− dSi(t)− β̃Si(t)Ii(t− τ) + γRi(t),
Dk Ii(t) = −dIi(t) + β̃Si(t)Ii(t− τ)− αIi(t) + U,
DkRi(t) = αIi(t)− dRi(t)− γRi(t).

(12)
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where

U =
∞

∑
l=1

[KIi(tl)− LIi(t)δ(t− tl)], (13)

K and L are gain coefficients, δ(·) is the Dirac function, and l ∈ N. The event-triggered
sequence {tl}∞

l=1 satisfies 0 < t1 < t2 < · · · < tl < · · · , where lim
l→∞

tl = ∞. Ii(tl) 6= 0

denotes the given infective rate thresholds, for example, Ii(tl) maybe indicates the number
of people infected at different levels of risk in the COVID-19 outbreak.

Since the Dirac function satisfies δ(t − tl) =

{
+∞, t = tl ,
0, t 6= tl ,

and∫ +∞
−∞ h(t)δ(t− tl)dt = h(tl), then system (12) can be transformed to

DkSi(t) = a− dSi(t)− β̃Si(t)Ii(t− τ) + γRi(t),
Dk Ii(t) = −dIi(t) + β̃Si(t)Ii(t− τ)− αIi(t) + KIi(tl), t 6= tl ,
∆Ii(tl) = −LIi(tl), t = tl ,
DkRi(t) = αIi(t)− dRi(t)− γRi(t).

(14)

By letting ε(t) = Ii(tl)− Ii(t), Equation (14) can be further expressed as

DkSi(t) = a− dSi(t)− β̃Si(t)Ii(t− τ) + γRi(t),
Dk Ii(t) = −dIi(t) + β̃Si(t)Ii(t− τ)− αIi(t) + K(Ii(t) + ε(t)), t 6= tl ,
Ii(t+l ) = (1− L)Ii(tl), t = tl ,
DkRi(t) = αIi(t)− dRi(t)− γRi(t).

(15)

Remark 2. The stability of the event-triggered impulsive system discussed in this paper differs
from that of conventional impulsive systems. In the context of controlling infectious diseases, our
primary focus should be on treating infected individuals to restore their health. Therefore, for system
(15), we only need to consider the stability of the following impulsive system:

Dk Ii(t) = −dIi(t) +
∼
βSi Ii(t− τ)− αIi(t) + K(Ii(t) + ε(t)), t 6= tl ,

Ii(tl) = (1− L)Ii(tl−), t = tl .
(16)

Theorem 3. If a constant T exists such that the following inequality T = inf{t+1 − tl} > 0 holds,
then system (15) under control (13) exhibits no Zeno phenomenon.

Proof. Let Wi(t) = ε2
i (t). Since ε(t) = Ii(tl)− Ii(t), then

DαWi(t) = 2εi(t)Dαεi(t)
= −2εi(t)Dα Ii(t)
= −2εi(t)[−dIi + β̃Si Ii(t− τ)− αIi + KIi(tl)]

≤ 2εi(t)(d + α)Ii(t)− 2εi(t)β̃Si Ii(t− τ)− 2εi(t)KIi(tl)

≤ 3ε2
i
(t) + (d + α)2 + β̃2 + K2 I2

i
(tl)

≤ 3ε2
i
(t) + η,

with η = (d + α)2 + β̃2 + K2 I2
i
(tl).

Since εi(tl) = 0, then for t ∈ (tl , tl+1], ε2
i
(t) ≤ 3η(t− tl)

k−1Ek(3(t− tl)
k).

Choose the event-triggered condition tl+1 = inf
{

t ∈ (tl , ∞)
∣∣∣ε2

i
(t) ≥ I2

i
(t)
}

.

By letting Ξ(Ii(t)) = I2
i
(t), we obtain that

Ξ(Ii(tl+1)) ≤ 3η(tl+1 − tl)
k−1Ek(3(tl+1 − tl)

k).
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If Ξ(Ii(tl+1)) = 0, then η = 0, which contradicts η = (d + α)2 + β̃2 + K2 I2
i
(tl) > 0;

therefore, Ξ(Ii(tl+1)) > 0.
Let Tl = tl+1 − tl and Ξ(Ii(tl+1)) = 3ξη(tl+1 − tl)

k−1Ek(3(tl+1 − tl)
k). Then,

Tl = tl+1 − tl > 0, and thus, there is no Zeno phenomenon. �

Theorem 4. For system (16), if 2K− d− α + β̃ ≤ 0 and 0 < L < 1 are satisfied, then the system
is stable under event-triggered impulsive control.

Proof. Choose V(t) = I2
i
(t). When t ∈ (tl , tl+1],

DkV(t) = Ii(t)Dk Ii(t)
= Ii(t)

[
−dIi + β̃Si Ii(t− τ)− αIi + K(Ii(t) + ε(t))

]
≤ (K− d− α)I2

i
(t) + Ii(t)

[
β̃Si Ii(t− τ) + Kε(t)

]
≤ (K− d− α)I2

i
(t) + Ii(t)β̃Ii(t− τ) + ξ Ii(t)Kε(t)

≤ (K− d− α)I2
i
(t) + 1

2 β̃
[

I2
i
(t) + I2

i
(t− τ)

]
+ 1

2 Kξ
[

I2
i
(t) + ε2

i
(t)
]
.

(17)

From the event-triggered condition, we can deduce that when t ∈ (tl , tl+1], ε2
i
(t) ≤

I2
i
(t) and inequality (17) can be written as

DkV(t) ≤ (2K− d− α)I2
i
(t) + 1

2 β̃
[

I2
i
(t) + I2

i
(t− τ)

]
≤ (2K− d− α)I2

i
(t) + β̃I2

i
(t)

≤ (2K− d− α + β̃)I2
i
(t)

= (2K− d− α + β̃)V(t).

Let β̂ = 2K− d− α + β̃. Then, DkV(t) ≤ β̃V(t).
Applying Lemma 1, when t ∈ (tl , tl+1], it is easy to obtain that

V(t) ≤ V(tl)Ek[β̂(t− tl)
k]. (18)

When t = tl ,
V(tl) = I2

i
(tl) = (1− L)2 I2

i
(tl−). (19)

From (18) and (19), when t ∈ (tl , tl+1], we have that

V(t) ≤ V(tl)Ek[β̂(t− tl)
k]

= (1− L)2V(tl−)Ek[β̂(t− tl)
k]

≤ (1− L)2V(tl−1)Ek[β̂(tl− − tl−1)
k]Ek[β̂(t− tl)

k].

By analogy, when t ∈ (tl , tl+1],

V(t) ≤ (1− L)2lV(t0)Ek[β̂(t− tl)
k]

l
∏
i=1

Ek[β̂(ti− − ti−1)
k]

≤ (1− L)2lV(t0)Ek[β̂(t− tl)
k]

l
∏
i=1

Ek[β̂T̂k],

with T̂ = sup{ti+1 − ti} > 0, i = 1, 2, · · · .
If β̂ = 2K− d− α + β̃ ≤ 0 and 0 < L < 1, then we can obtain that lim

t→∞
V(t) = 0.

Based on the above analysis, it is clear that for system (15), lim
t→∞

Ii(t) = 0. �

Remark 3. In Theorem 3, the sufficient conditions for ensuring the stability of fractional-order
impulsive systems in the presence of time delays are derived. Furthermore, to the best of the author’s
knowledge, in the field of epidemics, related works on the stability problem of fractional-order systems
under event-triggered impulsive control for finite-time cases with fractional orders of 0 < k < 1
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have not been investigated yet. This aspect remains unexplored and requires further investigation in
future studies.

5. Numerical Simulations

In this section, an example is presented to illustrate the effectiveness of the theoretical
results mentioned above.

For system (2), for node i, we set k = 0.98, α = 0.84, β = 0.65, γ = 0.14, a = 0.002,
d = 0.001, and p = 8. The initial condition was [0.6411, 0.2346, 0.1243] and ωij was valued
randomly between 0 and 1. When τ = 10, we calculated that R0 ≈ 2.3 > 1, and thus,
there existed an endemic equilibrium point for system (2). At this moment, the endemic
equilibrium point was stable, which is presented in Figure 2.
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Furthermore, we also simulated the influence of time delay on the infective rate, as
depicted in Figure 3. It is obvious that the disease died out much more slowly as the time
delay became larger.
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For system (2), for node i, we set β = 0.45, a = 0.001, and d = 0.003, while the other
parameters remained unchanged. In this case, we calculated that R0 ≈ 0.37 < 1, then
there existed only a disease-free equilibrium point for system (2). And the disease-free
equilibrium point was globally Lyapunov asymptotic stable, which is presented in Figure 4.
Similarly, we also simulated the influence of the time delay on the infective rate, as depicted
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in Figure 5. It is also easy to see that the smaller the time delay, the faster the infection
rate declined.
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Figure 5. The time responses of the infective states when τ varied and R0 < 1.

It is well known that fractional-order parameters have an important effect on the
dynamic behavior of fractional-order systems. Unfortunately, we do not provide relevant
theoretical analysis and proof in detail in this paper, but we could simulate and quantify
the impact of fractional-order parameters on the infection rate, as shown in Figure 6. It
is known that when the fractional-order parameter takes different values, the number of
infected people will also be different. Clearly, the smaller the parameter values, the more
people were infected.



Fractal Fract. 2024, 8, 22 13 of 15

Fractal Fract. 2023, 7, x FOR PEER REVIEW 14 of 16 
 

 

 
Figure 6. The time responses of the infectious states with 10=τ  and 10 <R  when k  varies. 

Since the Chinese government’s response to the COVID-19 outbreak was to divide 
places into different risk levels, the intensity of control for high-risk and low-risk areas 
varied. In this manuscript, in order to better highlight the control effect, we took the situ-
ation 10 >R  as an example to apply control. When the event-triggered control was active, 
the infection rates were 0.2 and 0.01, while the control gains were 65.0=L and 02.0−=K  
for high-risk and low-risk areas, respectively. The other parameters were the same as in 
Figure 2. The simulation result is presented in Figure 7, which shows that the disease de-
creased faster and eventually declined to zero, and the control method was effective. 

 
Figure 7. The time responses under event-triggered control. 

Remark 4. From Figure 7, it is obvious that for system (2) under the event-triggered impulsive 
control, the infectious rate decayed to zero rapidly. Compared with Figure 2, there was a stable 

Figure 6. The time responses of the infectious states with τ = 10 and R0 < 1 when k varies.

Since the Chinese government’s response to the COVID-19 outbreak was to divide
places into different risk levels, the intensity of control for high-risk and low-risk areas
varied. In this manuscript, in order to better highlight the control effect, we took the
situation R0 > 1 as an example to apply control. When the event-triggered control was
active, the infection rates were 0.2 and 0.01, while the control gains were L = 0.65 and
K = −0.02 for high-risk and low-risk areas, respectively. The other parameters were
the same as in Figure 2. The simulation result is presented in Figure 7, which shows
that the disease decreased faster and eventually declined to zero, and the control method
was effective.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 14 of 16 
 

 

 
Figure 6. The time responses of the infectious states with 10=τ  and 10 <R  when k  varies. 

Since the Chinese government’s response to the COVID-19 outbreak was to divide 
places into different risk levels, the intensity of control for high-risk and low-risk areas 
varied. In this manuscript, in order to better highlight the control effect, we took the situ-
ation 10 >R  as an example to apply control. When the event-triggered control was active, 
the infection rates were 0.2 and 0.01, while the control gains were 65.0=L and 02.0−=K  
for high-risk and low-risk areas, respectively. The other parameters were the same as in 
Figure 2. The simulation result is presented in Figure 7, which shows that the disease de-
creased faster and eventually declined to zero, and the control method was effective. 

 
Figure 7. The time responses under event-triggered control. 

Remark 4. From Figure 7, it is obvious that for system (2) under the event-triggered impulsive 
control, the infectious rate decayed to zero rapidly. Compared with Figure 2, there was a stable 
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Remark 4. From Figure 7, it is obvious that for system (2) under the event-triggered impulsive
control, the infectious rate decayed to zero rapidly. Compared with Figure 2, there was a stable
endemic equilibrium point in the system without control, indicating that there was always a certain
infected population.
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6. Conclusions

In this work, we proposed and analyzed a fractional-order epidemic model with
time delay and network weights. First, the existence and stability of both a disease-free
equilibrium point and an endemic equilibrium point were discussed. Then, sufficient
conditions of stability for fractional-order epidemic systems with time delay are provided
under event-triggered impulsive control, and the Zeno phenomenon was ruled out. Also,
we found that the fractional-order parameter greatly influenced the infection rate.

For certain diseases, it is not necessary to achieve a complete eradication of the
infection rate in practical scenarios. It is considered that the disease is under control when
the infection rate is within a specific range. Hence, the top task we should carry out is to
control the infection rate of the entire population to a certain acceptable range. Moreover,
for some specific epidemics, for example, COVID-19 and cholera, people hope to suppress
them quickly so that they can avoid casualties and economic losses. Therefore, our next
crucial task is to propose an effective method to contain a major outbreak of an epidemic in
a finite time.
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