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Abstract: This study aims to prove the existence and uniqueness of the (w, ¢)-periodic solution as a
specific solution to Hadamard impulsive boundary value integro-differential equations with fixed
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examples as applications for our results.
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1. Introduction

The invention and continuous progress of modern technologies have heightened inter-
est in systems with impulsive automated trajectories, which are examples of discontinuous
trajectory control and impulsive computer systems. These systems have gained promi-
nence and are currently used to tackle a wide variety of technological issues in a range of
fields, including medicine, biology, threshold phenomena, hypotheses of bursting rhythms,
economics, pharmacokinetics, and optimal control models for frequency-modulated sys-
tems [1]. Short-term disruptions with short durations in relation to the entire process times
are introduced into these processes (see [2—4]). As a result of the significant interest in
understanding their behaviors and characteristics, there is a compelling urge to study the
qualitative aspects of these impulsive system solutions. A significant number of math-
ematicians are currently engaged in active research on periodic function theory. In [5],
the existence and uniqueness of (w, c¢)-periodic solutions were investigated for the similar
evolution equation ' = Ay + f(t,y) in complex Banach spaces, where A is a bounded linear
operator. Wang et al. [6] presented novel linear noninstantaneous impulsive differential
equations and obtained solution representations and asymptotic stability for nonlinear and
linear problems.

Alvarez et al. [7,8] defined (w, c)-periodic functions, including periodic, Bloch periodic
functions, and antiperiodic functions, among others. This notion was driven by the Math-
ieu’s equation x” () + [a + 2q cos 2t]x(t) = 0. One class of (w, ¢)-periodic time-varying
impulsive differential equations exists and is unique. A continuous function g : R — X,
where X is a complex Banach space, is (w, c)-periodic if ¢(x + w) = cg(x) holds for all
x € R,wherew > 0and ¢ € C\ {0}. Ren and Wang [9] established a required and sufficient
criterion for (w, c)-periodic solutions to impulsive fractional differential equations and
investigated the existence and uniqueness of solutions via Caputo derivatives to impulsive
fractional differential equations in Banach spaces. For further information on the existence
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and uniqueness of solutions to impulsive and regular fractional differential equations,
see [10-14]. We also examined fractional oscillators, fractional dynamical systems, and
the periodic solution of fractional oscillation equations in [15-17]. To our knowledge,
there have not been any investigations into the existence of (w, c)- periodic solutions for
impulsive Hadamard fractional differential equations. This study expands on previous
research on (w, ¢)-periodic solutions for linear and semilinear problems with ordinary and
fractional order derivatives. We concentrate on impulsive Hadamard fractional differential
equations with boundary value constraints and set lower limits.

2. Preliminary
Consider impulsive fra. integro-diff. eqs. with lower limits, as illustrated below.

DUp(t) = p(tp(t)+ [; x(t—s)o(s,p(s))ds, O € (0,1), t # ty, t € [to, 0],

p(tr) = p(t;)+4Ay, neN, (1)

where D?p(t) is the Hadamard fra. derivative (where ¢ € (0,1) via the lower limit at to)
and forn € N, t, < t,; 11, limy oty = 0.

Next, we present some definitions and results, which are used in this study. To begin,
consider the following definitions:

Definition 1 ([18]). The Hadamard fra. integral of the & > 0 of a function p(t) € (C[x,y]),
1 <x <y < oo, is defined as

1 gt £\ 1 o(s)

8 _ t P
IPp(t) = l"(l?)/x <logs) S ds
for t > x, assuming the integral exists.

Definition 2 ([18]). Let 1 < x <y < oo, A = t%, and ACX[x,y] = {p : [xy] = R:
A" Yp(t)] € AC[x,y]}. The Hadamard fra. derivative of ¢ > 0 for a function p € AC3[x,y] is

defined by
9 1 d (n) .t E nfﬂflp(s)
p(t) I'(n—1°) (t dt) /x log s s ds

fort > xand & € (n —1,n), where n = [8] + 1, such that [0] signifies the integer component of a
real number © and log(.) = log,(.).

Lemmal. Let p : R x R" — R" and o : R x R" — R" be continuous functions. A solution
p € PC(R,R") of the impulsive frac. integro-diff. eq. is shown below with a fixed lower limit.

Dﬁp(t) =p(t,p(t)) + /t: k(t—s)o(s,p(s))ds, 0 € (0,1), t #ty, tE [ty 0],

p(ty) =p(ty) +ABn, n €N, )
plto) =pto-
is given by

9-1
P = gy hi(losg)  (p(Ep(@)+ x50t pls))as)

+p(to)+ X A, forall t > ty.
to<t;<t

(3)

Proof. From [19] in Lemma 3.2, a solution p of Equation (2) is provided by
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9-1
P = rigy (108 ) (p(Ep (@) + i w(E ~)ots, pe))ds) %

+p(to) + L A, forevery t € (ty, ty11].
i=1

Using

n
A= Z A;, forevery t € (ty, ty11],
i=1 to<t;<t

we obtain that the Equation (4) is equivalent to

9-1
PO =ty (08 )  (pEr @)+ i w(e = s)ots, pe))as) %

+p(t0) + 2 Ai/
to<t;<t

®)

for t € (tn,ty+1]. Using the arbitrariness of n, we find that Equation (5) holds for
U (tn, ty41]. Since Equation (5) is independent of 1, we have that Equation (3) holds for
[to, o). O

Definition 3 ([7]). Let c € C\ {0}, where w > 0 and X represents a complex Banach space with
anorm || - ||. A function vy : R — X is called (w, c)-periodic if y(t + w) = cy(t) ¥V t € R, where
7y is continuous.

Lemma 2 ([5]). Let @y := {p: p € PC(R,R")}, and p(- + w) = cp(-). Then, p € P if
plw) = cp(to).

3. The (w, ¢)-Periodic Solution to Semilinear Integro Differential Equations

For ty = 1, we investigate the (w, c)-periodic solution of impulsive fra. integro-diff.
egs. with determined lower limits.

D%p(t) =p(t, p(t)) + /1t1<(t —s)o(s,p(s))ds, 0 €(0,1), t #ty, t€[1,00],
p(ty) =p(ty) +An, neN, 6)
p(1) =po.

We present the following assumptions:

(I):  There are continuous functions p : R x R” — R" and ¢ : R x R" — R", such that
p(t+w,cp) =cp(t,p), VteR, and p € R"

c(t+w,cp) =co(t,p), VtER, and p € R"
(I): There are constants A1, A» > 0 and By, B, > 0, such that

lo(t, p)Il < Aullpll + By, V t € R, and p € R

llo(t, p)|| < Azllpl| + B2, YVEER, and p € R”

(Il): There is a constant €1, €, > 0, such that

lo(t,p) —pt, )l <eillp—ql, VtE€R, and p,q € R"

lot,p) —o(t,)l < e2llp—qll, V¢ €R, and p,q € R
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(IV): Ay e R"and N € N, such that w = ty, t,4n = ty + w and A, N = A, for any
neN
(V): The kernel map « : R — Rislocally integrable on [1,0) and [{* [|k(s)| ds = ar > 0.

Lemma 3. Assume that ¢ # 1 and conditions (I) and (IV) are satisfied. Then, the solution
p € ¥ := PC([1,w], R") of Equation (6) satisfying Lemma 2 is provided by

) =t [ <1og°g)l“[ D+ [ = s)ats, ple)as] %
r(lﬁflt(log ) ( (C,p(C))+/1 K(g—S)U(S/P(S))dS)g )
+(c—1) 1ZA—|— ZA,,t € [1,w].

1<f<t

Proof. The solution p € ¥ := PC([1,w],R") is provided by Equation (3), such that

I SIS b dc
p(t) = mfl {log C} ( &)+ [l (s, p(s))d ) z ®)
+p(1)+ ¥ A forallte[l,w].
to<ti<t
So, we have
81 ;
v) = g i (08 ) (e@p@)+ fixe-setera)E
tp)+ L Ai=cpll )
which is the same as
-1
— g
p(1) = (c—l f1 (log ) ( &) + [ x( (s, p(s))ds )f 10)
+(C_ 1) [ <;<w Ai.
From Equations (8) and (10), we obtain
B 1 w w1 dc
0~ o5t [ D+ [ e =t ptes|
1t £19°1 z
+W/1 [] 10g€:| |: / —S S P( ))ds]g (11)
+(c—1)" ZA + ) A
1<ti<t

The proof is complete. [
Theorem 1. Assume that ¢ # 1 and (1), (I1I), and (IV) of the conditions are true if

[e1 + €2a7] (logw)ﬂ(l +le—1]7Y
re+1)

0< <L

Then, Equation (6) has one unique (w, c)-periodic solution p € @, . In addition, we obtain

(logw)®(61 + b2ar) (le =1L+ 1) +T(0+ 1) (Je — 1|71+ 1) Ty || A
[(0+1)— (logw)?(e1 +€zar)(jlc— 1|71 +1) '

IPlleo <
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where 51 = supie1,w)llp(t,0)|| and 6y = supepy ) llo (£, 0)]].
Proof. We can deduce from (I) that for every p € @, the following are true:
p(t+w,p(t+w)) =p(t+w,cp(t)) =cp(t p(t)), forall t € R,

and
ct+w,p(t+w)) =c(t+w,cp(t)) =co(tp(t)), forall t € R,

which imply that p(-, p(-)) and (-, p(+)) € Peoe-
Now, we determine the operator 3 : ¥ — ¥ as

(Qp)(t) _|c—11|1"(z9) /1w (10g ?)0_1( &p +/§K E—s)o s,p(s))ds)‘?
o oe2) e frerns) o

Lemmas 2 and 3 show that the fixed points of () define the (w, c¢)-periodic solution of
Equation (6). It is straightforward to find Q(¥) C ¥. For all py, p, € ¥, we obtain

1(©Qp1)(£) = (Qp2) (1]

|
eor /o ees] {“’1 / oto, ()5 F

; 9
+r(119)/1 <logé> ( (& P18 / (s, p1(s))d )L?
—(0—1)11%19)/1(‘}[10%%)] { (¢, p2(C / (s, p2(s))ds }EZZ
; 9-1
—r(lﬂ)/l logé> (P(C p2 +/ —s)o(s, p2( ds H
<o~ g [ [ ] (le@pmi@n o paten
+ 1K@ = 9llots, r(5)) — ot pa(9) | 55 )
vre J(es ) (16 m@) o p@)
+ [ (@ = 9)llots,pa(s) - s, pale)) | a5

<le— 1| 1S [ (log ) GESGIE

-1
e+ea dc
e | ( ) (@) - 201 %

< 1—-( ) le p2||00<|c 1| A <1Og g) g +/1 logg R
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<[€1 +€2”T](logw)0(|cfl|_l+1) H . ”
and hence, we have

€ €xa w ¢ Cc— -1
@)~ (p) D < L XIBDAT I,

From the assumption

[e1 +e2ar] (log @) (1 + e ~1| 1)

T(6+1) <l

0<

Now, we find that () is a contraction mapping. Therefore, p is a unique fixed point of
Equation (12) that satisfies p(w) = c p(1). Then, we obtain from Lemma 2 that p € @ .
Hence, Equation (6) has a (w, ¢)-periodic p € P, which is a unique. In addition, we have

(D
1

<te=1 " [ (082) " (et pie) —piz o

= 1 IKE=9llots,pis) ~ ots,0) 185 ) %

e L es] 1[|p<co M+ e =) lots,0))105] %
+r(119 (log )0 1(Ip p(C,O)\|+/ ||K(§*S)||H(7(S,p(s))7(7(5,0))||d5)%
vra f(oa ) (oo + [ s st o) %

He—1/7 Z il + 3 llaq]

i=1 1<t;<t

€1+ ear [¥ w]?1 ac _101+doar [« w ﬂ_ldg
<t L [eeE ] @I Hle-am g e ) E
€1+ ear [t £\ 51-’-(52&7* t 1971616
oA CHIGE S e AN

(le=117 1) Yl

w)? ar)(le—1]71 w)? 2 (e — 111
ooy < LBt e =D )y Qg ot dore 11+ 1)

n
+(le =171 +1x) Y Al
i=1

which implies that

™ <(10gw) (61 +Gpar)(le =11+ 1) +T(@+ 1) (Je =171+ 1) T, [|A; ||
Plleo = T(0+1) — (logw)?(e1 + ezar) (Jc— 1] 1+1)

The proof is complete. O

Theorem 2. Assume ¢ # 1 and the conditions (I), (II), and (IV) are satisfied. If

F(®+1) > (logw)?(A; + Asar) (1 +|c— 1|*1),
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then there is at least one (w, ¢)-periodic solution to the impulsive fra. integro-diff. Equation (6),
such that p € @ c.

Proof. LetB) = {p € ¥ : ||p|| < A}, where

(logw)®(By + Baar) (14 [c = 1|71) + T(# 4+ 1) (1 + |c — 1| 71) Ty [|A]]

Az T8+ 1) — (log@)® (A1 + Agar)(Je —1] 1+ 1)

We assume the () operator given in Equation (12) for B,. In any case where t € [1, w] and
p € B), wehave

1(©Qp)(®)]l
w

w 9-1
< /o [oss] [le@r@nn+ [ ixe-9liets penasi] £

t 9—-1
s [ (1os ) (@ p@li+ [ -s)llets penas) 1% a3
He=1 Y Al + X Al

i=1 1<t;<t
9—1

1 w w de
< (089) A1+ Asan) Ip(@] + (81 + Baar))

; 91
+1"(119)/1 (log é) (A1 + Azar)|[p(E) || + (By + Baar)] Hﬁ

¢
1 n
He=17 Al + Y Al

i=1 1<t;<t

< (logw)®(A1 + Azar) (1 + [c —1|71) 1]l + (logw)®(By + Baar) (1 + [c —1|71)
= T(@O+1) Plleo T(@+1)

n
+(1+le=17") LAl
i=1

Therefore,

(logw)®(B1 + Baar) (le =11+ 1) + T(@+ 1) (Je — 1|~ + 1) XL, [|Ad] <

Op|le <
[P0 < T(0+1)— (logw)®(Ay + Azar)(Jc —1|-1+1)

which implies that || Qp||« < A. So, Q(B,) C B,.

Now, we show that () is continuous for B .

Let {p;}i>1 € B, and p; — p for B, as i — co. By the continuity of p and o, we obtain
(&, pi(§)) = p(&,p(¢)) and o(¢, pi(¢)) — (¢, p(¢)) asi — oo. As aresult, we have

<log Cg) MP(C, pi(g)) — (log (g) IHP(@ p(&))

asi — oo.

(log‘g)ﬂ ( xte=9ts.pitonas) - (log‘g)“ ([ xte=s)0ts pisnas)

asi — oo.
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og 1) p@ @) - (10g1) p@p(@)
(1o ) (1o )

¢ ¢
asi — co.
<log é) o </l§ k(& —s)o(s, pi(s))ds> — (log é)ﬁl < /f;c(é —s)o(s, p(s))ds)
asi — oo.

Using assumption (II), we find that forany 1 <i <t < w,

(@)

/;U [log Cg] 0_1P(€/ Pz(g)) - |:10g (g} l9_1p(é', p(é)) '|d§
<2l +50) [ <1°gcg)ﬂ_1[? —20141+By) [ (log@ﬂ_l?
<21 + By 1089

0
(i)

-1 , 91 .

/;U [log %} |:/1§K((: —s)o(s, pi(s))ds} - [log %} { /f k(& — s)a(s,p(S))ds} 46
<2ar(4allplls + B2) [ (1og‘g)“d§ =201+ By) [ (logcg)“déé
<2ar(AAz + By) (IOgﬂw)ﬁ < 0,

(iii)
[leet] o mien - [ros] ﬁ_lp@,p(c))de
<2l +B1) [ [bgér_ldg “20ae [ [logér‘ldg
<2(AA; + By) (logﬁ“’)& < o0,

(iv)

A [logérl | xe=9ots,ptonas] - <log§)“( [ xte=siots pieas) | %
<2ar(As||pleo + B2) /; (log é)ﬂ_l‘? = 2a7(AAy + By) /; <1og é)ﬁ_ldg

(log w)®

<2a1(AAz + B2)

< 00.

Then, by applying the theorem of Lebesgue dominated convergence, we obtain

)
J

9-1 9-1 d
(log‘g) p(@m(@))—(leg‘g) p(@p(@))HfﬁOasmoo,



Fractal Fract. 2024, 8, 86 9of 14

(ii)
[ (8 ) ™ () stz —spets,mtsnas)
- (1082])01 </1§ K(¢ — S)‘T(S/P(S))d5> ‘dg — 0asi — o
(iif)
/; <1og é)lﬂp(ﬁ, pi(¢)) — (log é)“p(w(é))H? — 0asi — oo,
(iv)

og 7| " ( xte=9ts,pitonas)

dg
¢

/1t
_ (log é)ﬂl ( /f x(&—s)o(s, p(s))ds)

Hence, for every t € [1, w], we obtain

[(Qpi)(t) — (Qp) ()|
|C_1| [ ] (& i€ {logcgr 1p(€,p(f§))H§

|C_11|F()/“’ s ] 1(/1%(5 $)o(s,pi(s))s
SCHE (/ )
[)(es)” ( olon)s)
(1°g )" (e —swets o) | F
T h

So, () is continuous for B). Now, we show that () is pre-compact.
Forevery t, <t <s <t,1, where n € Ny, we obtain

n n
Y A= ) All=1Y A=Y All=0
i-1 i=1

1<t;<t 1<ti<s

+1
I'(9)

[1og§]ﬂ 1p<¢, pi(@) - [logg} Mp(é,p(c))Hdg 5 0asi = .

which implies that

Y. A= ) Af—0, ast—s.

I<t;<t 1<t;<s

So, for every 1 <51 < s < w, where p € B,, and the operator () : ¥ — Y is provided by
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0 = [ (088) (o r@) + [ e —stets pisnas) E

t

p
9-1
+1~(119) /1t<10g6> (P@/P(é‘)) +/1€K(§—s)0(s,p(s))ds>6?
+(C_1)_1iAi_ Y. A
im1

1<t;<t
the following holds:
1(Qp)(s1) = (Qp)(s2)
5 5 191 5 5,791

<t [ | 2] e@r@n - [ 2] eren|

+1"(119)/151 <logsg)0_l(/lgx( s)a(s,p(s))ds)

S <logsé)l9_l( [ x(e = siots ponas) | %

+ Y A- )Y A

1<ti<sy 1<ti<sy

( (108 52)“] Gk

R R O

A () (2) 4
+11T(12:?129;Bz) /131 l(log 55)19—1 B (10g 55)19—1] ig

Y M- ) A

1<ti<sq 1<ti<sy

AAL + By [ $2\"7'dE Aty % AN
o), <10g€) T e, (1°ga:) z

+
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/\A1+B] o 9 S£ v
_71"(194—1) (logsy) (logsz)” +2( log -

AT\ Ap+By) (logs1)? — (logsy)? +2( 1o 2 ’

T(@+1) |87 82 85

Lo di— ) A

1<ti<sy 1<ti<sp
[AA1 + Bi] + [ar(ya,+8,)] 2\’
H (Qp)(s1) — (Qp)(s2 H < T 1)( 2+B2) (logsl)l9 _ (logsz)19 +2<log sj)

Lo di— ) A

1<t;<sy 1<ti<sy

— 0 as s1 — so.

So, )(B,) is equicontinuous. From Equation (13), we obtain that Q(B,) is bounded
uniformly.

Using the Arzela—Ascoli theorem, we can show that ()(B,) is pre-compact. The
impulsive fra. diff. arises from Schauder’s fixed point theorem. At least one (w, c)-periodic
solution p € @, exists in Equation (6). The proof is complete. [

We end this section with two illustrative examples.

Example 1. We investigate the following impulsive fra. diff. boundary value problem:

st =t)
5+ cos p(s)
p(th) =p(t,) +cosnm, n=1,2,---,m,

D%p() =Acos2t sinp(t —i—/ ds, t #ty, t € [1,00),

where A € R, t, = "%, andn = 1,2,- - - ,m. Therefore, A, = cos n7t and
o(t, p(t)) = Acos2t sinp(t)
sin(s — )
tp(t) = ——
olt,p(t)) 5+ cos p(t)
Let c = —1 and w = m. It is clear that for any n € N, t,,1o = t, + 71, Ayyo = Ay. Hence, we

have N = 2 and (IV') holds. For all t € R and p(t) € R, we obtain

p(t+w,cp(t)) = p(t+ 7, —p(t)) = —Acos2t sinp(t) = —p(t, p(t)) = co(t, p(t)),

Em = —o(t,p(t)) =co(t, p(t))

which implies that (I) holds. Also, x(s) = Land ay = [[" ||1[|ds < 7 —1.
Forallt € [1, 7], and p,q € R, we obtain

o(t+w,ep(t)) = o(t+m,—p(t) = -

=||A cos2t sin p(t) — A cos2t sing(t)||
<|[Acos 2t sin p(t) — Acos2t sing(t)||

<[Alllp —qll = erllp — 4.

lo(t, p) —p(t, )]

sin(s — t) sin(s —t) I
5+ cosp(t) 5-+cosq(t)

le(t, p) =t )l =l

<Lip—al=elp—al.
<szllp—ql =elp—q
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1
So, (I11) is satisfied for e; = |A| and e; = %" Note that

1 3
le1 + e2ar)(log @)’ (e = 1|7 +1) _ {MH 25 ] (log 1)
r(l9+ 1) - (3/2)

2T (3/2)

33/ (log )2 25

[€1 + €2a7] (logw)ﬂ(l +|c— 1|_1)
T(O+1)

Let 0 < ||A|| < L (where ap < 1 — 1) and we obtain

0< = 0456 < 1.

Hence, all assumptions in Theorem 1 hold and the eq. in Example 1 has a unique (7t, —1)-periodic
solution p € ®, _1. In addition, we now obtain

(logw)?(61 + daar) (Je =11+ 1) + T@+ 1) (le =1 + 1) £, [|A|
[(0+1)— (logw)?(e1 +ezar)(jle— 1|71 +1)

IPlleo <

4

where 61 = supscr ) llo(t,0)|| = 0and 5 = supiepy )llo(t,0)| = % Furthermore, we have

Ipllee < 3 (logmz(n;l) (i) +T(3/21)<23>2'
T(3/2) — ¥/(log )2 <|,\||+ = )(2>

Example 2. We consider the following impulsive fra. diff. boundary value problem:

() =Ap(t) cos 2 +/ ds t#£ by, tE€[1,00),
p(ty) =p(ty) + ,n—erw--/ m,
where/\ERtn:— n=12--,m,A, =3, and

p(t,p(t)) = Ap(t) cos ==

o(t,p(t)) = e 'sin ?

Let ¢ = e™ and w = 7. It is clear that foralln € N, t, o = t, + mwand A, p = Ay,. Hence, we
have N = 2 and (IV') holds. For all t € R and p(t) € R, we obtain

p(t+w,cp(t)) = p(t+m, e p(t)) = Ae™ p(t) cos e;i(nt) = Ae" p(t) cos % =e"p(t,p(t))

oc(t+w,cp(t)) =a(t+mep(t)) =e H7si n’ ' plt) =e" e_tsin@ =e"o(t,p(t))

PR of

which implies that (I) holds. Also, k(s) = 1 and ap = fol II1||ds < 1.
Forany t € [1,7t],and p,q € R, we have

(e p)1l = IAp(e) cos 22 = el cos 22 < apipe,

lott,p)ll = e~ sin PO = =ty sin 220 < o < e,
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which implies that A1 = ||A||, By >0, Ay = e~!, and B, > 0 and (1) holds.
e IT(4/3) , 1 e
————— —¢ , weobtainT(4/3) > Ylogm(|A|| +e71)

e J/log e —1

F(®+1) > (logw)?(A; + Asar) (1 +lc— 1|*1>.

Letting ||A|| <

and

Hence, all assumptions in Theorem 2 hold in Example 2. Hence, the eq. in Example 2 has at
least one (71, e™)-periodic solution p € Py ,n.

4. Conclusions

This study demonstrated that (w, c)-periodic solutions exist for impulsive Hadamard
fractional differential equations with boundary value restrictions on Banach contractions.
The study aimed to establish the existence and uniqueness of the (w, c)-periodic solution
of Equation (6), which applies the Banach contraction mapping concept. Furthermore,
the paper demonstrated the existence of an (w, ¢)-periodic solution to Equation (6) using
Schaefer’s fixed point theorem and the Arzela-Ascoli theorem. We concluded the study
with two examples demonstrating how the generated results could be used. In the fu-
ture, we will conduct further investigations on the existence and uniqueness of fractional
derivatives. There are also other possible lines of research on this topic, such as (w, ¢)-
periodic solutions for impulsive Hadamard fractional differential equations with varying
lower limits. Moreover, mildly (w, ¢)-periodic solutions to abstract semilinear Hadamard
integro-differential equations and (w, c¢)-almost periodic-type functions could also be stud-
ied and discussed.This work opens the door for other possible contributions to this topic
by combining types of fractional derivatives and types of periodic solutions.
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