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Abstract: In this paper, we consider the time-fractional Black–Scholes model with deterministic,
time-varying coefficients. These time parametric constituents produce a model with greater flexibility
that may capture empirical results from financial markets and their time-series datasets. We make
use of transformations to reduce the underlying model to the classical heat transfer equation. We
show that this transformation procedure is possible for a specific risk-free interest rate and volatility
of stock function. Furthermore, we reverse these transformations and apply one-dimensional optimal
subalgebras of the infinitesimal symmetry generators to establish invariant solutions.
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1. Introduction

The Black–Scholes (B-S) equation commonly models the fair price for a put or call
option based on strike price, underlying stock price, volatility, type of option, time, and
risk-free rate [1,2]. Mathematically, the model originates from a stochastic differential
equation [3]; however, this model is often criticized for the assumption that the under-
lying volatility and the risk-free interest rate are constant over time, as well as other
deficiencies [4]. The obvious way to counter this problem is to introduce an improved
model with time parameters to capture the time-sensitivity of price dynamics. In particular,
the B-S model with time-dependent parameters plays a crucial role in quantitative finance,
since time-dependent volatility influences investment expectations [5]. Several authors, for
example, [6,7], have dealt with implementing a time-dependent volatility function.

Fractional Brownian motion (FBM)-based models are the backbone of recent modelling
trends. These models are preferred as they exhibit self-similarity characteristics and long-
range dependence [8–11]. Moreover, arguments by [12–15] convey that the time-fractional
B-S equation is well defined as the limit tends to 1, in cohesion with the integer-order
B-S model.

Taking into account the above discussion, the B-S model with time-dependent param-
eters may be expressed as a fractional version, viz.,

∂αV
∂tα

+
σ2(t)S2

2
∂2V
∂S2 = r(t)

(
V − ∂V

∂S
S
)

0 < α < 1. (1)

where V(S, t) is the value of the option, S is the stock price, t is time, r(t) is the risk-free
interest rate, and σ(t) is the volatility of the stock, with the assumption that the European
option on an underlying stock pays no dividends [1,3,16]. The parameter α is the order
of the fractional derivative and α = 1 represents the traditional local integer derivative.
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Such a model contains differentiable functions of time and has the potential to yield greater
insights into the underlying instrument for a market’s viewpoint.

This study is the first of its kind. In [17], a general fractional bond equation was
considered that had no connections to the B-S model. Moreover, the model in [17] had
constant coefficients. In this study, the model possesses functions dependent on time and it
is a famous version of the B-S equation. Therefore, we have designed new transformations
to tackle this problem.

Furthermore, in [17] we chose to transform the model to a fractional-order equation
for further analysis, whereas here, we showcase how it is possible to transform a different
model into an integer-order model. Hence, this paper has a novel approach with original
transformations for a model that has not been studied before under these contexts, and of
course, all solutions presented are new.

In the ancient era, human civilizations possessed far-reaching ideas about geometry
and transformations. One of the first geometric transformations was that of the superpo-
sition principle, or in layman’s terms, placing one figure on another—this later became
an axiom of Euclid. With fractional differential equations (FDEs), solution techniques are
analogous to classical differential equations. A range of methods exist, and the mathemati-
cal structures required in investigations relating to FDEs are endless, but many methods
involve transformations of some kind, either those that reduce to an integer-order equation
or a reduction to one of fractional order [18–22]. Several notable and recent applications of
FDEs can be seen in the literature: the method of separation of variables for some FDEs [23],
a Zoomeron equation’s solutions [24], and families of second-order numerical results were
investigated [25].

The techniques applied centre around Lie symmetries, which it is now possible to use for
FDE analysis [26–29], with fascinating applications [30,31]. Secondly, we use a lesser-known
technique, from the renowned work of Lie’s classification of second-order partial differential
equations (PDEs) [32], that is, Lie’s approach to deriving equivalence transformations.

FDEs are essential components in mathematics, and hence, the field of its study
is rapidly expanding. The main reasons for its growing importance is that it models
intermediate evolutionary behaviour, especially that of a time-fractional nature. FDEs
are known to be free from memory effects that plague integer-order equations and many
processes are now capable of inculcating not just instantaneous time but also historical time.

Since FDEs are non-local, their exact solutions are difficult to find. This has posed
new challenges to researchers whereby new approaches must be conceived. In particular,
there is a great need for understanding transformations of FDEs. The inceptions of many
transformations in FDE analysis are an attempt to change derivatives to the integer type,
and the reason is obvious—there are numerous well-defined analytic methods, that include
the conventional Leibnitz and chain rule, that classical integer-order derivatives obey. This
investigation is, therefore, of major significance where we have successfully developed an
effective approach to study FDEs of type (1), by finding new transformations to simplify a
complicated model with time dependency parameters.

The focus of this paper is categorized into two parts: firstly, to derive and prove the
existence of new equivalence formulae that render Equation (1) into a classical heat transfer
equation (HTE). Our procedure requires a careful construction of transformations. The
second part invokes the establishment of detailed proofs, whereby exact solutions to the
model are presented. To enhance our theory, graphical plots are given that exemplify a
highly recommended approach to studying financial models.

In Section 2, we introduce the basic theory behind this study. Section 3 contains the
variable changes required to alter the fractional B-S model with time-dependent parameters,
into the HTE. Some symmetry properties of the HTE and the main results appear in
Section 4, whereby we provide symmetry-generated solutions of the time-dependent
model and an insightful discussion of the obtained solutions. Finally, we conclude in
Section 5.
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2. Preliminaries

It should be noted that we have the underlying assumption that the fractional deriva-
tive is a Riemann–Liouville derivative.

RDα
t u(t, x) =

1
Γ(n − α)

∂n

∂tn

∫ t

0
(t − τ)n−α−1u(τ, x)dτ, (2)

for α as any positive real number and n a natural number such that n − 1 ≤ α < n.

Point Symmetry Calculations

In general, a symmetry is a transformation, mapping all solutions of a given equation
to another solution of the very same equation. Consider the variables ua, α = 1, . . . , q
dependent on xi, i = 1, . . . , p. Suppose that

Mα(x, u(k)) = 0, (3)

is a system of nonlinear differential equations, where u(k) represents the kth derivative of
u with respect to x. A one-parameter Lie group of transformations with ε as the group
parameter, invariant under (3), is defined as

x̄ = Ξ(x, u; ε) ū = Φ(x, u; ε). (4)

Invariance of (3) under the transformation (4) dictates that any solution u = Θ(x) of (3)
maps into another solution v = Ψ(x; ε) of (3). The expansion of (4) around the identity
ε = 0, generates the following transformations:

x̄i = xi + εξ i(x, u) + O(ε2), (5)

ūα = uα + εηα(x, u) + O(ε2). (6)

The Lie group action is collected from the infinitesimal generators acting on the space of vari-
ables (dependent and independent). Thus, we assume the following symmetry generator:

Z = ξ i(x, u)∂xi + ηα(x, u)∂uα . (7)

The invariance criterion reads as follows:

Z[Mα(x, u(k))] = 0, when Mα(x, u(k)) = 0, (8)

where Z is an appropriate prolonged expression on all derivatives of the equation. The
operator in Equation (7) defines a Lagrange system or characteristic equation

dxi

ξ i =
duα

ηα
,

whereby we find the zero-order invariant functions

W [0](xi, uα). (9)

3. New Equivalence Transformations

We provide consecutive transformations that render the time-dependent model (1) into
the famous and classical HTE. It turns out that this is possible for particular functions of
the time-dependent parameters and not in general for arbitrary functions [33]. The specifi-
cations of the time-varying parameters r and σ are

r(t) =
1

2t2 , (10)
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σ(t) =
1
t

. (11)

In [34], the authors considered r(t) = (1/2)σ2 with σ = 1
t (see [34] pg. 2, Equation (2)).

This is precisely our choice for r(t) and σ(t) in (10) and (11), and we confirm that it is a
special case of interest. However, it may be possible to first transform the original model to
another form that would allow for different choices of r(t) and σ(t). For the purpose of
this study, we opt to consider only the original B-S model with specific time coefficients,
and other modifications of (1) may be presented elsewhere in the future.

Theorem 1. The model Equation (1) is reducible to the classical HTE:

∂ω

∂t̂
− ∂2ω

∂y2 = 0, ω(y, t̂). (12)

under the parameter settings (10) and (11), and where

t̂ = − tα

Γ(1 + α)
, (13)

y = −
√

2 ln (S)t̂. (14)

Proof. The independent variables are subjected to the above invertible change of variables,
and if the latter is a fractional complex transform [35], Equation (1) reduces to the form

a(y, t̂)
∂V
∂y

+ c(y, t̂)V +
∂V
∂t̂

− ∂2V
∂y2 = 0, (15)

where V = V(y, t̂), a(y, t̂) =
y
t̂

, and c(y, t̂) =
1

2t̂2 .

Thereafter, under a second transformation,

V(y, t̂) = ω(y, t̂) · e−ϕ(y,t̂), (16)

where

ϕ(y, t̂) = −y2

4t̂
− 1

2t̂
− ln |t̂|

2
, (17)

Equation (1) is converted to the classical HTE.

These transformations are unique to the specific fractional B-S model with time-
dependent coefficients. However, it is possible to extend our approach to other differential
equations, fractional or integer, under certain prerequisites. That is, the equation must
be a parabolic equation, as is Equation (1), and secondly, the transformations must exist.
We find that not all parabolic equations are transformable to a simple model like the heat
equation—it often requires some ingenuity to conceive a transformation, and thereafter,
test that it works.

4. Solutions

This section has two parts to it: firstly, we list the symmetry features that are needed
for the classical HTE, in order to proceed with our analysis. Finally, we prove theorems
about the solutions of the time-dependent model (1).

4.1. The Heat Transfer Equation

The HTE admits a fundamental solution in terms of the Gaussian function and many
studies of parabolic PDEs involve the HTE [36,37]. The HTE offers many benefits, but
primarily, we focus on its symmetry properties.
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The Lie point symmetries of (12) are well known. They are

Z1 =
∂

∂y
, Z2 =

∂

∂t̂
, Z3 = ω

∂

∂ω
, Z4 = y

∂

∂y
+ 2t̂

∂

∂t̂
,

Z5 = 2t̂
∂

∂y
− yω

∂

∂ω
, Z6 = 4t̂y

∂

∂y
+ 4t̂2 ∂

∂t̂
− (y2 + 2t̂)ω

∂

∂ω
,

Zβ = β(y, t̂)
∂

∂ω
, (18)

where β is an arbitrary solution of the HTE, i.e., β t̂ = βyy.
The symmetries Z1 − Z6 form a 6-dimensional Lie algebra, with Zβ spanning an

infinite-dimensional subalgebra. The Lie brackets, given by

[Zi, Zj] = ZiZj − ZjZi,

are presented in Table 1.

Table 1. Lie brackets for the symmetries of (12).

[, ] Z1 Z2 Z3 Z4 Z5 Z6

Z1 0 0 0 Z1 −Z3 Z5

Z2 0 0 0 2Z2 2Z1 4Z4 − 2Z3

Z3 0 0 0 0 0 0

Z4 −Z1 −2Z2 0 0 Z5 2Z6

Z5 Z3 −2Z1 0 −Z5 0 0

Z6 −Z5 2Z3 − 4Z4 0 −2Z6 0 0

The optimal system of one-dimensional subalgebras is the symmetry combinations that
provide a systematic procedure for constructing nonequivalent classes of invariant solutions.

A discussion for obtaining a one-dimensional optimal system is provided in [38]. One
takes a general element from the Lie algebra, and then, reduces it to its simplest form by
applying carefully chosen adjoint transformations (Table 2):

Ad(exp(εZi))Zj = Zj − ε[Zi, Zj] +
1
2

ε2[Zi, [Zi, Zj]]− · · · . (19)

Table 2. Adjoint representation of subalgebras of (18).

Ad Z1 Z2 Z3 Z4 Z5 Z6

Z1 Z1 Z2 Z3 Z4 − εZ1 Z5 + εZ3 −2εZ5 + Z6 − ε2Z3

Z2 Z1 Z2 Z3 Z4 − 2εZ2 Z5 − 2εZ1 Z6 + 2εZ3 + 4ε2Z2 − 4εZ4

Z3 Z1 Z2 Z3 Z4 Z5 Z6

Z4 eεZ1 e2εZ2 Z3 Z4 e−εZ5 e−2εZ6

Z5 Z1 − εZ3 2εZ1 + Z2 − ε2Z3 Z3 Z4 + εZ5 Z5 Z6

Z6 Z1 + 2εZ5 Z2 − 2εZ3 + 4εZ4 + 4ε2Z6 Z3 Z4 + 2εZ6 Z5 Z6

The optimal system for the HTE is given by the following five cases (b ∈ R):

Z4 + 2bZ3, Z1, Z2 + bZ3, Z2 − Z5, Z2 + Z6 + bZ3.

The invariant solutions pertaining to these cases, labelled A–E, are discussed below.
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4.1.1. Solution A

Under the symmetry Z4 + 2bZ3, we prove the underlying theorem.

Theorem 2. The time-dependent fractional B-S Equation (1) admits the exact solution

V(S, t) =
√

2 ln(S)tα

√
tα

Γ(1 + α)
e−

t−αΓ(1+α)
2

(
− tα

Γ(1 + α)

)− 1
2+b

(
M
(

1 + b, 3
2 ,− tα ln(S)2

2Γ(1+α)

)
C1 + U

(
1 + b, 3

2 ,− tα ln(S)2

2Γ(1+α)

)
C2

)
Γ(1 + α)

.

(20)

Proof. The symmetries of this case yield invariants m = y 1√
t̂

and ω(y, t̂) = z(m)t̂b. Hence,
the HTE is reduced to

z′(m)m
2

− z(m)b + z′′(m) = 0.

We solve the above to determine that the exact solution of (12) is

ω(y, t̂) = e−
y2

4 t̂

(
t̂

y2

)b− 1
2
(

U
(

b + 1,
3
2

,
y2

4 t̂

)
C2 + M

(
b + 1,

3
2

,
y2

4 t̂

)
C1

)
y2 b, (21)

where U(µ, ν, z) and M(µ, ν, z) are Kummer functions.
Hence, the proof concludes upon the application of Theorem 1’s reversible transfor-

mations, viz., (13), (14), (16), and (17).

4.1.2. Solution B

By applying the symmetry Z1, we prove the underlying theorem.

Theorem 3. The time-dependent fractional Black–Scholes Equation (1) admits the invariant solution

V(S, t) = C1

√
tα

Γ(1 + α)
e−

t−αΓ(1+α)2+tα ln(S)2

2Γ(1+α) . (22)

Proof. Now, the symmetries of this case yield invariants m = t and ω(y, t̂) = z(m). Hence,
the HTE is reduced to

z′(m) = 0.

We solve the reduced equation and this case provides the solution of (12) as

ω(y, t̂) = C1, (23)

where C1 is an arbitrary constant. Thereafter, analogous to the previous case, the proof
concludes upon application of Theorem 1’s reversible transformations, viz., (13), (14), (16),
and (17).
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4.1.3. Solution C

By applying the symmetry Z2 + bZ3, we prove the underlying theorem.

Theorem 4. The time-dependent fractional Black–Scholes Equation (1) admits the invariant solution

V(S, t) =

(
e

−t−αΓ(1+α)2−2tα
(
√

b
√

2 ln(S)+ ln(S)2
2 +b

)
2Γ(1+α) C2

+e

−t−αΓ(1+α)2−2

(
−
√

b
√

2 ln(S)+ ln(S)2
2 +b

)
tα

2Γ(1+α) C1

)

×
√

tα

Γ(1 + α)
, (24)

for b ̸= 0, and

V(S, t) =

√
tα

Γ(1+α)
e−

ln(S)2tα+t−αΓ(1+α)2

2Γ(1+α)

(
C1

√
2 tα ln(S) + C2Γ(1 + α)

)
Γ(1 + α)

, (25)

for b = 0.

Proof. Here, we have the invariants m = y and ω(y, t̂) = z(m)ebt. Hence, the HTE is
reduced to

z(m)b − z′′(m) = 0.

This linear combination of symmetries yields an exact solution of the HTE (12) as

ω(y, t̂) =
(

C1 e
√

by + C2 e−
√

by
)

ebt̂. (26)

For b ̸= 0, with C1 = C2 = 1
2 , we have

ω(y, t̂) = ebt̂ cosh (
√

by), (27)

and for b = 0, we have
ω(y, t̂) = C1 y + C2. (28)

Thus, the proof concludes upon application of Theorem 1’s reversible transformations,
(13), (14), (16), and (17).

4.1.4. Solution D

Under the symmetry combination Z2 − Z5, we prove the underlying theorem.

Theorem 5. The time-dependent fractional Black–Scholes Equation (1) admits the invariant solution

V(S, t) = S
− t2α√2

Γ(1+α)2

√
tα

Γ(1 + α)
e
− 3t−αΓ(1+α)4+3 ln(S)2Γ(1+α)2tα+4t3α

6Γ(1+α)3 ×(
C1 Ai

(
tα
√

2 ln(S)Γ(1 + α) + t2α

Γ(1 + α)2

)
+ C2Bi

(
tα
√

2 ln(S)Γ(1 + α) + t2α

Γ(1 + α)2

))
.

(29)

Proof. Now, the symmetries of this case yield invariants m = t̂2 + y and

ω(y, t̂) = z(m)eyt̂+ 2 t̂3
3 .



Fractal Fract. 2024, 8, 269 8 of 16

Hence, the HTE is reduced to
m z(m)− z′′(m) = 0.

That is, we solve the reduced equation so that an application of the invariants of this
subalgebra produces the exact solution of Equation (12) as

ω(y, t̂) =
(

C1 Ai
(

t̂2 + y
)
+ C2 Bi

(
t̂2 + y

))
eyt̂+ 2 t̂3

3 , (30)

where Ai(z) and Bi(z) are the Airy Ai and Airy Bi functions, respectively.
Next, the proof concludes upon application of Theorem 1’s reversible transformations,

viz., (13), (14), (16), and (17).

4.1.5. Solution E

The final case, Z2 + Z6 + bZ3, yields the following result.

Theorem 6. The time-dependent fractional Black–Scholes Equation (1) admits the invariant solution

V(S, t) = 2
3
4

√
tα

Γ(1 + α)
e

4c

(
Γ(1+α)2

4 +t2α

)
arctan

(
t−αΓ(1+α)

2

)
−(t−αΓ(1+α)2+tα(ln(S)2+4))Γ(1+α)

8t2α+2Γ(1+α)2

×

(
C1M̄ I

4 c, 1
4

(
2 It2α ln(S)2

4t2α+Γ(1+α)2

)
+ C2W̄ I

4 c, 1
4

(
x 2 It2α ln(S)2

4t2α+Γ(1+α)2

))
2
√

tα ln(S)
Γ(1+α)

.

(31)

for b ̸= 0, and

V(S, t) =
2

5
4

√
tα

Γ(1+α)
e
−Γ(1+α)3t−α−Γ(1+α)tα(ln(S)2+4)

2Γ(1+α)2+8t2α√
t−2αΓ(1+α)2+4

ln(S)2

√
tα ln(S)
Γ(1+α)

×
(

J

(
−1

4
,

t2α ln(S)2

Γ(1 + α)2 + 4t2α

)
C1 + Y

(
−1

4
,

t2α ln(S)2

Γ(1 + α)2 + 4t2α

)
C2

)
,

(32)

for b = 0.

Proof. The symmetries of this case yield invariants m = 4 t̂2+1
4 y2 and

ω(y, t̂) = z(m)e
y2

8 t̂2+2

(
−

b(4 t̂2+1)
y2 arctan( 1

2 t̂ )−2 t̂

)
1
√

y
.

Hence, the HTE is reduced to(
−1

4
+ mb − 3 m2

)
z(m)− 16 m4z′′(m)− 32 m3z′(m) = 0.

We may solve the above ordinary differential equation, and hence, this subalgebra
gives us the exact solution of Equation (12), that is,

ω(y, t̂) =

(
C1 M̄ i

4 b, 1
4

(
iy2

4 t̂2+1

)
+ C2 W̄ i

4 b, 1
4

(
iy2

4 t̂2+1

))
√

y
e

1
8 t̂2+2

((−4 t̂2−1)b arctan( 1
2 t̂ )−2 t̂y2), (33)

where W̄µ,ν(z) and M̄µ,ν(z) are Whittaker functions, for b ̸= 0.
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When b = 0, we have

ω(y, t̂) =

C1 · J
(
− 1

4 , y2

2·(4·τ2+1)

)
√

4·τ2+1
4·y2

+
C2 · Y

(
− 1

4 , y2

2·(4·τ2+1)

)
√

4·τ2+1
4·y2

 · e−
2·y2 ·τ
8·τ2+2
√

y
, (34)

where J(µ, z) and Y(µ, z) are Bessel functions.
Once again, the proof concludes upon application of Theorem 1’s reversible transfor-

mations, viz., (13), (14), (16), and (17).

4.2. Graphical Analysis of Solutions

Symmetry combinations B and D, Figures 1 and 2 , display similar behaviour to each
other across both asset price, S, and time, t. For small values of fixed asset price S, the
solutions for option values display growth. As α approaches 1, these solutions experience
accelerated growth rates. However, for sufficiently large values of asset price S, all functions
decay and tend to zero over time. Regarding fixed-time behaviour, as α approaches 1, the
solutions rapidly approach a minimum, reflecting the nature of options that typically
mature within a year or two, with drastic stock price increases being uncommon. On the
other hand, the solutions in symmetry combinations A and C, Figures 3–5, exhibit similar
behaviour. As α approaches 1, these solutions tend to zero for fixed-time cases. Overall,
symmetry combinations A and C exhibit solutions with global maximums. Notably, for
both fractional and integer α, solutions in symmetry combination A become negative when
the asset price is less than 1, followed by an increase until becoming positive. Symmetry
combination E, when the parameter b = 0 (Figure 6) displays positive and negative option
values for varying asset price ranges. Despite being unexpected, negative values are
prevalent in some markets, such as the U.S. Treasury markets [39], and may indicate market
frictions and imperfections. Remarkably, higher orders of α result in higher option values
over time.

(a) (b)

Figure 1. Cont.
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(c)

Figure 1. In (a), the graph of Equation (22), when C1 = 1 and t = 1. In (b), the 2D contours
corresponding to (22), when C1 = 1 and S = 1. Lastly, in (c), the 3D plot of (22), when C1 = 1 and
α = 1

4 .

(a) (b)

(c)

Figure 2. In (a), the graph of Equation (29), when C1 = C2 = 1 and t = 1. In (b), the 2D contours
corresponding to (29), when C1 = C2 = 1 and S = 1. Lastly, in (c), the 3D plot of (29), when
C1 = C2 = 1 and α = 1

4 .
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(a) (b)

(c)

Figure 3. In (a), the graph of Equation (20), when C1 = 1, C2 = 0, t = 1, and b = 1
2 . In (b), the 2D

contours corresponding to (20), when C1 = 1, C2 = 0, S = 1, and b = 1
2 . Lastly, in (c), the 3D plot

of (20), when C1 = 1, C2 = 0, α = 1
4 , and b = 1

2 .

(a) (b)

Figure 4. Cont.
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(c)

Figure 4. In (a), the graph of Equation (24), when C1 = C2 = 1, t = 1, and b = 1. In (b), the 2D
contours corresponding to (24), when C1 = C2 = 1, S = 1, and b = 1. Lastly, in (c), the 3D plot of (24),
when C1 = C2 = 1, α = 1

4 , and b = 1.

(a) (b)

(c)

Figure 5. In (a), the graph of Equation (25), when C1 = C2 = 1, t = 1, and b = 0. In (b), the 2D
contours corresponding to (25), when C1 = C2 = 1, S = 1, and b = 0. Lastly, in (c), the 3D plot of (25),
when C1 = C2 = 1, and α = 1

4 .
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(a) (b)

(c)

Figure 6. In (a), the graph of Equation (32), when C1 = C2 = 1 and t = 1. In (b), the 2D contours
corresponding to (32), when b = 0, C1 = C2 = 1, and S = 2. Lastly, in (c), the 3D plot of (32), when
b = 0, C1 = C2 = 1, and α = 1

4 .

4.3. Remarks about the Transformations

Nearly every paper on FDEs encodes some type of transformation in its method. It is
true that transformations, either to an integer equation or a fractional one, may result in
a potential loss of information or altered behaviours. Conversely, some transformations,
especially from symmetries, often lead to a gain in information via the emergence of new
solutions—a major and powerful advantage.

Not all transformations are equal. The least desirable transformations are approximate
ones, where a loss of information is guaranteed. Transformations that also cause a loss
of differentiability or invertibility often obscure many features of the original equation.
Transformations that affect stability properties are also unwanted. Bearing this in mind,
our chosen transformations are of the best type to obtain accurate and meaningful results:

• The transformations are exact and provide equivalence relations.
• Theorem 1 describes a reversible change of variables that by design mandates the

preservation of many dynamics of the original equation.
• By this invertibility, we can uniquely recover the original equation from the trans-

formed one.
• In demonstrating the appropriateness of our transformation, we know that several

analytical properties of the original FDE, such as linearity and causality, are retained
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by (12), thereby ensuring that important characteristics of the model are captured in
the transformed equation.

• The transformations leveraged here are consistent with established fractional calculus
modus operandi.

Like with any mathematical approach, potential limitations exist. The change of
variables can and has altered the appearance of solutions often expressed in terms of
different functions, and the solutions may have different geometric interpretations. The
chosen transformations will induce various changes in the behaviour of solutions. Any
singular behaviour in the original form of the model, due to non-smoothness, may be
lost by a conversion to an integer model. It is possible that converting to integer-order
derivatives may overlook some fractional properties of the model.

By careful consideration, many of the above problems are mitigated by the follow-
ing factors.

• It can be shown numerically that (12) is consistent with its fractional version via a
limiting process, where, as the fractional order approaches an integer value, the FDE
converges to integer order. Notably, the same behaviour is accurately displayed by
the solutions to the original model, viz., as the fractional order approaches an integer
value, the FDE (1) converges to its integer-order counterpart. This can also be shown
via an Itô process [12].

• Approximate methods cause a deficiency in preserving non-local effects. On the
contrary, exact methods (like ours) contain essential information about long-range
dependencies.

• The numerical simulations conducted exhibit solutions, confirming intricate temporal
dependencies which strongly imply the memory effects are accounted for.

• One can compare the solutions for the integer model versus the fractional and look for
essential differences in behaviour. The slower decay and expansion rates observed for
the option values are indicative of the usual fractional dynamics, thereby conveying
the validity and accuracy of the resulting solutions

We can tailor a transformational approach to pursue a desired analytical requirement
for a given model. That is, we could have transformed (1) to a fractional version of (12)
without any difficulty. This would result in fewer solutions and some different ones,
because the symmetry properties of a fractional heat equation are only four dimensional.
This flexibility in the choice of transformations is to be celebrated as the advantages of such
a construction far outweigh any potential drawbacks.

5. Conclusions

Traditional B-S models have been cast aside in favour of generalized models permitting
parameters with differentiable functions of time. The latter display more accurate pricing
in mature markets linked to financial instruments with futures and options. We have
demonstrated that transformations exist to render the parametric coefficient model to the
classical HTE, which is rich in symmetry. The main idea for such an approach is to exploit
the convenient relationships connected to the heat equation. Namely, we have solved the
B-S equation under the specification of time-varying parameters, r(t) the risk-free interest
and σ(t) the volatility of the stock, given by (10) and (11).

The underlying assumption of the model is that the interest rate and volatility decline
with time. In fact, as t → ∞, both factors tend to zero, with the interest rate declining
faster than volatility. Studying Equation (1) resulted in five variants of solutions. These
solutions are created from the chosen symmetry combinations given by an optimal system
of one-dimensional Lie algebras. This analysis shows that transformations provide an
effective tool to simplify complicated models, and thus, enhance the solution process.

Equation (1) has critical applications in the mathematics of finance and in particular
from a symmetry perspective [34,40]. This equation is widely accepted as being more
realistic than the original B-S model with a constant risk-free rate and volatility, as these



Fractal Fract. 2024, 8, 269 15 of 16

parameters, in real-world scenarios, are influenced by market forces and do not remain
static for long periods.

Conventionally, local (integer) derivatives capture many memory effects and the
discovery of a fractional derivative regime allows for measures of extreme asset price
movements and repeated patterns in financial structures. Equation (1) is based on FBM,
and hence, describes the dynamic characteristics of financial markets more accurately
than a classical equation based on standard Brownian motion. In fact, extensive research
evidence has shown [10] that integer derivative models do not reflect the reality of the
financial market. According to empirical evidence, most traded assets’ returns exhibit
memory structures; see [9] and references therein. Memory problems in the valuation of
derivative instruments have long been documented in data such as stock prices, forex rates,
equity prices, etc. [8]. Today, the need for fractional models is imperative.

Equation (1)’s main application is to evaluate when to hedge an option by selling
or buying some asset at an opportune time where the risk is minimized. This opportune
time cannot be influenced by memory effects, therefore, solutions to Equation (1) offer an
improved prediction of the mathematical evolution of option pricing and asset valuation.

There is a marked difference in all our solutions for the integer case α = 1 versus the
fractional solutions 0 < α < 1, showing more precision for the latter fractional case. We
find that the option’s price predicted by the fractional model is closely approximated to the
observed price in the integer case for fixed time. A major deviation is seen in option values
over time when stock price is fixed in the fractional model as compared to the integer case.

In further applications, the solutions found here may be used to explain the dynamics
of complex price progressions and irregular increments in variables of financial instruments.
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