
Citation: Xu, W.; Ba, J.; Cao, J.; Luo, C.

Adaptive-Coefficient Finite Difference

Frequency Domain Method for

Solving Time-Fractional Cattaneo

Equation with Absorbing Boundary

Condition. Fractal Fract. 2024, 8, 146.

https://doi.org/10.3390/

fractalfract8030146

Academic Editor: Haci Mehmet

Baskonus

Received: 23 January 2024

Revised: 26 February 2024

Accepted: 27 February 2024

Published: 29 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Adaptive-Coefficient Finite Difference Frequency Domain
Method for Solving Time-Fractional Cattaneo Equation with
Absorbing Boundary Condition
Wenhao Xu 1, Jing Ba 1,*, Jianxiong Cao 2 and Cong Luo 1

1 School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China;
wenhaoxu@hhu.edu.cn (W.X.); congl@hhu.edu.cn (C.L.)

2 School of Sciences, Lanzhou University of Technology, Lanzhou 730050, China; caojianxiong2007@126.com
* Correspondence: jba@hhu.edu.cn

Abstract: The time-fractional Cattaneo (TFC) equation is a practical tool for simulating anomalous
dynamics in physical diffusive processes. The existing numerical solutions to the TFC equation
generally deal with the Dirichlet boundary conditions. In this paper, we incorporate the absorbing
boundary condition as a complex-frequency-shifted (CFS) perfectly matched layer (PML) into the TFC
equation. Then, we develop an adaptive-coefficient (AC) finite-difference frequency-domain (FDFD)
method for solving the TFC with CFS PML. The corresponding analytical solution for homogeneous
TFC equation with a point source is proposed for validation. The effectiveness of the developed
AC FDFD method is verified by the numerical examples of four typical TFC models, including the
different orders of time-fractional derivatives for both the homogeneous model and the layered
model. The numerical examples show that the developed AC FDFD method is more accurate than
the traditional second-order FDFD method for solving the TFC equation with the CFS PML absorbing
boundary condition, while requiring similar computational costs.

Keywords: time-fractional Cattaneo equation; absorbing boundary condition; finite difference;
frequency domain; adaptive coefficients

1. Introduction

The time-fractional Cattaneo (TFC) equation can be well applied to formulate the
anomalous dynamics in the physical diffusion processes, such as dynamic crossover behav-
iors (see [1–3]). In general, the established studies for TFC equation can be classified into
two categories.

The first category focuses on the theoretical analysis of TFC equation. In [1], Compte
and Metzler generalize the conventional Cattaneo equation to the TFC equation for de-
scribing anomalous transport and they study the corresponding long-time and short-time
properties of the TFC equation. In [4], Povstenko formulated the theory of thermal stresses
corresponding to the TFC equation. In [5], Qi and Jiang derive the theoretical solution
of homogeneous TFC equation based on the integral and series form of the H-functions,
which is exact but complicated for implementation and not suitable for a heterogeneous
TFC equation. In [6], Qi et al. applied the TFC equation to study the heat conduction of
short-pulse laser heating. In [2], Awad and Metzler studied the crossover displacement
from superdiffusion to subdiffusion based on the TFC equation.

The second category focuses on the numerical solution to TFC equation. In [7], Ghaz-
izadeh et al. developed an explicit and an implicit finite difference scheme for the TFC
equation, where the explicit scheme is a generalization of the well-known MacCormack
scheme and the implicit scheme is developed by solving a high-order undecomposed equa-
tion. In [8], Zhao and Sun developed a compact Crank–Nicolson method for the numerical
solution of TFC equation, where the time derivative in the TFC equation is discretized by
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the Crank–Nicolson scheme and the spatial derivative is discretized by a compact operator.
In [9], Ren and Gao applied the alternating direction implicit method for approximating
the temporal derivative of the TFC equation and employed the compact difference for ap-
proximating the spatial derivative, which is proven to have unconditional stability. In [10],
Wei combines the finite difference scheme and local discontinuous Galerkin scheme to
numerically solve the TFC equation. By assuming that the solution is sufficiently smooth,
Li et al. proposed a space–time spectral method for the TFC equation in [11], which can
reach high-order accuracy in both spatial and temporal dimensions. In [12], Chen and
Nong proposed to discretize the TFC equation by applying the Galerkin finite element
method for spatial derivatives and applying backward Euler and backward difference
for temporal convolution quadrature. In [3], Nong et al. proposed a compact difference
method for the solution to the 2D TFC equation, which can achieve a temporal accuracy of
the second order and a spatial accuracy of the fourth order.

The existing numerical solutions to the TFC equation generally deal with Dirichlet
boundary conditions. However, the applications of the TFC equation can involve an
unbounded simulation using a bounded computational region, which requires absorbing
boundary condition (see [13–15]). In addition, the classical perfectly matched layer (PML)
absorbing boundary condition suffers from large artificial reflections for grazing incidences
(see [16]), especially for the simulation of ultrasonic wave propagation for digital cores
under laboratory studies (see [17,18]). A more accurate absorbing boundary algorithm,
named complex-frequency-shifted (CFS) PML, improves conventional PML methods for
grazing incidences (see [19,20]). The CFS PML has been generalized to the rotated staggered-
grid finite difference simulation (see [21]) for wave propagation in poroelastic (see [22,23]),
acoustoelastic (see [24,25]), and thermoelastic (see [26,27]) media.

In this work, to promote the unbounded simulation of the TFC equation in a bounded
computational region, we incorporate the CFS PML absorbing boundary condition into
the TFC equation, and then propose an efficient adaptive-coefficient (AC) finite difference
frequency domain (FDFD) method for solving the TFC equation with the CFS PML absorb-
ing boundary condition. Compared to the time-domain method, the FDFD method has
the advantage of high stability as the different frequency components of the solution can
be obtained independently and thus the accumulative error can be avoided. The rest of
this paper is structured as follows. In Section 2, we develop the TFC equation with the CFS
PML absorbing boundary condition and the corresponding AC FDFD numerical solution.
Also, an analytical solution of the unbounded TFC equation is proposed in Section 2 for
numerical verification. In Section 3, we utilize the numerical examples of four typical TFC
models to demonstrate the effectiveness of our absorbing boundary condition as well as
the AC FDFD method. And, the conclusions are given in Section 4.

2. Method
2.1. TFC Equation with CFS PML

The 2D time-domain TFC equation without boundary condition can be expressed as
follows (see [3]):

1
µ

(
∂tu(t, x, z) + κCDα

0,tu(t, x, z)
)
= ∆u(t, x, z) + f (t, x, z), (1)

where u denotes the field variable, µ and κ denote the model parameter, ∆ = ∂2
x + ∂2

z
denotes the Laplacian operator with respect to x and z, CDα

0,t denotes the Caputo fractional
derivative with fractional order α ∈ (1, 2] and can be formulated as [12,28]

CDα
0,tu(t, x, z) =

1
Γ(2 − α)

∫ t

0
(t − s)1−α ∂2u(s, x, z)

∂s2 ds, (2)

where Γ(·) denotes the gamma function.



Fractal Fract. 2024, 8, 146 3 of 14

To obtain the TFC equation with CFS PML, we transform the time–space domain
TFC equation into the frequency–space domain using corresponding temporal Fourier
transform (see [29]) and obtain

−κ(iω)α − iω
µ

u(ω, x, z) +
∂2u(ω, x, z)

∂x2 +
∂2u(ω, x, z)

∂z2 = − f (ω, x, z), (3)

where ω is angular frequency. To suppress the artificial boundary reflections for unbounded
simulation using a bounded computational region, we introduce the CFS PML to the TFC
equation as follows [19]:

−κ(iω)α − iω
µ

u(ω, x, z) +
1
ξx

∂

∂x

(
1
ξx

∂u(ω, x, z)
∂x

)
+

1
ξz

∂

∂z

(
1
ξz

∂u(ω, x, z)
∂z

)
= − f (ω, x, z),

(4)

where ξτ = 1 +
ln(R−1)3vmax(τ̃/Lτ)

2

2Lτ(αmax(1−τ̃/Lτ)+iω)
, τ ∈ {x, z}, τ̃ is the distance to the inner area, R

represents the boundary reflection coefficient (set as 10−3 in this paper), Lτ is the one-side
thickness of CFS PML along the τ direction, αmax = π f0, f0 is the dominant frequency of
f (x, z, ω). Figure 1 gives the schematic of the computational area for the TFC equation with
the CFS PML. In the inner area, ξx = ξz = 1. In the CFS PML area, ξx ̸= 1 and ξz ̸= 1.

Figure 1. The schematic of the computational area for the TFC equation with CFS PML.

2.2. AC FDFD Scheme

For the numerical solution of Equation (4), the high-order FDFD method (see [30–32])
can reach a high accuracy for the TFC equation with CFS PML, but is computationally
expensive due to the large bandwidth in the system matrix. In contrast, by discretizing
1
ξx

∂
∂x

(
1
ξx

∂u(ω,x,z)
∂x

)
and 1

ξz
∂
∂z

(
1
ξz

∂u(ω,x,z)
∂z

)
with the virtual half-grid points and second-order

finite difference, a simple but efficient way is to use second-order FDFD (see [33]) as follows:

−κ(iω)α − iω
µ

up,q +
1

∆x2
1

ξxp

[
1

ξxp−0.5

up−1,q +
1

ξxp+0.5

up+1,q −
(

1
ξxp−0.5

+
1

ξxp+0.5

)
up,q

]

+
1

∆z2
1

ξyq

[
1

ξzq−0.5

up,q−1 +
1

ξzq+0.5

up,q+1 −
(

1
ξzq−0.5

+
1

ξzq+0.5

)
up,q

]
= − fp,q,

(5)

where up,q = u(ω, p∆x, q∆z), fp,q = f (ω, p∆x, q∆z). Discretizing the TFC equation at each
grid point of the computational region with second-order FDFD method in Equation (5)
forms a sparse system of linear equations, whose solution forms the numerical solution of
the TFC equation. However, it is well known that the accuracy of the second-order FDFD
method can be easily affected by the spatial numerical dispersion (see [34]). Based on the
FDFD numerical solutions of acoustic Equation (see [33]) and diffusive-viscous Equation
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(see [35]), we propose to improve the accuracy of second-order FDFD for the TFC equation
by adding some correction terms with adaptive FDFD coefficients as follows:

−κ(iω)α − iω
µ

up,q +
1

∆x2
1

ξxp

[
1

ξxp−0.5

up−1,q +
1

ξxp+0.5

up+1,q −
(

1
ξxp−0.5

+
1

ξxp+0.5

)
up,q

]

+
1

∆z2
1

ξyq

[
1

ξzq−0.5

up,q−1 +
1

ξzq+0.5

up,q+1 −
(

1
ξzq−0.5

+
1

ξzq+0.5

)
up,q

]
+ η1(κ, µ)

(
up−1,q + up+1,q − 2up,q

)
+η2(κ, µ)

(
up,q−1 + up,q+1 − 2up,q

)
+η3(κ, µ)

(
up−1,q−1 + up+1,q−1 + up−1,q+1 + up+1,q+1 − 4up,q

)
= − fp,q,

(6)

where ηj(κ, µ)(j = 1, 2, 3) represent adaptive FDFD coefficients that adapt to κ and µ. One
interesting feature of the AC FDFD scheme in Equation (6) is that its corresponding FDFD
system matrix has almost the same bandwidth as that for second-order FDFD method,
and therefore, the efficiency of the AC FDFD method should resemble to of the second-
order FDFD method when a direct solver is used for solving the FDFD linear system. In
particular, the introduction of the correction term related to η3 can effectively increase the
accuracy of the FDFD scheme while keeping almost the same bandwidth of FDFD system
matrix as second-order FDFD method.

2.3. Adaptive FDFD Coefficients

To determine the proper adaptive FDFD coefficients ηi(κ, µ)(i = 1, 2, 3) in
Equation (6), we first consider the frequency-domain TFC equation without the source term
and boundary condition as

−κ(iω)α − iω
µ

u(ω, x, z) +
∂2u(ω, x, z)

∂x2 +
∂2u(ω, x, z)

∂z2 = 0. (7)

The AC FDFD scheme corresponding to Equation (7) can be expressed as follows:

−κ(iω)α − iω
µ

up,q +
1

∆x2

(
up−1,q + up+1,q − 2up,q

)
+

1
∆z2

(
up,q−1 + up,q+1 − 2up,q

)
+ η1(κ, µ)

(
up−1,q + up+1,q − 2up,q

)
+η2(κ, µ)

(
up,q−1 + up,q+1 − 2up,q

)
+η3(κ, µ)

(
up−1,q−1 + up+1,q−1 + up−1,q+1 + up+1,q+1 − 4up,q

)
= 0,

(8)

In addition, Equation (7) has a plane-wave solution as follows ([35]):

u(x, z) = u0e−ikc [sin(θ)x+cos(θ)z], (9)

where kc =
√
(−κ(iω)α − iω)/µ, θ ∈ [0, 2π]. Substitute the plane-wave solution in

Equation (9) into the AC FDFD scheme in Equation (8) and we have

ψ(η, θ|κ, µ )
∆
= c0(θ|κ, µ ) +

3

∑
j=1

cj(θ|κ, µ )ηj(κ, µ) ≈ 0, (10)

c0(θ|κ, µ ) = k2
c +

2
∆x2 [cos(kc∆x sin θ)− 1]

+
2

∆z2 [cos(kc∆z cos θ)− 1],
(11)

c1(θ|κ, µ ) = 2[cos(kc∆x sin θ)− 1], (12)

c2(θ|κ, µ ) = 2[cos(kc∆z cos θ)− 1], (13)

c3(θ|κ, µ ) = 4[cos(kc∆x sin θ) cos(kc∆z cos θ)− 1], (14)

where η = [η1, η2, η3].
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By assuming that the satisfying adaptive FDFD coefficients will make the plane-wave
solution satisfy the AC FDFD scheme in Equation (8) well, the required adaptive FDFD
coefficients can be acquired by minimizing the substitution error in Equations (10)–(14):

η̂ = arg min
η∈C3

nθ

∑
l=1

∣∣∣∣∣c0(θl |κ, µ ) +
3

∑
j=1

cj(θl |κ, µ )ηj(κ, µ)

∣∣∣∣∣
2

, (15)

where θl(l = 1, · · · , nθ) are the discretized angles belonging to [0, π/2] considering the
symmetry of grid, η̂ is the objective adaptive FDFD coefficients.

The minimization problem in Equation (15) is a typical linear complex-valued least-
squares problem. By ordering {θl}, the least-squares problem in Equation (15) can be
expressed in matrix form:

η̂ = arg min
η∈C3

∥A(κ, µ)η− b(κ, µ)∥2
2, (16)

where A(κ, µ) is a complex-valued matrix with a size of nθ × 3, b(κ, µ) is a complex-valued
vector with the size of nθ . Then, based on the matrix decomposition theory (see [36]),
the least-squares problem in Equation (16) can be efficiently solved by QR decomposition
as follows:

A(κ, µ) = Q(κ, µ)R(κ, µ), (17)

R1(κ, µ)η = (Q1(κ, µ))Tb(κ, µ), (18)

where Q(κ, µ) is a unitary matrix sized nθ × nθ , R(κ, µ) is a upper-triangular matrix sized
nθ × 3, R1(κ, µ) consists of the first three rows of R(κ, µ), and Q1(κ, µ) consists of the first
three columns of Q(κ, µ).

Solving the small system of linear equations in Equation (18) leads to the required
adaptive FDFD coefficients for TFC equation without a source term and CFS PML. Fur-
thermore, the applications of the AC FDFD method to acoustic the Equation (see [15]) and
diffusive-viscous Equation (see [35]) reveal that the adaptive FDFD coefficients acquired by
ignoring the influence of source term and CFS PML can also lead to a satisfying numerical
solution for the computational area with the source term and CFS PML. Therefore, we
directly determine the adaptive FDFD coefficients for the TFC equation with the source
term and CFS PML by ignoring the influence of source term and CFS PML.

2.4. Analytical Solution for 2D Homogeneous TFC Equation

For verifying the developed AC FDFD method, we propose an analytical solution
for the 2D unbounded homogeneous TFC equation in this work. First, we consider the
following commonly used 2D unbounded acoustic equation with a point source:

ω2

v2 u(ω, x, z) +
∂2u(ω, x, z)

∂x2 +
∂2u(ω, x, z)

∂z2 = − f (ω)δ(x − xs)δ(z − zs), (19)

where v is the acoustic velocity, δ(·) is the Dirac function, and (xs, zs) is the position of point
source. The 2D acoustic equation in Equation (19) has a well-known analytical solution
(see [37]) as

u(ω, r) =
−i
4

f (ω)H(2)
0

(
r

ω

v

)
, (20)

where r denotes the spatial distance to the source, H(2)
0 (·) denotes the zero-order Hankel

function of the second type. Notice that, when we replace ω/v in acoustic equation with
kc =

√
(−κ(iω)α − iω)/µ, we obtain the frequency-domain TFC equation. Then, based

on the correspondence principle (see [37]), we propose the analytical solution of the 2D
unbounded homogeneous TFC equation with a point source as follows:



Fractal Fract. 2024, 8, 146 6 of 14

u(ω, r) =
−i
4

f (ω)H(2)
0

(
r
√(

−κ(iω)α − iω
)
/µ

)
. (21)

Because H(2)
0

(
r
√
(−κ(iω)α − iω)/µ

)
is singular for r = 0, we use the analytical solution

of r = 10−15 to approximate the analytical solution of r = 0 in this work.

3. Results

Four numerical examples are used to confirm the effectiveness of the developed
AC FDFD method. The sparse systems of linear equations generated by FDFD methods
are solved by using the PARDISO direct solver (see [38]). The computational platform
consists of thirty supercomputer CPU nodes with 56 cores and 192 GB memory, where
the numerical solutions corresponding to different frequencies are obtained in parallel on
different CPU nodes.

The first example is a homogeneous TFC model with a large time-fractional or-
der α = 1.9. The number of spatial grid points is 201 × 201 and the grid intervals are
∆x = ∆z = 0.01 m. The constant model parameters are taken as κ = 1 and µ = 1.
Twenty CFS PML layers are added to each side of the TFC model as an absorbing bound-
ary condition. The source term is taken as a point source with Ricker time function of[
1 − 2(π fd(t − t0))

2
]
e−[π fd(t−t0)]

2
(see [39]), where fp denotes the dominant frequency

(taken as 20 Hz in this work) and t0 is the time delay (taken as 2.5/ fp in this work). The point
source is located at the model center. The considered frequencies for numerical solution
are sampled from 1/3 Hz to 60 Hz with an interval of 1/3 Hz. The frequency-domain
numerical solution is also transformed to the time-domain numerical solution using an
inverse fast Fourier transform. Figure 2 presents the comparisons between the transformed
time-domain analytical solution and the corresponding numerical solutions obtained by the
2nd-order FDFD method and AC FDFD method at (x, z) = (1 m, 0 m). Figure 3 presents
the comparisons of the real components of frequency–space domain solutions at 30 Hz
obtained by the analytical solution and the above two FDFD methods. Figure 4 gives
the further comparisons of the first vertical lines of the solutions in Figure 3. Figures 2–4
show that the AC FDFD method can obtain a more accurate numerical solution than the
second-order FDFD method for this homogeneous TFC case with α = 1.9. Additionally,
the computational times for the second-order FDFD method and AC FDFD method for
this model are 1.3 s and 2.0 s, respectively. Therefore, the two-FDFD method costs a similar
computational time to this model.

Figure 2. (a) The amplitude comparison and (b) the differences between the transformed time-domain
analytical solution and the corresponding numerical solutions obtained by 2nd-order FDFD method
and AC FDFD method at (x, z) = (1 m, 0 m) for homogeneous TFC model with α = 1.9.
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Figure 3. The comparisons of the real components of frequency–space domain solutions at 30 Hz
obtained by (a) 2nd-order FDFD method, (b) AC FDFD method, and (c) analytical solution for
homogeneous TFC model with α = 1.9.

Figure 4. (a) The amplitude comparison and (b) the differences between the frequency–space domain
analytical solution and the corresponding numerical solutions obtained by 2nd-order FDFD method
and AC FDFD method at 30 Hz and x = 0 m for the homogeneous TFC model with α = 1.9.

The second example considers almost the same TFC model as the first example except
that the time-fractional order α is revised to 1.1. Figure 5 presents the comparisons between
the transformed time-domain analytical solution and the corresponding numerical solutions
obtained by second-order FDFD method and AC FDFD method at (x, z) = (1 m, 0 m).
Figure 6 presents the comparisons of the real components of the frequency–space domain
solutions at 50 Hz obtained by the analytical solution and the above two FDFD methods.
Figure 7 gives the further comparisons of the first vertical lines of the solutions in Figure 6.
Figures 5–7 show that the AC FDFD method can obtain a little more accurate numerical
solution than the second-order FDFD method for this homogeneous TFC case with α = 1.1.
Additionally, the computational times for the second-order FDFD method and AC FDFD
method for this model are 1.3 s and 2.0 s, respectively. Therefore, the two FDFD methods
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cost a similar computational time for this model. In addition, the comparison between
Figures 2 and 5 shows that the second-order FDFD method can obtain a more accurate
numerical solution for TFC model with smaller time-fractional order α.

Figure 5. (a) The amplitude comparison and (b) the differences between the transformed time-domain
analytical solution and the corresponding numerical solutions obtained by 2nd-order FDFD method
and AC FDFD method at (x, z) = (1 m, 0 m) for homogeneous TFC model with α = 1.1.

Figure 6. The comparisons of the real components of frequency–space domain solutions at 50 Hz
obtained by (a) 2nd-order FDFD method, (b) AC FDFD method and (c) analytical solution for
homogeneous TFC model with α = 1.1.
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Figure 7. (a) The amplitude comparison and (b) the differences between the frequency–space domain
analytical solution and the corresponding numerical solutions obtained by 2nd-order FDFD method
and AC FDFD method at 50 Hz and x = 0 m for homogeneous TFC model with α = 1.1.

The third example also considers almost the same TFC model as the first example
except the model parameter µ is revised to a two-layer model and the source location
is revised to (x, z) = (1 m, 0.1 m). The top layer and the bottom layer of this model
have the same thickness and take values of µ as 1 and 4, respectively. For validating the
numerical solutions of this heterogeneous TFC equation, we apply the Taylor-expansion-
based 72nd-order finite difference (see [40,41]) to approximate the spatial derivatives of
the frequency-domain TFC equation and form a 72nd-order FDFD method as a reference
solution, which can be highly accurate but computationally expensive due to the big
bandwidth of the FDFD system matrix (see [32]). Figure 8 presents the comparisons between
the transformed time-domain reference solution and the corresponding numerical solutions
obtained by second-order FDFD method and AC FDFD method at (x, z) = (0 m, 0 m).
Figure 9 presents the comparisons of the real components of frequency–space domain
solutions at 30 Hz obtained by the reference solution and the above two FDFD methods.
Figure 10 gives further comparisons of the first vertical lines of the solutions in Figure 9.
Figures 8–10 show that the AC FDFD method can obtain more an accurate numerical
solution than the second-order FDFD method for this two-layer TFC model with α = 1.9.
In addition, the computational times for the second-order FDFD method, AC FDFD method,
and the reference solution for this model are 1.4 s, 2.0 s and 427 s, respectively. Therefore,
the second-order FDFD method and AC FDFD method cost similar computational times
for this model, and both are much more efficient than the reference solution. Additionally,
Figures 8 and 9 demonstrate that the TFC equation with the time-fractional order α = 1.9
shows strong attenuation that the reflection from the interface of two layers can be observed
but very weak.
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Figure 8. (a) The amplitude comparison and (b) the differences between the transformed time-domain
reference solution and the corresponding numerical solutions obtained by 2nd-order FDFD method
and AC FDFD method at (x, z) = (0 m, 0 m) for two-layer TFC model with α = 1.9. The black arrows
point to the reflection from the interface between two layers.

Figure 9. The comparisons of the real components of frequency–space domain solutions at 30 Hz
obtained by (a) 2nd-order FDFD method, (b) AC FDFD method and (c) reference solution for two-
layer TFC model with α = 1.9.
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Figure 10. (a) The amplitude comparison and (b) the differences between the frequency–space
domain reference solution and the corresponding numerical solutions obtained by 2nd-order FDFD
method and AC FDFD method at 30 Hz and x = 0 m for two-layer TFC model with α = 1.9.

The fourth example considers almost the same TFC model as the third example except
the time-fractional order α is revised to 1.1. Figure 11 presents the comparisons between the
transformed time-domain reference solution and the corresponding numerical solutions
obtained by the second-order FDFD method and AC FDFD method at (x, z) = (0 m, 0 m).
Figure 12 presents the comparisons of the real components of the frequency–space domain
solutions at 50 Hz obtained by the reference solution and the above two FDFD methods.
Figure 13 gives the further comparisons of the first vertical lines of the solutions in Figure 12.
Figures 11–13 show that the AC FDFD method can obtain a little more accurate numerical
solution than the second-order FDFD method for this two-layer TFC model with α = 1.1.
In addition, the computational times for the second-order FDFD method, AC FDFD method,
and reference solution for this model are 1.3 s, 2.0 s and 425 s, respectively. Therefore,
the second-order FDFD method and AC FDFD method cost similar computational times
for this model, and both are much more efficient than the reference solution. Additionally,
Figures 11 and 12 demonstrate that the TFC equation with the time-fractional order α = 1.1
shows a stronger attenuation than the TFC equation with α = 1.9, and that the reflection
from the interface of two layers cannot be observed in this case.

Figure 11. (a) The amplitude comparison and (b) the differences between the transformed time-
domain reference solution and the corresponding numerical solutions obtained by 2nd-order FDFD
method and AC FDFD method at (x, z) = (0 m, 0 m) for two-layer TFC model with α = 1.1.
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Figure 12. The comparisons of the real components of frequency–space domain solutions at 50 Hz
obtained by (a) 2nd-order FDFD method, (b) AC FDFD method and (c) reference solution for
homogeneous TFC model with α = 1.1.

Figure 13. (a) The amplitude comparison and (b) the differences between the frequency–space
domain reference solution and the corresponding numerical solutions obtained by 2nd-order FDFD
method and AC FDFD method at 50 Hz and x = 0 m for two-layer TFC model with α = 1.1.

4. Conclusions

We develop a TFC equation with the CFS PML absorbing boundary condition in this
work. Furthermore, we propose an efficient AC FDFD method for the numerical solution of
TFC equation with the CFS PML absorbing boundary condition. Four numerical examples
of typical TFC models show that the proposed AC FDFD method is more accurate than the
2nd-order FDFD method for the corresponding numerical solutions while requiring similar
computational times. The key point of the AC FDFD method for solving the TFC equation
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is to minimize the error of substituting the corresponding plane-wave solution into the AC
FDFD scheme. Such an idea can be generalized to other time-fractional equations.

Author Contributions: Methodology, W.X., J.B., J.C. and C.L.; validation, W.X., J.B., J.C. and C.L.;
formal analysis, W.X., J.B., J.C. and C.L.; investigation, W.X., J.B., J.C. and C.L.; writing—original draft
preparation, W.X., J.B., J.C. and C.L.; writing—review and editing, W.X., J.B., J.C. and C.L.; funding
acquisition, W.X., J.B., J.C. and C.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (grant no.
42374128, 42174161, and 12261058), China Postdoctoral Science Foundation (grant no. 2022M711004),
and the Jiangsu Province Science Fund for Distinguished Young Scholars (grant no. BK20200021).

Data Availability Statement: The data of the numerical simulation used to support the findings of
this study are included within the paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Compte, A.; Metzler, R. The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A Math.

Gen. 1997, 30, 7277. [CrossRef]
2. Awad, E.; Metzler, R. Crossover dynamics from superdiffusion to subdiffusion: Models and solutions. Fract. Calc. Appl. Anal.

2020, 23, 55–102. [CrossRef]
3. Nong, L.; Yi, Q.; Cao, J.; Chen, A. Fast Compact Difference Scheme for Solving the Two-Dimensional Time-Fractional Cattaneo

Equation. Fractal Fract. 2022, 6, 438. [CrossRef]
4. Povstenko, Y. Fractional Cattaneo-type equations and generalized thermoelasticity. J. Therm. Stress. 2011, 34, 97–114. [CrossRef]
5. Qi, H.; Jiang, X. Solutions of the space-time fractional Cattaneo diffusion equation. Phys. A Stat. Mech. Its Appl. 2011,

390, 1876–1883. [CrossRef]
6. Qi, H.T.; Xu, H.Y.; Guo, X.W. The Cattaneo-type time fractional heat conduction equation for laser heating. Comput. Math. Appl.

2013, 66, 824–831. [CrossRef]
7. Ghazizadeh, H.; Maerefat, M.; Azimi, A. Explicit and implicit finite difference schemes for fractional Cattaneo equation. J. Comput.

Phys. 2010, 229, 7042–7057. [CrossRef]
8. Zhao, X.; Sun, Z.Z. Compact Crank–Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium.

J. Sci. Comput. 2015, 62, 747–771. [CrossRef]
9. Ren, J.; Gao, G.h. Efficient and stable numerical methods for the two-dimensional fractional Cattaneo equation. Numer. Algorithms

2015, 69, 795–818. [CrossRef]
10. Wei, L. Analysis of a new finite difference/local discontinuous Galerkin method for the fractional Cattaneo equation. Numer.

Algorithms 2018, 77, 675–690. [CrossRef]
11. Li, H.; Jiang, W.; Li, W. Space-time spectral method for the Cattaneo equation with time fractional derivative. Appl. Math. Comput.

2019, 349, 325–336. [CrossRef]
12. Chen, A.; Nong, L. Efficient Galerkin finite element methods for a time-fractional Cattaneo equation. Adv. Differ. Equ. 2020,

2020, 1–21. [CrossRef]
13. Berenger, J.P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1994, 114, 185–200.

[CrossRef]
14. Fu, L.Y.; Wu, R.S. Infinite boundary element absorbing boundary for wave propagation simulations. Geophysics 2000, 65, 596–602.

[CrossRef]
15. Xu, W.H.; Ba, J.; Carcione, J.M.; Yang, Z.F.; Yan, X.F. A simplified calculation for adaptive coefficients of finite-difference

frequency-domain method. Appl. Geophys. 2023, 20, 1–16. [CrossRef]
16. Zhang, L.X.; Fu, L.Y.; Pei, Z.L. Finite difference modeling of Biot’s poroelastic equations with unsplit convolutional PML and

rotated staggered grid. Chin. J. Geophys. 2010, 53, 2470–2483.
17. Fu, B.Y.; Fu, L.Y.; Wei, W.; Zhang, Y. Boundary-reflected waves and ultrasonic coda waves in rock physics experiments. Appl.

Geophys. 2016, 13, 667–682. [CrossRef]
18. Fu, L.Y.; Fu, B.Y.; Sun, W.; Han, T.; Liu, J. Elastic wave propagation and scattering in prestressed porous rocks. Sci. China Earth

Sci. 2020, 63, 1309–1329. [CrossRef]
19. Komatitsch, D.; Martin, R. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave

equation. Geophysics 2007, 72, SM155–SM167. [CrossRef]
20. Martin, R.; Komatitsch, D. An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the

viscoelastic wave equation. Geophys. J. Int. 2009, 179, 333–344. [CrossRef]
21. Saenger, E.H.; Gold, N.; Shapiro, S.A. Modeling the propagation of elastic waves using a modified finite-difference grid. Wave

Motion 2000, 31, 77–92. [CrossRef]

http://doi.org/10.1088/0305-4470/30/21/006
http://dx.doi.org/10.1515/fca-2020-0003
http://dx.doi.org/10.3390/fractalfract6080438
http://dx.doi.org/10.1080/01495739.2010.511931
http://dx.doi.org/10.1016/j.physa.2011.02.010
http://dx.doi.org/10.1016/j.camwa.2012.11.021
http://dx.doi.org/10.1016/j.jcp.2010.05.039
http://dx.doi.org/10.1007/s10915-014-9874-5
http://dx.doi.org/10.1007/s11075-014-9926-9
http://dx.doi.org/10.1007/s11075-017-0334-9
http://dx.doi.org/10.1016/j.amc.2018.12.050
http://dx.doi.org/10.1186/s13662-020-03009-w
http://dx.doi.org/10.1006/jcph.1994.1159
http://dx.doi.org/10.1190/1.1444755
http://dx.doi.org/10.1007/s11770-023-1045-8
http://dx.doi.org/10.1007/s11770-016-0583-8
http://dx.doi.org/10.1007/s11430-019-9615-3
http://dx.doi.org/10.1190/1.2757586
http://dx.doi.org/10.1111/j.1365-246X.2009.04278.x
http://dx.doi.org/10.1016/S0165-2125(99)00023-2


Fractal Fract. 2024, 8, 146 14 of 14

22. Fu, L.Y.; Zhang, Y.; Pei, Z.; Wei, W.; Zhang, L. Poroelastic finite-difference modeling for ultrasonic waves in digital porous cores.
Earthq. Sci. 2014, 27, 285–299. [CrossRef]

23. Zhang, Y.; Fu, L.Y.; Zhang, L.; Wei, W.; Guan, X. Finite difference modeling of ultrasonic propagation (coda waves) in digital
porous cores with un-split convolutional PML and rotated staggered grid. J. Appl. Geophys. 2014, 104, 75–89. [CrossRef]

24. Yang, H.; Fu, L.Y.; Fu, B.Y.; Du, Q. Poro-acoustoelasticity finite-difference simulation of elastic wave propagation in prestressed
porous media. Geophysics 2022, 87, T329–T345. [CrossRef]

25. Yang, H.; Fu, L.Y.; Li, H.; Du, Q.; Zheng, H. 3D acoustoelastic FD modeling of elastic wave propagation in prestressed solid
media. J. Geophys. Eng. 2023, 20, 297–311. [CrossRef]

26. Hou, W.; Fu, L.Y.; Carcione, J.M.; Wang, Z.; Wei, J. Simulation of thermoelastic waves based on the Lord-Shulman theory.
Geophysics 2021, 86, T155–T164. [CrossRef]

27. Liu, Y.; Fu, L.Y.; Deng, W.; Hou, W.; Carcione, J.M.; Wei, J. Simulation of wave propagation in thermoporoelastic media with
dual-phase-lag heat conduction. J. Therm. Stress. 2023, 46, 1–19. [CrossRef]

28. Bekri, Z.; ERTÜRK, V.S.; Kumar, P.; Govindaraj, V. Some novel analysis of two different Caputo-type fractional-order boundary
value problems. Results Nonlinear Anal. 2022, 5, 299–311. [CrossRef]

29. Prieur, F.; Holm, S. Nonlinear acoustic wave equations with fractional loss operators. J. Acoust. Soc. Am. 2011, 130, 1125–1132.
[CrossRef]

30. Pei, Z.; Fu, L.Y.; Sun, W.; Jiang, T.; Zhou, B. Anisotropic finite-difference algorithm for modeling elastic wave propagation in
fractured coalbeds. Geophysics 2012, 77, C13–C26. [CrossRef]

31. Chen, L.; Huang, J.; Fu, L.Y.; Peng, W.; Song, C.; Han, J. A Compact High-Order Finite-Difference Method with Optimized
Coefficients for 2D Acoustic Wave Equation. Remote Sens. 2023, 15, 604. [CrossRef]

32. Xu, W.; Zhong, Y.; Wu, B.; Gao, J.; Liu, Q.H. Adaptive complex frequency with V-cycle GMRES for preconditioning 3D Helmholtz
equation. Geophysics 2021, 86, T349–T359. [CrossRef]

33. Xu, W.; Wu, B.; Zhong, Y.; Gao, J.; Liu, Q.H. Adaptive 27-point finite-difference frequency-domain method for wave simulation of
3D acoustic wave equation. Geophysics 2021, 86, T439–T449. [CrossRef]

34. Jo, C.H.; Shin, C.; Suh, J.H. An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator. Geophysics 1996,
61, 529–537. [CrossRef]

35. Zhao, H.; Wang, S.; Xu, W.; Gao, J. Complex-valued adaptive-coefficient finite difference frequency domain method for wavefield
modeling based on diffusive-viscous wave equation. Geophysics 2023, 89, 1–75. [CrossRef]

36. Golub, G.H.; Van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MD, USA, 2013.
37. Carcione, J.M.; Kosloff, D.; Kosloff, R. Wave propagation simulation in a linear viscoacoustic medium. Geophys. J. Int. 1988,

93, 393–401. [CrossRef]
38. Petra, C.G.; Schenk, O.; Anitescu, M. Real-time stochastic optimization of complex energy systems on high-performance

computers. Comput. Sci. Eng. 2014, 16, 32–42. [CrossRef]
39. Ricker, N. Further developments in the wavelet theory of seismogram structure. Bull. Seismol. Soc. Am. 1943, 33, 197–228.

[CrossRef]
40. Dablain, M. The application of high-order differencing to the scalar wave equation. Geophysics 1986, 51, 54–66. [CrossRef]
41. Liu, Y. Finite-difference numerical modeling of any even order accuracy. Oil Geophys. Prospect. 1998, 33, 1–10.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11589-014-0081-0
http://dx.doi.org/10.1016/j.jappgeo.2014.02.012
http://dx.doi.org/10.1190/geo2021-0077.1
http://dx.doi.org/10.1093/jge/gxad010
http://dx.doi.org/10.1190/geo2020-0515.1
http://dx.doi.org/10.1080/01495739.2023.2193225
http://dx.doi.org/10.53006/rna.1114063
http://dx.doi.org/10.1121/1.3614550
http://dx.doi.org/10.1190/geo2010-0240.1
http://dx.doi.org/10.3390/rs15030604
http://dx.doi.org/10.1190/geo2020-0901.1
http://dx.doi.org/10.1190/geo2021-0050.1
http://dx.doi.org/10.1190/1.1443979
http://dx.doi.org/10.1190/geo2023-0271.1
http://dx.doi.org/10.1111/j.1365-246X.1988.tb02010.x
http://dx.doi.org/10.1109/MCSE.2014.53
http://dx.doi.org/10.1785/BSSA0330030197
http://dx.doi.org/10.1190/1.1442040

	Introduction
	Method
	TFC Equation with CFS PML
	AC FDFD Scheme
	Adaptive FDFD Coefficients
	Analytical Solution for 2D Homogeneous TFC Equation

	Results
	Conclusions
	References 

