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Abstract: The main goal of the paper is to present and study models of multi-agent systems for which
the dynamics of the agents are described by a Caputo fractional derivative of variable order and a
kernel that depends on an increasing function. Also, the order of the fractional derivative changes
at update times. We study a case for which the exchanged information between agents occurs only
at initially given update times. Two types of linear variable-order Caputo fractional models are
studied. We consider both multi-agent systems without a leader and multi-agent systems with a
leader. In the case of multi-agent systems without a leader, two types of models are studied. The
main difference between the models is the fractional derivative describing the dynamics of agents. In
the first one, a Caputo fractional derivative with respect to another function and with a continuous
variable order is applied. In the second one, the applied fractional derivative changes its constant
order at each update time. Mittag–Leffler stability via impulsive control is defined, and sufficient
conditions are obtained. In the case of the presence of a leader in the multi-agent system, the dynamic
of the agents is described by a Caputo fractional derivative with respect to an increasing function and
with a constant order that changes at each update time. The leader-following consensus via impulsive
control is defined, and sufficient conditions are derived. The theoretical results are illustrated with
examples. We show with an example the leader’s influence on the consensus.

Keywords: multi-agent systems; leader; consensus; Caputo fractional derivative with respect to
another function; fractional derivative of variable order; impulsive control

MSC: 34A34; 34A08; 34D20

1. Introduction

Recently, the dynamics of multi-agent systems have been successfully modeled by
fractional derivatives, and many theoretical results have been obtained (see, for example,
lref. [1] for consensuses of linear systems, ref. [2] for consensuses of nonlinear multi-agent
system via event-triggered control, refs. [3–5] for leader-following consensuses for fractional
multi-agent systems, ref. [6] for consensuses under fixed topology, and ref. [7] for the output
feedback containment control problem for multi-agent systems with missing measurements).

Usually, continuous control is used to study the behavior of the agents in the model.
But practically, it is hard to achieve continuous communication among agents. This leads
to reasonable study of model situations wherein the agents exchange information only at
so-called update times. A good tool in this case is to use impulsive control for modeling
the situation. This type of model was studied in [8,9] for integer-order systems, in [10,11]
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for fractional-order systems, in [12] for randomly occurring update times, and in [13] for
models with generalized proportional Caputo fractional derivatives.

Fractional operators in which the order is a function of certain variables have attracted
attention due to their applied significance in various research areas. Samko and Ross [14]
first proposed the concept of variable-order diffintegrals as well as some basic properties.
The basic definitions of variable-order fractional diffintegrals and numerical approxima-
tions were given in [15]. Variable-fractional calculations provide an effective mathematical
tool for modeling complex dynamic problems (see, for example, [16–20]). In [21], the au-
thors showed that variable-order fractional derivatives can capture the dynamics of some
systems more accurately. The main practical advantage of the variable order in fractional
operators is that the order of derivative in neural networks can vary as a function of time
or the system’s state (see [22]). In [23], a brief overview of papers about some models of
neural networks with fractional derivatives of different orders is presented.

Note that there are many generalizations of classical fractional integrals and deriva-
tives. The base of the generalization of the classical definitions is the type of kernel
considered. In the case when the lkernel is of the type k(t, s) = η(t)− η(s), the fractional
diffintegrals with respect to another function are defined (see, for example, [24]). Some of
the advantages of fractional diffintegrals with respect other functions are that they keep the
main properties of classical fractional ones. Also, this type of derivative, as shown in [24]
for population models, can more accurately model processes using different kernels for
the fractional operator. This type of fractional derivative is applied to differential equa-
tions and has been studied by several authors (see, for example, ref. [24] for the existence
and uniqueness of the problem with the Caputo fractional derivative and ref. [25] for the
Hilfer-type fractional derivative).

In this paper, we consider multi-agent linear dynamic systems with the Caputo frac-
tional derivative with respect to another function and variable order. We study a multi-agent
system in which the agents interact and exchange information instantaneously and only
at initially given update times, i.e., the so-called impulsive control protocol. We consider
systems both without a leader and with a leader. In both cases, we set up the appropriate
impulsive model, define stability by Mittag–Leffler functions, and study the system.

Note that impulsive control is a powerful control method: in particular when an agent
exchanges information instantaneously at discrete times. It has been applied and studied
by several authors for various types of multi-agent systems: for example, in [26], the scaled
consensus is investigated by using impulsive controls; in [26], the impulsive approach is
used to study the semi-global consensus; in [27], the impulsive average-consensus with
time-delays is considered; in [28], the exponential consensus is investigated in the case for
which the impulses are generated by an event-triggered mechanism and are subjected to
actuation delays.

In [13], a multi-agent linear system via impulsive control is considered, and the
consensus is studied. The applied fractional derivative is less general than the fractional
derivative with respect to another function, which is applied in this paper. In the present
paper, we keep the idea about the impulsive protocol, but we generalize the model of [13]
in several ways. First, we consider variable order for the fractional derivative. This leads to
qualitative changes in the study. For the model without a leader, we consider two cases:
the case with a fractional derivative of variable order and the case of a fractional derivative
with piecewise constant orders, i.e., we study the situation when, at the initially given
impulsive points, the agents interact, and also, their behavior and dynamics are changed. In
the case of a system with a leader, we study only piecewise constant orders of the fractional
derivatives. This is required because of the more complex interactions between agents.
Second, to be more general, we apply a fractional derivative with a kernel of the type
k(t, s) = η(t)− η(s) with an increasing differentiable function η(.) with a range (0, 1). Also,
from our results, several partial cases, such as the dynamics described by the classical
Caputo fractional derivative, could be obtained, which is not possible from the ones in [13].
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In this way, in this paper, we study a model describing a more general situation compared
to that of [13].

The main contributions of the article to the field of multi-agent systems, particularly
in terms of consensus and formation control, can be summarized as follows:

- We provide two models for a multi-agent system without a leader in which the
interaction between agents occurs only at update times. The dynamics in the models
are described by a variable-order Caputo fractional derivative with respect to another
function.

- We provide a model for a multi-agent system with a leader in which the interaction
between any agent and the leader occurs only at update times. The dynamics are
described by a Caputo fractional derivative with respect to another function, for which
the order is changed at any update time.

- We define and study impulsive Mittag–Leffler stability via impulsive protocol and
leader-following consensus via impulsive protocol for the corresponding models.

- All sufficient conditions depend significantly on the impulsive control.
- We provide an example that shows the influence of the impulsive control on a system.

lOur paper is structured as follows:

- In Section 2, we give an overview of the Caputo fractional calculus with respect to
another function. We give the basic results that will be used in subsequent parts of the
paper. Also, we present the basic definitions and results for the variable-order Caputo
fractional derivative and discuss its application for modeling multi-agent systems.

- In Section 3, based on the main definitions from the previous section, we set up models
for two basic cases: multi-agent systems both without a leader and with a leader. In
the case without a leader, in the multi-agent system, we consider two different types
of models: one with variable time order of the fractional derivative and one with a
piecewise constant order. In the case of the presence of a leader in the system, we
consider only a piecewise constant variable order of the corresponding fractional
derivative.

- In Section 4, we obtain our main results. In the case of a multi-agent system without a
leader we define impulsive Mittag–Leffler stability and obtain sufficient conditions.
In the case of the presence of a leader in the system, we study the leader-following
consensus. All theoretical results are illustrated with examples.

- To summarize, we finish the paper with a conclusion.

2. Preliminary Notes and Results

We recall the basic definitions of fractional operators with respect to another func-
tion η, which are often called η-fractional integrals and derivatives. Let the kernel be
η ∈ C1([c, d],R) with ∈ R; c < d ≤ ∞ (if d = ∞ and η′(t) > 0 for all t ∈ [c, d].

2.1. η-Fractional Diffintegrals of Constant Order

We start with the definitions of a constant fractional order of the fractional integral
and derivative µ > 0 for lscalar functions.

Definition 1 ([29]). Let ν ∈ C([c, d],R) and µ ≥ 0. Then a η-fractional integral of order µ is

c Iµ
η ν(t) =

1
Γ(µ)

∫ t

c
η′(s)(η(t)− η(s))µ−1ν(s)ds, t ∈ (c, d]. (1)

Definition 2 ([29]). Let ν : [c, d] → R and µ ∈ (0, 1). Then a η-Caputo fractional derivative of
order µ is

C
a Dµ

η ν(t) = c I1−µ
η

(
1

η′(t)
d
dt

)
ν(t) =

1
Γ(1 − µ)

∫ t

c
(η(t)− η(s))−µν′(s)ds, t ∈ (c, d]. (2)
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In the vector case ν ∈ C([c, d],Rn
), Definitions 1 and 2 can be generalized component-wise.

We give some results that are known from the literature that will be used in our further
study.

Lemma 1 (Theorems 1 and 2 [30]). For µ ∈ (0, 1) and ν ∈ C1([c, d],R), we have

C
c Dµ

η

(
c Iµ

η ν
)
(t) = ν(t) (3)

and
c Iµ

η

(
C
c D

µ
η ν
)
(t) = u(t)− u(c). (4)

Lemma 2 (Lemma 1 [30]). For µ ∈ (0, 1) and ρ > 0, we have

C
c Dµ

η (η(t)− η(c))ρ =
Γ(ρ + 1)

Γ(ρ − µ + 1)
(η(t)− η(c))ρ−µ,

c Iµ
η (η(t)− η(c))ρ =

Γ(ρ + 1)
Γ(ρ + µ + 1)

(η(t)− η(c))ρ+µ.
(5)

Lemma 3 (Lemma 2 [30]). The scalar linear η-Caputo fractional initial value problem

C
c Dµ

η ν(t) = ξν(t), ν(c) = u0, µ ∈ (0, 1),

with ξ, u0 ∈ R, has a solution

ν(t) = u0Eµ(ξ(η(t)− η(c))µ),

where Eµ is the Mittag–Leffler function of one parameter.

Consider the following initial value problem (IVP) for a linear system of fractional
differential equations:

C
c Dµ

η U(t) = AU(t), U(c) = U0, µ ∈ (0, 1), t ∈ [c, d] (6)

where U0 ∈ Rn, A is a constant matrix, and µ ∈ (0, 1).

Definition 3 ([31]). The Mittag–Leffler matrix function with one parameter µ > 0 is

Eµ(Az) =
∞

∑
k=0

Akzk

Γ(kµ + 1)
,

where A is a square matrix.

Lemma 4. The solution to the IVP (6) is

U(t) = Eµ(A(η(t)− η(c))µ)U0, t ∈ [c, d].

Proof. The claim follows from Lemma 2 for ρ = µ, µ + 1, µ + 2, . . . . Indeed, we have

C
c Dµ

η Eµ(A(η(t)− η(c))µ) =
∞

∑
k=0

Ak

Γ(kµ + 1)
C
a Dµ

η (η(t)− η(c))kµ

=
∞

∑
k=1

Ak

Γ(kµ + 1)
Γ(kµ + 1)

Γ(kµ − µ + 1)
(η(t)− η(c))kµ−µ

= AEµ(A(η(t)− η(c))µ).

(7)
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2.2. η-Fractional Diffintegrals of Variable Order

There are several different definitions of variable-order (VO) fractional diffintegrals
(see, for example, [21,32]). Note that all of the defined VO fractional diffintegrals coincide
if the VO is replaced with a constant order. We provide only one of them, which is the one
used the most in the literature.

Now, we generalize the fractional integral with a constant order (see p. 461 [30]) to
one with a variable order.

Definition 4. Let the function ν ∈ L([c, d]). lThen the variable-order η-fractional integral of
type I is

cI
µ(t)
η ν(t) =

1
Γ(µ(t))

∫ t

c
η′(s)(η(t)− η(s))µ(t)−1ν(s) ds, t ∈ (c, d]. (8)

We generalize Definition 1 [30] for a constant order of a Caputo fractional derivative
to a variable order.

Definition 5. Let µ : [c, d] → (0, 1). Then the variable-order η-Caputo fractional derivative of
type I of a function ν ∈ C1[c, d] is defined by

C
c D

µ(t)
η ν(t) =

1
Γ(1 − µ(t))

∫ t

c
(η(t)− η(s))−µ(t)ν′(s) ds t ∈ (c, d]. (9)

In the case of η(t) ≡ 1, Definitions 4 and 5 reduce to the variable-order fractional
integrals and fractional Caputo derivative defined and used in [14,33].

Remark 1. Similar to that mentioned in [14] about VO fractional integrals and VO Caputo
fractional derivatives, the VO fractional operators C

a D
p(t)
η and aI

µ(t)
η are not inverses of each other.

In [14], the Marchaud fractional derivative (Sections 5 and 13 [34]) is lgeneralized to a
variable order.

Definition 6 ([14]). Let µ : [c, d] → (0, 1) and the function ν ∈ C1([c, d]). Then the variable-
order η-Caputo fractional derivative of type II is

C
c D

µ(t)
η ν(t) =

1
Γ(1 − µ(t))

(
ν(t)

(η(t)− η(c))µ(t)
+ µ(t)

∫ t

c
η′(s)

(ν(t)− ν(s))

(η(t)− η(s))1+µ(t)
ds

)
, t ∈ (c, d]. (10)

Lemma 5. Let µ, γ ∈ C([c, d], (0, 1)) and γ(t) > µ(t), t ∈ [c, d]. Then

C
c D

µ(t)
η

(
η(t)− η(c)γ(t)

)
=

Γ(γ(t) + 1)
Γ(γ(t) + 1 − µ(t))

(η(t)− η(c))γ(t)−µ(t), t ∈ (c, d]. (11)

Proof. From Equation (10), we have

C
c D

µ(t)
η

(
η(t)− η(c)γ(t)

)

=
1

Γ(1 − µ(t))

 (η(t)− η(c)γ(t)

(η(t)− η(c))µ(t)
+ µ(t)((η(t)− η(c))γ(t)

∫ t

c
η′(s)

1 − (η(s)−η(c))γ(t)

((η(t)−η(c))γ(t)

(η(t)− η(s))1+µ(t)
ds

.
(12)

lUse the substitution η(s) = ξ(η(t)− η(c)) + η(c). Then

η′(s)ds = (η(t)− η(c))dξ
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and
η(s)− η(c)
η(t)− η(c)

= ξ, η(t)− η(s) = (η(t)− η(c))(1 − ξ).

Substitute in Equation (12), and we obtain

C
c D

µ(t)
η

(
η(t)− η(c)γ(t)

)
=

1
Γ(1 − µ(t))

(
(η(t)− η(c)γ(t)−µ(t)

+ µ(t)(η(t)− η(c))γ(t)−µ(t)
∫ 1

0

1 − ξγ(t)
(1 − ξ)1+µ(t)

dξ
)

=
1

Γ(1 − µ(t))
(η(t)− η(c)γ(t)−µ(t)

(
1 + µ(t)

∫ 1

0

1 − ξγ(t)

(1 − ξ)1+µ(t)
dξ

)
.

(13)

Apply integration by parts, the inequality γ(t) > µ(t), and
∫ 1

0 (1 − s)w−1sv−1ds = Γ(w)Γ(v)
Γ(w+v)

for v = γ(t), w = 1 − µ(t) and obtain

µ(t)
∫ 1

0
(1 − ξγ(t))(1 − ξ)−1−µ(t)dξ =

∫ 1

0
(1 − ξγ(t)) d(1 − ξ)−µ(t)

= (1 − ξγ(t))(1 − ξ)−µ(t)
∣∣∣ξ=1

ξ=0
+ γ(t)

∫ 1

0
(1 − ξ)−µ(t)ξγ(t)−1dξ

= −1 + γ(t)
Γ(1 − µ(t))Γ(γ(t))
Γ(γ(t)− µ(t) + 1)

= −1 +
Γ(1 − µ(t))Γ(1 + γ(t))

Γ(γ(t)− µ(t) + 1)
.

(14)

Substitute (14) to (13), and we obtain (11).

Lemma 6. Let µ ∈ C([c, d], (0, 1)) and ξ ∈ R. Then,

C
c D

µ(t)
η Eµ(t)

(
ξ(η(t)− η(c))µ(t)

)
= Eµ(t)

(
ξ(η(t)− η(c))µ(t)

)
, t ∈ (c, d], (15)

where Eµ(t) is the one-parametric Mittag–Leffler function of variable order, which is defined by

Eµ(t)(z) =
∞

∑
k=0

zk

Γ(kµ(t) + 1)
, t ∈ [c, d]. (16)

Proof. From Equation (16) and Lemma 5, we have

C
c D

µ(t)
η Eµ(t)

(
ξ(η(t)− η(c))µ(t)

)
=

∞

∑
k=0

C
c D

µ(t)
η

(
ξ(η(t)− η(c))µ(t)

)k

Γ(kµ(t) + 1)

=
∞

∑
k=0

ξk

Γ(kµ(t) + 1)
C
c D

µ(t)
η (η(t)− η(c))kµ(t)

=
∞

∑
k=1

ξk

Γ((k − 1)µ(t) + 1)
(η(t)− η(c))(k−1)µ(t)

= ξ
∞

∑
k=0

ξk

Γ(kµ(t) + 1)
(η(t)− η(c))kµ(t) = ξEµ(t)

(
ξ(η(t)− η(c))µ(t)

)
.

(17)

Corollary 1. Let µ ∈ C([c, d], (0, 1)) and ξ ∈ R. Then the IVP

C
c D

µ(t)
η ν(t) = ξν(t), t ∈ (c, d], ν(a) = u0 (18)
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has a unique solution ν(t) = u0Eµ(t)

(
ξ(η(t)− η(c))µ(t)

)
.

Remark 2. Note we could not generalize the scalar case (18) to a vector case and obtain a solution
for the case of a system as is done in the case of constant order (see Lemma 4).

Remark 3. Let µ ∈ C([c, d], (0, 1)) and γ ∈ R. Then

C
c Dµ(t)(η(t)− η(c))γ ̸= Γ(γ + 1)

Γ(γ + µ(t) + 1)
(η(t)− η(c))γ+µ(t),

and Lemma 6 and Corollary 1 are not applicable to the derivative C
a Dµ(t).

Therefore, in the scalar case, Definition 6 about variable-order fractional derivatives is more
suitable than Definition 5.

Remark 4. According to Remark 1, it is difficult to obtain an equivalent integral presentation
of the solution of the corresponding differential equation with fractional derivatives defined in
Definition 5. To avoid this, we can apply a piecewise constant variable order in fractional differential
equations. Let points c = T0 < T1 < T2, · · · < Tp < Tp+1 = d be given. Let the variable-order
µ : [a, b] → (0, 1) be given by

µ(t) =


µ0, if t ∈ [T0, T1],
µ1, if t ∈ (T1, T2],
...
µp, if t ∈ (Tp, Tp+1],

(19)

where µk ∈ (0, 1) are constants.
Then, instead of the IVP for the variable-order fractional differential equation

C
c D

µ(t)
η ω(t) = F(t, ω(t)), t ∈ (c, d], ω(c) = ω0,

we can consider IVP for the system of constant-order fractional differential equations

C
Tk

Dµk
η ωk(t) = F(t, ωk(t)), t ∈ (Tk, Tk+1], k = 0, 1, 2, . . . , p,

ωk(Tk) = ωk−1(Tk), k = 0, 1, 2, . . . , p,
(20)

ω−1(T0) = ω0, with a solution ω(t) defined by

ω(t) =


ω0(t), if t ∈ [T0, T1],
ω1(t), if t ∈ (T1, T2],
...
ωp(t), if t ∈ (Tp, Tp+1].

(21)

The main advantage of this approach is that we can use the results for fractional derivatives with
constant orders.

In this paper, we use the Euclidean norm ||x|| of x ∈ Rn.
For a matrix B = {bij}n

i,j=1 ∈ Rn×n, we use the spectral norm

||B||2 =
√

max
1≤i≤n

ξi,
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where ξi are the eigenvalues of BTB, and BT is the transpose of a matrix B. Then, we have

||B||2 ≤
n

∑
i=1

n

∑
j=1

b2
ij, ||Bx|| ≤ ||B||2||x||.

3. Statement of the Problem

Let the sequence of points {ξk}k=0,1,2,... be such that t0 = ξ0 < ξk < ξk+1, k = 1, 2, 3, . . . ,
with limk→∞ ξk = ∞ and where t0 ≥ 0 is the initial time.

We denote

ν(ξk + 0) = lim
τ→ξk+0

ν(τ), ν(ξk − 0) = lim
τ→ξk−0

ν(τ), k = 1, 2, 3, . . . .

Consider a multi-agent system of N agents with a scalar variable xi, i = 1, 2, . . . , N
and initial value x0

i .

3.1. Multi-Agent System without a Leader

Consider the case for which the agents exchange information among themselves only
at update times {ξk}k=0,1,2,.... The controller updates of each agent occur instantaneously at
times ξk, and the control input is called an impulsive control protocol.

Consider the set of the numbers of all agents that influence agent i at update time ξk:

Σi(ξk) = {l = 1, 2, . . . , N : l ̸= i and xl(t)

is available to agent i at time t = ξk}, i = 1, 2, . . . , N, k = 1, 2, . . .

Thus, the impulsive control protocol of agent i at time ξk, k = 1, 2, 3, . . . , based on the
information it receives from its neighboring agents, can be written

ui(ξk) = ∑
j∈Σi(ξk)

ai,j,k(xi(ξk)− xj(ξk)), k = 1, 2, 3, . . . , (22)

where the weights ai,j,k ∈ R are elements of the matrix

Ak =

 0 a1,2,k a1,3,k . . . a1,N,k
a2,1,k 0 a2,3,k . . . a2,N,k . . . . . . . . . . . . . . .
aN,1,k aN,2,k aN,3,k . . . 0


In the case without a leader, since the dynamic of any agent between two update times

is described by a scalar equation, we can use the variable order of a fractional derivative
given in Definition 6 and a piecewise constant order (see Remark 4).

3.1.1. Model of Fractional Derivative with Variable Order

We apply the η-fractional derivative of variable-order µ : [t0, ∞) → (0, 1) given by
Definition 6 and Equation (10).

Since between two update times ξk and ξk+1, any agent i has information only about
its own state, then the dynamics of agent i are described by

(C
ξk
Dµ(t)

η xi)(t) = bixi(t), for t ∈ (ξk, ξk+1], (23)

where bi ∈ R, i = 1, 2, . . . , N.
At each time ξk, agent i updates its state variable according to the impulsive control

protocol defined by (22).
Combining the impulsive control protocol defined by (22) and the dynamics of each

agent between two update times defined by (23), we obtain the following model of a
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variable-order η-Caputo fractional model of multi-agent linear dynamic systems via impul-
sive control protocol (CFM):

C
ξk
Dµ(t)

η xi(t) = bixi(t), i = 1, 2, . . . , N, t ∈ (ξk, ξk+1], k = 0, 1, 2, . . . ,

xi(ξk + 0) = ∑
j∈Σi(ξk)

ai,j,k(xi(ξk)− xj(ξk)), k = 1, 2, 3, . . . ,

xi(t0) = x0
i , i = 1, 2, . . . , N.

(24)

3.1.2. Model of Fractional Derivative with Piecewise Constant Order

We apply the η-fractional derivative of variable order given in Definition 5.
Let the order of the fractional derivative be a piecewise constant function defined by

µ(t) =


µ0, if t ∈ [ξ0, ξ1],
µ1, if t ∈ (ξ1, ξ2],
...

(25)

where µk ∈ (0, 1), k = 0, 1, 2, . . . are constants.
We assume the dynamics of each agent between two update times defined by the

fractional derivative C
ξk

Dµk
η xi(t).

Combine the impulsive control protocol (22) and the dynamics of each agent be-
tween two update times defined by (23) by replacing the derivative C

ξk
Dµ(t)

η xi(t) with the

derivative C
ξk

Dµk
η xi(t), and we obtain the following model:

C
ξk

Dµk
η xi(t) = bixi(t), i = 1, 2, . . . , N, t ∈ (ξk, ξk+1], k = 0, 1, 2, . . . ,

xi(ξk + 0) = ∑
j∈Σi(ξk)

ai,j,k(xi(ξk)− xj(ξk)), k = 1, 2, 3, . . . ,

xi(t0) = x0
i , i = 1, 2, . . . , N.

(26)

3.2. Multi-Agent System with a Leader

Consider a multi-agent system with fixed topology and a leader with state variable
x0(t).

Consider the case of an impulsive control protocol, i.e., any agent and the leader
interact instantaneously only at the update times ξk described by

xi(ξk + 0) = xi(ξk) + ui(ξk), i = 1, 2, . . . , N, k = 1, 2, . . . , (27)

where the impulsive protocol is

ui(ξk) = µi,k(xi(ξk)− x0(ξk)), k = 1, 2, 3, . . . . (28)

Between two update times ξk and ξk+1, the leader has no interactions with other
agents, and the dynamics of any agent i are based only on interactions between itself and
other agents. In this case, we apply a piecewise constant order of the Caputo fractional
derivative (see Remarks 2 and 3). Let the variable-order µ : [t0, ∞) → (0, 1) of the Caputo
fractional derivative be defined by (25). Then, the dynamics of the agents and the leader
between two update times is described by

C
ξk

Dµk
η xi(t) =

N

∑
j=1

ℓi,j(xi(t)− xj(t)), t ∈ (ξk, ξk+1],

C
ξk

Dµk
η x0(t) = 0, t ∈ (ξk, ξk+1], k = 0, 1, 2, . . . ,

(29)
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where the constants ℓi,j ≥ 0 present the weights. Note ℓi,j = 0 iff agent j does not influence
agent i.

Combining (27), (28), and (29), we obtain the following model:

ξk Dµk
η xi(t) =

N

∑
j=1

ℓi,j(xi(t)− xj(t)), t ∈ (ξk, ξk+1],

(ξk Dµk
η x0)(t) = 0, t ∈ (ξk, ξk+1], k = 0, 1, 2, . . . ,

xi(ξk + 0) = xi(ξk) + µi,k(xi(ξk)− x0(ξk)), i = 1, 2, . . . , N,

x0(ξk + 0) = x0(ξk), k = 1, 2, 3, . . . ,

xi(t0) = x0
i , i = 1, 2, . . . , N, x0(t0) = x0

0.

(30)

Remark 5. From the equation of the leader in system (30), it follows inductively that x0(t) = x0
0

for t ≥ t0.

Denote zi(t) = xi(t)− x0(t) = xi(t)− x0
0, i = 1, 2, . . . , N, and consider the equivalent

to problem (30):

ξk Dµk
η zi(t) =

N

∑
j=1

ℓi,j(zi(t)− zj(t)), t ∈ (ξk, ξk+1], k = 0, 1, 2, . . . ,

zi(ξk + 0) = (1 + µi,k)zi(ξk), i = 1, 2, . . . , N, k = 1, 2, 3 . . . ,

zi(t0) = x0
i − x0

0, i = 1, 2, . . . , N,

(31)

or in the matrix form:

ξk Dµk
η Z(t) = LZ(t), t ∈ (ξk, ξk+1], k = 0, 1, 2, . . . ,

Z(ξk + 0) = PkZ(ξk), k = 1, 2, 3, . . . ,

Z(t0) = Z0,

(32)

where Pk = (1 + µ1,k, 1 + µ2,k, . . . , 1 + µN,k),

L =


∑N

j=2 ℓi,j −ℓ1,2 −ℓ1,3 . . . −ℓ1,N

−ℓ2,1 ∑N
j=1,j ̸=2 ℓ2,j −ℓ2,3 . . . −ℓ2,N

−ℓ3,1 −ℓ3,2 ∑N
j=1,j ̸=3 ℓ3,j . . . −ℓ3,N

. . . . . . . . . . . . . . .
−ℓN,1 −ℓN,1 −ℓN,3 . . . ∑N−1

j=1 ℓN,j

,

and Z0 = (x0
1 − x0

0, x0
2 − x0

0, . . . , x0
N − x0

0).
Note the components of the vector Pk are deeply connected with the impulsive control

protocol; they present the amount of the instantaneous interactions between the corre-
sponding agent and the leader at the update time.

4. Main Results for the Models of Multi-Agent Systems with Impulsive
Control Protocol
4.1. Multi-Agent System without a Leader

As mentioned in Section 3.1, we consider two different models. For both of them, we
define and study impulsive Mittag–Leffler stability.

4.1.1. Model of Fractional Derivative with Variable Order

We study model (24) with a variable-order µ : [t0, ∞) → (0, 1).
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Definition 7. The CFM (24) is impulsively Mittag–Leffler stable if there exist positive numbers ξ

and Mk < ∞, k = 0, 1, 2, . . . , such that, for any initial value x0 ∈ RN , the solution x(t) of the
corresponding problem (24) satisfies the inequality

||x(t)|| ≤ Mk

{ k−1

∏
j=0

Eµ(ξ j+1)

(
−ξ(η(ξ j+1)− η(ξ j))

µ(ξ j+1)
)}

Eµ(t)

(
−ξ(η(t)− η(ξk))

µ(t)
)
||x0||,

t ∈ (ξk, ξk+1], k = 0, 1, 2, . . . .

(33)

Theorem 1. If bi < 0, i = 1, 2, . . . , N, and there exists K ∈ (0, 1] such that∣∣∣∣∣ N

∑
j=1

ai,j,k

∣∣∣∣∣+ N

∑
j=1

∣∣∣ai,j,k

∣∣∣ < K,

then CFM (24) is impulsively Mittag–Leffler stable.

Proof. Let t ∈ (ξ0, ξ1]. According to Corollary 1 with a = ξ0, b = ξ1, u0 = x0
i , and ξ = bi,

the solution to (24) is

|xi(t)| = |x0
i |Eµ(t)

(
bi(η(t)− η(ξ0))

µ(t)
)

t ∈ (ξ0, ξ1]. (34)

Let t ∈ (ξ1, ξ2]. Again, according to Corollary 1 with a = ξ1, b = ξ2, u0 = xi(ξ1 + 0), and
ξ = bi, the solution to (24) is given by

|xi(t)| = |xi(ξ1 + 0)|Eµ(t)

(
bi(η(t)− η(ξ1))

µ(t)
)

, t ∈ (ξ1, ξ2], i = 1, 2, . . . , N. (35)

lOn account of the second equation of (24) and (34) at the update time ξ1, we have

|xi(ξ1 + 0)| =
∣∣∣∣∣xi(ξ1)

N

∑
j=1

ai,j,1 −
N

∑
j=1,j ̸=i

ai,j,1xj(ξ1))

∣∣∣∣∣
≤ |x0

i |Eµ(ξ1)

(
bi(η(ξ1)− η(ξ0))

µ(ξ1)
)∣∣∣∣∣ N

∑
j=1

ai,j,1

∣∣∣∣∣+ N

∑
j=1

|ai,j,1||x0
j |Eµ(ξ1)

(
bi(η(ξ1)− η(ξ0))

µ(ξ1)
)

≤ ||x0||Eµ(ξ1)

(
bi(η(ξ1)− η(ξ0))

µ(ξ1)
)(∣∣∣∣∣ N

∑
j=1

ai,j,1

∣∣∣∣∣+ N

∑
j=1

|ai,j,1|
)

≤ ||x0||KEµ(ξ1)

(
bi(η(ξ1)− η(ξ0))

µ(ξ1)
)

.

(36)

Using (36) in (35) implies

|xi(t)| ≤ ||x0||KEµ(ξ1)

(
bi(η(ξ1)− η(ξ0))

µ(ξ1)
)

Eµ(t)

(
bi(η(t)− η(ξ1))

µ(t)
)

(37)

for any t ∈ (ξ1, ξ2] and all i = 1, 2, . . . , N.
By induction with respect to intervals, we obtain

|xi(t)| ≤ ||x0||Kk

(
k−1

∏
j=0

Eµ(ξ j+1)

(
bi
(
η(ξ j+1)− η(ξ j)

)µ(ξ j+1)
))

Eµ(t)

(
bi(η(t)− η(ξk))

µ(t)
)

,

t ∈ (ξk, ξk+1]

for k = 0, 1, 2, . . . , and all i = 1, 2 . . . , N, where b = max{bi, i = 1, 2, . . . , N} < 0.
Therefore, the system (26) is impulsively Mittag–Leffler stable with Mk = Kk ≤ 1 and

ξ = −b > 0.
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Example 1. Consider the partial case of model (26) with N = 3, t0 = ξ0 = 0, ξk+1 = ξk + 1 =
k + 1, k = 0, 1, 2, . . . , µ(t) = t+0.1

t+1 ∈ C([0, ∞), (0, 1)), η(t) = et, i.e.,

(C
k D

µ(t)
η x1)(t) = −0.86x1(t), (C

k D
µ(t)
η x2)(t) = −0.78x2(t),

(C
k D

µ(t)
η x3)(t) = −0.1x3(t),

x1(k + 0) =− 0.01(x1(k)− x2(k)) + 0.04(x1(k)− x3(k)),

x2(k + 0) =− 0.01(x1(k)− x2(k)) + 0.22(x2(k)− x3(k)),

x3(k + 0) =0.09(x3(k)− x1(k))− 0.08(x3(k)− x2(k)),

xi(0) = xi,0, i = 1, 2, 3.

(38)

The weighted connectivity matrix is

A =

 0 0.01 −0.04
0.01 0 −0.22
−0.09 0.08 0

.

Then ∣∣∣∣∣ 3

∑
j=1

a1,j,k

∣∣∣∣∣+ 3

∑
j=1

|a1,j,k| = 0.03 + 0.05 = 0.08,∣∣∣∣∣ 3

∑
j=1

a2,j,k

∣∣∣∣∣+ 3

∑
j=1

|a2,j,k| = 0.21 + 0.23 = 0.44,∣∣∣∣∣ 3

∑
j=1

a3,j,k

∣∣∣∣∣+ 3

∑
j=1

|a2,j,k| = 0.01 + 0.17 = 0.18,

(39)

i.e., K = 0.44 < 1 and Mk = 0.44k.
Then b = −0.86, ξ = 0.86 > 0.
According to Theorem 1, model (38) is impulsively Mittag–Leffler stable, i.e.,

||x(t)|| ≤ 0.44k
{ k−1

∏
j=0

E j+1.1
j+2

(−0.86(ej+1 − ej)
j+1.1
j+2 )

}
E t+0.1

t+1
(−0.86(et − ek)

t+0.1
t+1 )||x0||, (40)

for t ∈ (k, k + 1], k = 0, 1, 2, . . . . The graphs of the solutions with initial values xi,0 = 1, i =
1, 2, 3, and the bound (40) are given in Figures 1 and 2.
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Figure 1. Graph of the solutions of model (38) and the bound (40) on [1, 2].
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Figure 2. Graph of the solutions of model (38) and the bound (40) on [2, 3].

4.1.2. Model of Fractional Derivative with Piecewise Constant Order

In this case, we study model (26) with a piecewise constant order µ defined by (25).
We now define Mittag–Leffler-type stability in this case:

Definition 8. The CFM (26) is impulsively Mittag–Leffler stable if there exist numbers ξ,
Mk > 0, k = 0, 1, 2, . . . , such that for any initial value x0 ∈ RN , the solution x(t) of the
corresponding problem (26) satisfies the inequality

||x(t)|| ≤ Mk

{ k−1

∏
j=0

Eµj

(
−ξ(η(ξ j+1)− η(ξ j))

µj
)}

Eµk (−ξ(η(t)− η(ξk))
µk )||x0||,

t ∈ (ξk, ξk+1], k = 0, 1, 2, . . .

(41)

Theorem 2. Let the piecewise constant-order µ be defined by (25), bi < 0, i = 1, 2, . . . , N, and
there exists K ∈ (0, 1] such that ∣∣∣∣∣ N

∑
j=1

ai,j,k

∣∣∣∣∣+ N

∑
j=1

|ai,j,k| < K.

Then CFM (26) is impulsively Mittag–Leffler stable.

Proof. Let t ∈ (ξ0, ξ1]. According to Lemma 3 with a = ξ0, u0 = x0
i , and ξ = bi, the

solution to (26) is given by

|xi(t)| = |x0
i |Eµ0

(
bi(η(t)− η(ξ0))

µ0
)
, t ∈ (ξ0, ξ1]. (42)

Let t ∈ (ξ1, ξ2]. Again, according to Lemma 3 with a = ξ1, u0 = xi(ξ1 + 0), and ξ = bi, the
solution to (26) is given by

|xi(t)| = |xi(ξ1 + 0)|Eµ1

(
bi(η(t)− η(ξ1))

µ1
)
, t ∈ (ξ1, ξ2], i = 1, 2, . . . , N. (43)
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On account of the second equation of (26) and (42) at the update time ξ1, we have

|xi(ξ1 + 0)| =
∣∣∣∣∣xi(ξ1)

N

∑
j=1

ai,j,1 −
N

∑
j=1,j ̸=i

ai,j,1xj(ξ1))

∣∣∣∣∣
≤ |x0

i |Eµ0

(
bi(η(ξ1)− η(ξ0))

µ0
)∣∣∣∣∣ N

∑
j=1

ai,j,1

∣∣∣∣∣+ N

∑
j=1

|ai,j,1||x0
j |Eµ0

(
bi(η(ξ1)− η(ξ0))

µ0
)

≤ ||x0||Eµ0

(
bi(η(ξ1)− η(ξ0))

µ0
)(∣∣∣∣∣ N

∑
j=1

ai,j,1

∣∣∣∣∣+ N

∑
j=1

|ai,j,1|
)

≤ ||x0||KEµ0

(
bi(η(ξ1)− η(ξ0))

µ0
)
.

(44)

Using (44) in (43) implies

|xi(t)| ≤ ||x0||KEµ0

(
bi(η(ξ1)− η(ξ0))

µ0
)
Eµ1

(
bi(η(t)− η(ξ1))

µ1
)
, t ∈ (ξ1, ξ2], i = 1, 2, . . . , N. (45)

Apply induction and obtain

|xi(t)| ≤ ||x0||Kk

(
k−1

∏
j=0

Eµj

(
bi
(
η(ξ j+1)− η(ξ j)

)µj
))

Eµk

(
bi(η(t)− η(ξk))

µk
)

t ∈ (ξk, ξk+1], k = 0, 1, 2, . . . , i = 1, 2 . . . , N,

(46)

where b = max{bi, i = 1, 2, . . . , N} < 0.
Therefore, CFM (26) is impulsively Mittag–Leffler stable with Mk = Kk ≤ 1 and

ξ = −b > 0.

Example 2. Consider the partial case of model (26) with N = 3, t0 = ξ0 = 0, ξk+1 =
ξk + 1 = k + 1, µk = 0.7k+1 ∈ (0, 1), k = 0, 1, 2, . . . , η(t) = et, i.e.,

(C
k Dµk

η x1)(t) = −0.86x1(t), (C
k Dµk

η x2)(t) = −0.78x2(t),

(C
k Dµk

η x3)(t) = −0.1x3(t),

x1(k + 0) =− 0.01(x1(k)− x2(k)) + 0.04(x1(k)− x3(k)),

x2(k + 0) =− 0.01(x1(k)− x2(k)) + 0.22(x2(k)− x3(k)),

x3(k + 0) =0.09(x3(k)− x1(k))− 0.08(x3(k)− x2(k)),

xi(0) = xi,0, i = 1, 2, 3.

(47)

The weighted connectivity matrix is

A =

 0 0.01 −0.04
0.01 0 −0.22
−0.09 0.08 0

.

Then inequalities (39) hold, i.e., K = 0.44 < 1 and Mk = 0.44k.
Then b = −0.86, ξ = 0.86 > 0.
According to Theorem 2, the model (47) is impulsively Mittag–Leffler stable, i.e.,

||x(t)|| ≤ 0.44k
{ k−1

∏
j=0

E0.7j+1(−0.86(ej+1 − ej)0.7j+1
}

E0.7k+1(−0.86(et − ek)0.7k+1
)||x0||,

t ∈ (k, k + 1], k = 0, 1, 2, . . . .

(48)

The graphs of the solutions of model (47) with initial values xi,0 = 1, i = 1, 2, 3, and the
bound (48) are given in Figures 3 and 4.
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Figure 3. Graph of the solutions of model (47) and the bound (48) on [1, 2].
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Figure 4. Graph of the solutions of model (47) and the bound (48) on [2, 3].

Remark 6. Note that if a multi-agent model without a leader is impulsive Mittag–Leffler stable,
then the norm of the state of any agent approaches zero over time.

Remark 7. In the partial case µk = µ, k = 1, 2, . . . , N and µ(t) ≡ µ, the results of Theorems 1
and 2 coincide, and the result gives sufficient conditions for the model with a constant fractional
derivative.

4.2. Multi-Agent System with a Leader

We obtain the explicit solution of the linear impulsive system (32).

Lemma 7. Let the piecewise constant-order µ be defined by (25). The solution of system (32) is
given by

Z(t) = Eµk

(
L(η(t)− η(ξk))

µk
)( k−1

∏
j=0

Pk−jEµk−j−1

(
L
(

η(ξk−j)− η(ξk−j−1)
)µk−j−1

))
Z0,

t ∈ (ξk, ξk+1], k = 0, 1, 2, . . . .

(49)

Proof. Let t ∈ [t0, ξ1]. By Lemma 4 with a = t0, b = ξ1, A = L, U0 = Z0, we obtain

Z(t) = Eµ0

(
L(η(t)− η(t0))

µ0
)
Z0.

Therefore,
Z(ξ1 + 0) = P1Z(ξ1) = P1Eµ0

(
L(η(ξ1)− η(t0))

µ0
)
Z0.
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Let t ∈ (ξ1, ξ2]. Applying Lemma 4 with a = ξ1, b = ξ2, A = L, U0 = Z(ξ1 + 0) gives

Z(t) =Eµ1

(
L(η(t)− η(ξ1))

µ1
)
Z(ξ1 + 0)

=Eµ1

(
L(η(t)− η(ξ1))

µ1
)

P1Eµ0

(
L(η(ξ1)− η(t0))

µ0
)
Z0, t ∈ (ξ1, ξ2].

(50)

By induction, applying Lemma 4 with a = ξk, A = L, U0 = Z(ξk + 0), we get

Z(t) = Eµk

(
L(η(t)− η(ξk))

µk
)

PkEµk−1

(
L(η(ξk)− η(ξk−1))

µk−1
)

. . .

× P1Eµ0

(
L(η(ξ1)− η(ξ0))

µ0
)
U0, t ∈ (ξk, ξk+1].

(51)

Definition 9. CFM (30) achieves leader-following consensus if limt→∞ |xi(t)− x0(t)| = 0 for all
i = 1, 2, . . . , N.

Theorem 3. Let the piecewise constant-order µ be defined by (25) and the number ρ ∈ (0, 1) be
such that the inequalities

||Pk+1Eµk

(
L(η(ξk+1)− η(ξk))

µk
)
|| ≤ ρ < 1, k = 0, 1, 2, . . . ,

hold, where Pk = ((1 + µ1,k), (1 + µ2,k), . . . , (1 + µN,k)), k = 1, 2, . . . .
Then CFM (30) achieves the leader-following consensus.

Proof. Denote the solution of (30) or its equivalent (32) by Z. According to Lemma 7, we
obtain

||Z(t)||

≤ ||Eµk

(
L(η(t)− η(ξk))

µk
)
||2
( k−1

∏
j=0

||Pk−jEµk−j−1

(
L
(

η(ξk−j)− η(ξk−j−1)
)µk−j−1

)
||
)
||Z0||

≤ ρk||Eµk

(
L(η(t)− η(ξk))

µk
)
||2 ||Z0||, t ∈ (ξk, ξk+1], k = 0, 1, 2, . . . .

(52)

Using that, for t → ∞, we have k → ∞ and ρk → 0. Then from (52), it follows that model
(30) achieves the leader-following consensus.

Example 3. Let the piecewise constant order be given by

µ(t) =

{
0.3, if t ∈ (2k, 2k + 1], k = 0, 1, 2, . . . ,
0.8, if t ∈ (2k + 1, 2k + 2], k = 0, 1, 2, . . . .

(53)

Consider the partial case of model (30) with N = 3, ξ0 = t0 = 0, ξk+1 = ξk + 1 = k + 1, k =
0, 1, 2, . . . , η(t) ≡ t

(C
k D

µ(t)
η x1)(t) = 0.09(x1(t)− x2(t)),

(C
k D

µ(t)
η x2)(t) = 0.1(x2(t)− x1(t)) + 0.1(x2(t)− x3(t)),

(C
k D

µ(t)
η x3)(t) = 0.5(x3(t)− x2(t)) + 0.3(x3(t)− x1(t)),

(C
k D

µ(t)
η x0)(t) = 0, t ∈ (ξk, ξk+1], k = 0, 1, 2, . . . ,

x1(k + 0) = x1(k)− 0.7(x1(k)− x0(k)),

x2(k + 0) = x2(k)− 1.3(x2(k)− x0(k)),

x3(k + 0) = x3(k)− 0.9(x3(k)− x0(k)),

x0(k + 0) = x0(k),

xi(0) = x0
i , i = 0, 1, 2, 3.

(54)
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In this case Pk = (0.3,−0.3, 0.1), and

L =

 0.09 −0.09 0
−0.1 0.2 −0.1
0.3 −0.5 0.2

.

Then we get for all k = 0, 1, 2, . . .

||PkEµk

(
L(η(ξk+1)− η(ξk))

µk
)
|| = ||PkEµk (L)||

≤ max{0.467346, 0.317722} < 0.47 = q < 1.

According to Theorem 3, CFM (54) achieves a leader-following consensus, i.e.,

lim
t→∞

|xi(t)− x0(t)| = lim
t→∞

|xi(t)− x0
0| = 0,

for i = 1, 2, 3.
Consider the case without impulsive control protocol, i.e., there is leader that interacts with the

agents instantaneously at update times, i.e., consider the model

C
k D

µ(t)
η x1(t) = 0.9(x1(t)− x2(t)),

C
k D

µ(t)
η x2(t) = 0.1(x2(t)− x1(t)) + 0.1(x2(t)− x3(t)),

C
k D

µ(t)
η x3(t) = 0.5(x3(t)− x2(t)) + 0.3(x3(t)− x1(t)), t ∈ (ξk, ξk+1], k = 0, 1, 2, 3, . . . ,

xi(0) = x0
i , i = 1, 2, 3.

(55)

As a partial case of Lemma 7 with Pk = (1, 2, . . . , 1), the explicit solution to (55) is

Z(t) = Eµk

(
L(η(t)− η(ξk))

µk
)(

∏k−1
j=0 Eµk−j−1

(
L
(

η(ξk−j)− η(ξk−j−1)
)µk−j−1

))
Z0, where

Z = (x1(t), x2(t), . . . , xN(t))). In this case, ||Eµk

(
L(η(ξk)− η(ξk+1))

µk
)
||2 > 1 and we cannot

apply Theorem 3 to conclude the consensus. Thus, the impulsive interaction of the leader can cause
consensus in the multi-agent system.

Remark 8. Note that in the partial case η(t) ≡ t and µk = µ, k = 1, 2, . . . , N or µ(t) ≡ µ,
the studied models are reduced to the models with Caputo fractional derivatives, and the results of
Theorems 1–3 give results for the classical fractional models.

5. Conclusions

Multi-agent systems are studied wherein the dynamics of the agents are modeled by
fractional derivatives of Caputo type with variable order. To be more specific, we apply
the Caputo fractional derivative with respect to another function. The main characteristic
of the studied multi-agent systems is the impulsive control protocol, i.e., the information
exchange between agents occurs instantaneously only at fixed update times. This leads
to an impulsive model with a variable-order Caputo fractional derivative with respect to
another function. We consider the case without a leader as well as the case with a leader.
In the case without leader, we define impulsive Mittag–Leffler stability and study it. In
the case with a leader in the system, we obtain sufficient conditions for leader-following
consensus via impulsive control based on the leader’s influence. The theoretical results
are illustrated with some examples. Note the obtained results for the considered fractional
impulsive differential equations could be additionally applied to study different types
of models.
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