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Abstract: A novel numerical scheme based on the Bell wavelets is proposed to obtain numerical
solutions of the fractional integro-differential equations with weakly singular kernels. Bell wavelets
are first proposed and their properties are studied, and the fractional integration operational matrix
is constructed. The convergence analysis of Bell wavelets approximation is discussed. The fractional
integro-differential equations can be simplified to a system of algebraic equations by using a trun-
cated Bell wavelets series and the fractional operational matrix. The proposed method’s efficacy is
supported via various examples.
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1. Introduction

In recent years, fractional calculus has become increasingly significant in science and
engineering, as it plays a crucial role in modeling numerous physical and mathematical
problems. Examples of these problems include viscoelasticity, electromagnetic waves, and
dielectric polarization [1,2]. The research object of fractional calculus is fractional integra-
tion and differentiation. The definition of fractional calculus is obtained by integrating and
unifying fractional integration and fractional differentiation. There are usually three defini-
tions of fractional calculus: Riemann–Liouville fractional calculus, Grünwald–Letnikov’s
fractional calculus, and Caputo fractional calculus. In recent years, many studies have
focused on the existence, regularity, and convergence of solutions to fractional differential
equations [3–6]. However, it is difficult to obtain analytical solutions for fractional differen-
tial equations or fractional integral differential equations. Therefore, it is not surprising
that many different numerical methods have been proposed and analyzed for the fractional
differential/integral equations, including the homotopy analysis method [7], variational
iteration method [8], reproducing kernel method [9], pseudospectral method [10], Adomian
decomposition method [11], and wavelet methods [12–20].

In this paper, the fractional Fredholm-Volterra integro-differential equations are con-
sidered as follows:

Dα
∗y(t) = λ1

∫ t

0

y(s)
(x − t)β

ds + λ2

∫ 1

0
k(t, s)y(s)ds + g(t), (1)

with initial condition
y(0) = 0, (2)

where k(t, s) ∈ L2([0, 1]× [0, 1]) and g(t) are known functions, and λ1, λ2 are real constants.
Here, Dα

∗ denotes the fractional-order derivative of order α in the sense of Caputo and
0 < α, β < 1.
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Many numerical techniques have been studied for solving fractional integro-differential
equations (FIDE). Yi [21] proposed CAS wavelets to solve the fractional FIDE with a weakly
singular kernel, and the second Chebyshev wavelet (SCW) method [22] was used to im-
prove the accuracy of the numerical methods. Nemati [23] solved the nonlinear FIDE
with weakly singular kernels by using the modification of hat functions, and then the
Legendre wavelets [24] were used for the equations. Recently, Taylor wavelets (TW) [25]
and Euler wavelets (EW) [26] were proposed to solve the fractional Fredholm–Volterra
integro-differential equations (FFVIDE). Compared with the extensively studied fractional
differential/integral equations, the more difficult FFVIDE with weakly singular kernels
still requires great efforts for the development and analysis of stable, accurate, and efficient
numerical methods.

Bell polynomials are combinatorial-type polynomials. Since the mathematician E.T.
Bell first proposed Bell polynomials, they have been a hot issue in the field of combinatorics.
Now, Bell polynomials have become an important part of combinatorics, with applications
in differential equations, theoretical physics, and stochastic processes. In [27], the Bell
polynomials were used for solving the nonlinear Fredholm–Volterra integral equations.
However, Bell polynomials do not have sparsity, and the coefficient matrix of the system
of equations obtained by solving integral or differential equations is full-rank. As is well
known, wavelets have locality and sparsity. Therefore, we attempt to construct wavelet
functions by using Bell polynomials and use them to obtain the approximate solution. In
this paper, the Bell wavelets (BWs) are first presented and their fractional integration opera-
tional matrix is first derived, and then the convergence of the Bell wavelets approximation
is described. We used a truncated Bell wavelets series together with the operational matrix
to reduce the equations to a system of algebraic equations. The coefficient matrix of the
algebraic equations is sparse, which greatly reduces computational complexity. Bell wavelet
functions have advantages and can provide better approximate solutions for equations.

This article is structured as follows. In Section 2, we introduce the definitions of
fractional integration in the sense of the Riemann–Liouville and Caputo, and then the Bell
wavelets are proposed. In Section 3, the fractional integration operational matrix of the
Bell wavelet is presented. The analysis of the convergence of the Bell wavelets expansion
is discussed in Section 4. The proposed scheme is presented in Section 5. The numerical
experiments are provided to validate the Bell wavelets method in Section 6. The conclusions
are given in the last section.

2. Preliminaries
2.1. Fractional Calculus

The commonly used definitions of fractional calculus include two situations: in the
sense of the Riemann–Liouville and Caputo.

Definition 1. The Riemann–Liouville fractional integration of order α for a given function f (t) is
defined as

Iα f (t) =

{
1

Γ(α)

∫ t
0 (t − τ)α−1 f (τ)dτ, α > 0, t > 0,

f (t), α = 0.
(3)

The integral operator Iα has the following properties:

(i) Iα Iβ f (t) = Iα+β f (t);
(ii) Iβ Iα f (t) = Iα+β f (t);
(iii) Iαtν = [Γ(ν + 1)/Γ(ν + α + 1)]tα+ν.

Definition 2. Let Dα
∗ represent the fractional differential operator in the sense of Caputo, It is

defined as

Dα
∗ f (t) =


dl f (t)

dtl , α = l ∈ N,
1

Γ(l−α)

∫ t
0

f (l)(τ)
(t−τ)α−l+1 dτ, 0 ≤ l − 1 < α < l.

(4)
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The relation between the Riemann–Liouville operator and the Caputo operator is
given as

Dα
∗ Iα f (t) = f (t), (5)

IαDα
∗ f (t) = f (t)−

l−1

∑
k=0

f (k)(0+)
tk

k!
, t > 0. (6)

2.2. Bell Wavelets

The Bell wavelets ψnm(t) = ψ(k, n, m, t) have four arguments: k is any positive integer,
n = 1, . . . , 2k−1, m is the degree of the Bell polynomials, and t is the normalized time. The
Bell wavelets are described on the interval [0, 1) as

ψnm(t) =

{
2

k−1
2 Bm(2k−1t − n + 1), n−1

2k−1 ≤ t < n
2k−1 ,

0, otherwise.
(7)

Here, Bm(t) are the Bell polynomials of order m, which are defined as [27]

Bm(t) =
m

∑
r=0

S(m, r)tr,

where S(m, r) shows the Stirling number of the second kind and is defined by

S(m, r) =
r

∑
j=0

(−1)j

r!

(
r
j

)
(r − j)m.

By using the property of the Bell polynomials, the vector B(t) = [B0(t), · · · , Bm(t)], which
consists of the Bell polynomials Bi(t), i = 0, 1, · · · , m, is represented by

B(t) = SX(t),

where
X(t) = [1, t, · · · , tm]T ,

and

S =


S(0, 0) 0 · · · 0
S(1, 0) S(1, 1) · · · 0

...
...

. . .
...

S(m, 0) S(m, 1) · · · S(m, m)

.

3. Bell Wavelets Approximation and Operational Matrix
3.1. Bell Wavelets Approximation

A function f (t) ∈ L2[0, 1] can be rewritten by the Bell wavelets as follows:

f (t) =
∞

∑
n=0

∑
m∈Z

cnmψnm(t),

The above equation is written as a finite term

f (t) ≃
2k−1

∑
n=1

M−1

∑
m=0

cnmψnm(t) = CTΨ(t), (8)

where
C = [c10, c11, . . . , c1(M−1), c20, . . . , c2(M−1), . . . , c2k−10, . . . , c2k−1(M−1)]

T (9)
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Ψ(t) = [ψ10, ψ11, . . . , ψ1(M−1), ψ20, . . . , ψ2(M−1), . . . , ψ2k−10, . . . , ψ2k−1(M−1)]
T. (10)

For simplicity, the Equation (8) can also be written as

f (t) ≃
m̂

∑
i=0

ci φi(t) = CTΨ(t),

where φi(t) = ψnm(t), ci = cnm, m̂ = 2k−1M and i = M(n − 1) + m + 1. Therefore,

C = [c1, c2, . . . , cm̂]
T

Ψ(t) = [φ2(t), φ2(t), . . . , φm̂(t)]T.

To evaluate C, we let

hij =
∫ 1

0
f (t)ψij(t)dt.

By using Equation (8), we obtain

hij =
2k−1

∑
n=1

M−1

∑
m=0

cnm

∫ 1

0
ψnm(t)ψij(t)dt =

2k−1

∑
n=1

M−1

∑
m=0

cnmdij
nm, (11)

where dij
nm =

∫ 1
0 ψnm(t)ψij(t)dt, i = 1, 2, · · · , 2k−1, j = 0, 1, · · · , M − 1.

Let

H = [h10, h11, . . . , h1(M−1), h20, . . . , h2(M−1), . . . , h2k−10, . . . , h2k−1(M−1)]
T

and
D = [dij

nm]2k−1 M×2k−1 M, (12)

From Equation (11), we have

CT = HT D−1. (13)

Similarly, the arbitrary bivariate function k(s, t) ∈ L2([0, 1]× [0, 1]) can be approximated
by Bell wavelets

k(s, t) = Ψ(s)TKΨ(t), (14)

where K is a m̂ × m̂ matrix, and it is given by

K = D−1
[∫ 1

0

∫ 1

0
k(s, t)Ψ(s)Ψ(t)dtdt

]
D−1. (15)

3.2. Operational Matrix of the Fractional Integration

If Iα is the Bell wavelets fractional integration operator, one can obtain

IαΨ(t) ≈ PαΨ(t), (16)

where matrix Pα is fractional integration operational BW matrix. By using Equation (3),
we have

IαΨ(t) =
1

Γ(α)

∫ t

0
(t − τ)α−1Ψ(τ)dτ. (17)

Since the BW basis functions Ψ(t) are polynomials, we can calculate 1
Γ(α)

∫ t
0 (t −

τ)α−1τmdτ. By the properties of fractional integration in the sense of Riemann–Liouville,
we have

1
Γ(α)

∫ t

0
(t − τ)α−1τmdτ =

tm+αΓ(m + 1)
Γ(m + α + 1)

.
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Thus, (t − τ)α−1Ψ(τ) can be integrated, and then it is expanded by the BW basis functions;
we can obtain the fractional integration operational BW matrix Pα.

In fact, from Equations (12) and (16), the matrix Pα can be obtained as follows

Pα =

(∫ 1

0

(
1

Γ(α)

∫ t

0
(t − τ)α−1Ψ(τ)dτ

)
ΨT(t)dt

)
D−1 (18)

For k = 2, M = 3 and α = 1, we have

P =



0 0.5 0 0.5 0 0
0.0069444 −0.25 0.25 0.25 0 0
0.0185185 −0.597222 0.5 0.412037 0 0

0 0 0 0 0.5 0
0 0 0 0.0069444 −0.25 0.25
0 0 0 0.0185185 −0.597222 0.5

,

and for k = 2, M = 3 and α = 0.5, we have

P0.5 =



0.14660 1.42919 −0.39957 0.65203 −0.98966 0.34397
0.00505 −0.09073 0.31503 0.38432 −0.693184 0.24871
0.02179 −0.78216 0.86545 0.65735 −1.227210 0.44296

0 0 0 0.14660 1.42919 −0.39957
0 0 0 0.00505 −0.09073 0.31503
0 0 0 0.02179 −0.78216 0.86545

.

4. Convergence Analysis

In order to discuss the convergence of Bell wavelets approximation, some basic results
of Bell polynomials approximation are stated.

Let B(t) = [B0(t), B1(t), . . . , Bm(t)], and any function y(t) ∈ L2[0, 1] can be rewritten
as

y(t) ≈ ym(t) =
m

∑
i=0

ciBi(t) = CTB(t). (19)

The convergence analysis of the Bell polynomials is given in Lemma 1.

Lemma 1 ([27]). Suppose that y(t) ∈ L2[0, 1], ym(t), as defined in Equation (19), is the best
approximation of the real function y(t) by the Bell polynomials. Then, there exists a constant K̃
such that

∥y(t)− ym(t)∥2 ≤ K̃
(m + 1)!22m+1 .

where K̃ = maxt∈[0,1] |ym+1(t)|. From Lemma 1, if m → ∞, then 1
(m+1)!22m+1 → 0, which means

ym(t) → y(t).

Theorem 1. Suppose that ∑2k−1

n=1 ∑M−1
m=0 cnmψnm(t) = ∑m̂

j=0 cj φj(t) = CTΨ(t) is the Bell wavelets
expansion of the smooth function y(t), then we have

lim
m̂→∞

∥y(t)−
m̂

∑
i=0

ci φi(t)∥ = 0,

where m̂ = 2k−1M.
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Proof. Divide the interval [0, 1] into subintervals Ik,n = [ n−1
2k−1 , n

2k−1 ], we can write

∫ 1

0
[y(t)− CTΨ(t)]2dt =

2k−1

∑
n=1

∫ n
2k−1

n−1
2k−1

[y(t)− CTΨ(t)]2dt

=
2k−1

∑
n=1

∫ n
2k−1

n−1
2k−1

[y(t)− yM−1(t)]2dt

=
2k−1

∑
n=1

∥y(t)− yM−1(t)∥2
Ik,n

. (20)

By using the Lemma 1, we have

lim
M→∞

∥y(t)− yM−1(t)∥2
Ik,n

= 0. (21)

Notice that, when k → ∞,
Ik,n → 0;

thus, we have
∥y(t)− yM−1(t)∥2

Ik,n
→ 0. (22)

By using Equation (20), we have

lim
k→∞

∥y(t)− ym̂(t)∥2 = 0. (23)

Considering Equations (21) and (23), and combining with m̂ = 2k−1M, we have

lim
m̂→∞

∥y(t)− ym̂(t)∥2 = 0. (24)

5. Implementation of the Bell Wavelets Scheme

Consider the weakly singular FIDE (1) and (2). To solve the equations, the functions
Dα
∗y(t), g(t), and k(t, s) are approximated by using Bell wavelets as follows:

Dα
∗y(t) ≈ CTΨ(t), (25)

g(t) ≈ GTΨ(t), (26)

and
k(t, s) ≈ Ψ(t)TKΨ(s), (27)

where K is the m̂ × m̂ matrix as in Equation (15).
From Equation (16), we can obtain

y(t) = IαDα
∗y(t) ≈ Iα[CTΨ(t)] = CT Iα[Ψ(t)]) = CTPαΨ(t). (28)

Therefore, ∫ t

0

y(s)
(t − s)β

ds = CT
∫ t

0

PαΨ(s)
(t − s)β

ds = Γ(1 − β)CTPαP1−βΨ(t). (29)
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By using Equations (27) and (28), we obtain∫ 1

0
k(t, s)y(s)ds =

∫ 1

0
Ψ(t)TKΨ(s)Ψ(s)TCTPαds

= Ψ(t)TKDPαTC

= CTPαDTKTΨ(t). (30)

By substituting Equations (25), (26), (29), and (30) into Equation (1), we obtain

CTΨ(t) = λ1Γ(1 − β)CTPαP1−βΨ(t) + λ2CTPαDTKTΨ(t) + GTΨ(t). (31)

Then, we can obtain

CT = λ1Γ(1 − β)CTPαP1−β + λ2CTPαDTKT + GT. (32)

By solving this equation, we can obtain C, and then use Equation (28) to obtain the solution
of Equations (1) and (2).

6. Numerical Examples

In this section, five examples are presented to verify the effectiveness of the proposed
method. As a test measure, the absolute errors between the numerical solutions and the
true solution are defined as follows:

En(t) = |y(t)− ŷ(t)|,

where ŷ(t) = CTPαΨ(t) represents the numerical solutions of the equations. In the follow-
ing examples, we find that when M is fixed and k tends toward infinity, or when k is fixed
and M becomes larger, the absolute errors will become smaller and smaller.

Example 1. For the first one, we consider the following equation [21]:

D0.25
∗ y(t) =

1
2

∫ t

0

y(s)
(t − s)1/2 ds +

1
3

∫ 1

0
(t − s)y(s)ds + g(t), (33)

with the condition y(0) = 0. In this problem,

g(t) =
Γ(3)

Γ(2.75)
t1.75 +

Γ(4)
Γ(3.75)

t2.75 −
√

πΓ(3)t2.5

2Γ(3.5)
−

√
πΓ(4)t3.5

2Γ(4.5)
− 7t

36
+

3
20

.

The exact solution of Equation (33) is y(t) = t2 + t3.

By applying the BW method, we approximate D0.25
∗ y(t) as

D0.25
∗ y(t) ≈ CTΨ(t), (34)

From Equation (28), we can obtain

y(t) = CTP0.25Ψ(t). (35)

Therefore,∫ t

0

y(s)
(t − s)1/2 ds = CTP0.25

∫ t

0

Ψ(s)
(t − s)1/2 ds = Γ(0.5)CTP0.25P0.5Ψ(t). (36)

By using Equation (30), we obtain∫ 1

0
(t − s)y(s)ds = CTP0.25DTKTΨ(t). (37)
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where K is the m̂ × m̂ matrix as given by Equation (15). Similarly, the function g(t) can be
written by the BWs as follows

g(t) ≈ GTΨ(t). (38)

Substituting Equations (34) and (36)–(38) into Equation (33), we have

CTΨ(t) =
1
2

Γ(0.5)CTP0.25P0.5Ψ(t) +
1
2

CTP0.25DTKTΨ(t) + GTΨ(t). (39)

Equation (39) is a system of algebraic equations about an unknown vector C. After solving
C, combined with Equation (35), we can obtain the numerical solution y(t).

The BW approach is applied with k = 2, 3, 4. To demonstrate the effectiveness of the
BW method, CAS wavelets (m′ = 2k(2M + 1)) [21] and SCW [22] are compared with BWs;
the absolute errors are shown in Table 1. In Figure 1, the comparisons between the exact
solution and numerical solutions with some k = 2, 3, 4 and M = 3 are given. Figure 2
shows the absolute errors when k takes different values.

Table 1. The absolute errors for Example 1 with M = 3 and different k.

BW SCW CAS BW SCW CAS BW SCW CAS
t

k = 2 k = 2 m′ = 6 k = 3 k = 3 m′ = 12 k = 4 k = 4 m′ = 24

0 6.9313 ×
10−3

8.3542 ×
10−3

3.0586 ×
10−2

8.1806 ×
10−4

1.0620 ×
10−3

1.4328 ×
10−2

9.3735 ×
10−5

1.4395 ×
10−4

6.3492 ×
10−3

1/6 2.8075 ×
10−3

1.2599 ×
10−3

4.4076 ×
10−2

3.0810 ×
10−4

1.1189 ×
10−3

2.2762 ×
10−2

4.1670 ×
10−5

2.2617 ×
10−4

1.1461 ×
10−2

2/6 2.3585 ×
10−3

9.3654 ×
10−3

3.8707 ×
10−2

3.4663 ×
10−4

1.8879 ×
10−3

1.9409 ×
10−2

3.8572 ×
10−5

5.9826 ×
10−4

9.6983 ×
10−3

3/6 6.7790 ×
10−3

2.2406 ×
10−2

1.5703 ×
10−2

8.2215 ×
10−4

4.7945 ×
10−3

6.4173 ×
10−3

1.0113 ×
10−4

1.1274 ×
10−3

2.9505 ×
10−3

4/6 2.8546 ×
10−3

1.9585 ×
10−2

2.8551 ×
10−2

3.0420 ×
10−4

5.9543 ×
10−3

1.8012 ×
10−2

4.2679 ×
10−5

1.4961 ×
10−3

9.6732 ×
10−3

5/6 2.3680 ×
10−3

3.2596 ×
10−2

9.8881 ×
10−2

3.4753 ×
10−4

8.0256 ×
10−3

5.6450 ×
10−2

3.8628 ×
10−5

2.2056 ×
10−3

2.9488 ×
10−2

0 0.5 1

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y
(t

)

k=2,M=3

Numerical solution

Exact solution

0 0.5 1

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y
(t

)

k=3,M=3

Numerical solution

Exact solution

0 0.5 1

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y
(t

)

k=4,M=3

Numerical solution

Exact solution

Figure 1. Comparisons of the numerical solutions and exact solution with different k for Example 1.
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0 0.5 1
0

1

2

3

4

5

6

7
10

-3 k=2,M=3

0 0.5 1
0

1

2

3

4

5

6

7

8

9
10

-4 k=3,M=3

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2
10

-4 k=4,M=3

Figure 2. The absolute errors for M = 3 and some k of Example 1.

From Figures 1 and 2, we can see that as the k value increases, the numerical solutions
and exact solutions become closer and closer. Table 1 shows that the BW method performs
better than the CAS wavelet method and SCW method.

Example 2. Take the equation [28]

D0.15
∗ y(t) =

1
4

∫ t

0

y(s)
(t − s)1/2 ds +

1
7

∫ 1

0
et+sy(s)ds + g(t), (40)

with the condition y(0) = 0, g(t) = Γ(3)
Γ(2.85) t1.85 − Γ(2)

Γ(1.85) t0.85 −
√

πΓ(3)t2.5

4Γ(3.5) +
√

πΓ(2)t1.5

4Γ(2.5) − et+1−3et

7 .

The exact solution of Equation (40) is y(t) = t2 − t.

The evaluation of the numerical solutions of the BW method, the LWC (Legendre
wavelets collocation), LW (Legendre wavelets) [28], and TW [25] is illustrated in Table 2.

From Table 2, we can infer that the approximate solutions of all methods converge to
the exact solution, but the BW method has better convergence. In Figure 3, the comparisons
of the numerical solutions and the exact solution for various k are shown. Figure 4 shows
the absolute errors with k = 3, 4, 5. From Figures 3 and 4, we can see that the numerical
solutions become closer to the exact solution as k increases.

Table 2. Comparisons of the numerical solutions and exact solution with different k for Example 2.

k = 4 k = 5 Exact
t

LWC LW TW BW LWC LW TW BW Solution

0 0.0025 0.0016 −0.0031 −0.00000 0.0011 0.0006 −0.0008 −0.00000 −0.00000
1/8 −0.1007 −0.1014 −0.1125 −0.10933 −0.1023 −0.1058 −0.1101 −0.10937 −0.10938
2/8 −0.1769 −0.1774 −0.1905 −0.18750 −0.1813 −0.1829 −0.1882 −0.18750 −0.18750
3/8 −0.2224 −0.2231 −0.2373 −0.23437 −0.2257 −0.2293 −0.2351 −0.23438 −0.23438
4/8 −0.2431 −0.2382 −0.2529 −0.25000 −0.2442 −0.2447 −0.2507 −0.25000 −0.25000
5/8 −0.2230 −0.2227 −0.2373 −0.23438 −0.2281 −0.2292 −0.2351 −0.23438 −0.23438
6/8 −0.1804 −0.1765 −0.1389 −0.18750 −0.1829 −0.1827 −0.1882 −0.18750 −0.18750
7/8 −0.1011 −0.0990 −0.1389 −0.10938 −0.1055 −0.1052 −0.1101 −0.10938 −0.10938
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Figure 3. Comparisons of numerical solutions and the exact solution of Example 2 for different k.
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Figure 4. The absolute errors for M = 3 and some k of Example 2.

Example 3. Think about the integro-differential equation [29]

D0.75
∗ y(t) =

∫ t

0

y(s)
(t − s)1/2 ds +

∫ 1

0
tsy(s)ds + g(t), (41)

with the condition y(0) = 0. In this problem,

g(t) =
105

√
π

16Γ(3.75)
t2.75 − 35π

128
t4 − 2t

11
.

The exact solution is y(t) = t7/2.

The evaluation of the numerical solutions using the BW method with different M and
k = 3 is illustrated throughout Table 3, Figures 5 and 6. Table 3 shows that as the M value
increases, the absolute errors decrease, that is, as M increases, the numerical solutions
converge to the exact solution.
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Table 3. The absolute errors of different k = 3 and M for Example 3.

t M = 2 M = 3 M = 4

0 2.2305 × 10−3 6.2546 × 10−4 4.6293 × 10−5

1/6 1.1942 × 10−3 2.1897 × 10−4 1.4139 × 10−6

2/6 2.4926 × 10−3 4.4943 × 10−4 6.4363 × 10−7

3/6 2.3887 × 10−3 1.3856 × 10−3 1.9253 × 10−5

4/6 8.7406 × 10−3 5.3174 × 10−4 4.7829 × 10−8

5/6 1.0382 × 10−2 6.6994 × 10−4 2.8633 × 10−7
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Figure 5. Comparisons of the numerical solutions and exact solution with different M for Example 3.
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Figure 6. The absolute errors for k = 3 and some M of Example 3.
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Example 4. We explore the following equation

Dα
∗y(t) =

∫ t

0

y(s)
(t − s)1/2 ds +

∫ 1

0
(t2 + s)y(s)ds + g(t), (42)

with condition y(0) = 0, and

g(t) = −1
2

t + et + 2
√

t + (e − 2)t2 − et√πEr f (
√

t),

where Er f (t) = 2√
π

∫ t
0 e−t2

dt is the Gauss error function. The exact solution is y(t) = et − 1 for
α = 1.

By setting k = 2, M = 3, the BW numerical solutions for α = 0.85, 0.9, 0.95, 1 are
obtained. From Figure 7 and Table 4, the numerical solutions by BW approach to the exact
solution are concluded, as α is close to 1.

Table 4. The numerical solutions for different α for Example 4.

Exact
Solutiont α = 0.85 α = 0.9 α = 0.95 α = 1
for α = 1

0.0 0.012888 0.006038 0.002288 0.000148 0.000000
0.1 0.237160 0.173487 0.133091 0.105128 0.105171
0.2 0.459795 0.345549 0.272531 0.221457 0.221403
0.3 0.695967 0.530027 0.424025 0.349792 0.349859
0.4 0.961655 0.735810 0.592138 0.491875 0.491825
0.5 1.262802 0.966510 0.779070 0.648966 0.648721
0.6 1.604448 1.225164 0.986627 0.822048 0.822119
0.7 1.999504 1.519514 1.219497 1.013842 1.013753
0.8 2.453014 1.852598 1.479528 1.225431 1.225541
0.9 2.978791 2.232636 1.771674 1.459687 1.459603
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Figure 7. Numerical solutions of Example 4 for different α.
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We considered the case of 0 < α < 1 in the first four examples. In fact, we can extend
the proposed method to the case of α > 1.

Example 5. We explore the following fractional integro-differential equation:

D1.25
∗ y(t) =

∫ t

0

y(s)
(t − s)1/2 ds +

∫ 1

0
(t2 + cos s)y(s)ds + g(t), (43)

where g(t) = 2t0.75

Γ(1.75) −
√

πΓ(3)t2.5

2Γ(3.5) − t2

3 − 2 cos 1+ sin 1, with initial conditions y(0) = 0, y′(0) =

0. The exact solution of the Equation (43) is y(t) = t2.

By setting M = 3, BW solutions are obtained for various k. The absolute errors ob-
tained by EW [26], and BW, respectively, are shown in Table 5. In Figure 8, the comparisons
between the exact solution and the numerical solutions with M = 3 and some k are given.
Table 5 displays that the BW method has smaller absolute errors than the EW method.
Figure 9 shows that the absolute errors decrease as k increases.

Table 5. Evaluation of the numerical solutions using the BWs and EW for Example 5.

BW EW BW EW BW EW
t

k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

0 5.1239 ×
10−4

7.3506 ×
10−4

1.2797 ×
10−4

5.6164 ×
10−4

3.1983 ×
10−5

6.7644 ×
10−5

1/6 1.2863 ×
10−4

3.3452 ×
10−4

4.5853 ×
10−5

4.5856 ×
10−5

3.5506 ×
10−7

1.7492 ×
10−6

2/6 1.7512 ×
10−4

5.6502 ×
10−4

1.5776 ×
10−6

1.6164 ×
10−6

1.1317 ×
10−7

6.6386 ×
10−7

3/6 6.9527 ×
10−5

7.9432 ×
10−5

2.7632 ×
10−6

4.5437 ×
10−6

1.4772 ×
10−7

2.8538 ×
10−7

4/6 1.4217 ×
10−5

3.4521 ×
10−5

9.1782 ×
10−8

6.7327 ×
10−7

5.2470 ×
10−9

4.8538 ×
10−8

5/6 4.1377 ×
10−6

2.8754 ×
10−5

4.6553 ×
10−7

1.0540 ×
10−6

7.6072 ×
10−9

6.8537 ×
10−8
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Figure 8. Comparisons of the numerical solutions and exact solution with different k for Example 5.
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Figure 9. The absolute error for M = 3 and some k of Example 5.

7. Conclusions

A new numerical method with Bell wavelets and their operational matrix is first
proposed for solving the FIDE with weakly singular kernels. This proposed method
involves constructing the BWs and their fractional operational matrix to transform the
FIDE into a linear algebraic system of equations. The error analysis of the BW function
approximation is investigated. Furthermore, we demonstrate the efficiency and accuracy
of our proposed scheme by solving several numerical simulations. After comparing the
obtained results with other methods such as CAS wavelets, SCW, TW, and LW, the BW
method performed the best.
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