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Abstract: In order to better understand the biogeochemical cycle of nitrogen in meromictic lakes,
which can serve as a model for past aquatic environments, we measured dissolved concentrations
of nitrate, nitrite, ammonium, and organic nitrogen in the deep (39 m maximal depth) subarctic
Lake Svetloe (NW Russia). The lake is a rare type of freshwater meromictic water body with high
concentrations of methane, ferrous iron, and manganese and low concentrations of sulfates and
sulfides in the monimolimnion. In the oligotrophic mixolimnion, the concentration of mineral forms
of nitrogen decreased in summer compared to winter, likely due to a phytoplankton bloom. The
decomposition of the bulk of the organic matter occurs under microaerophilic/anaerobic conditions
of the chemocline and is accompanied by the accumulation of nitrogen in the form of N-NH4 in
the monimolimnion. We revealed a strong relationship between methane and nitrogen cycles in
the chemocline and monimolimnion horizons. The nitrate concentrations in Lake Svetloe varied
from 9 to 13 µM throughout the water column. This fact is rare for meromictic lakes, where nitrate
concentrations up to 13 µM are found in the monimolimnion zone down to the bottom layers.
We hypothesize, in accord with available data for other stratified lakes that under conditions of
high concentrations of manganese and ammonium at the boundary of redox conditions and below,
anaerobic nitrification with the formation of nitrate occurs. Overall, most of the organic matter in
Lake Svetloe undergoes biodegradation essentially under microaerophilic/anaerobic conditions of
the chemocline and the monimolimnion. Consequently, the manifestation of the biogeochemical
nitrogen cycle is expressed in these horizons in the most vivid and complex relationship with other
cycles of elements.
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1. Introduction

Nitrogen is the most important nutrient, ranking fourth among biophilic elements
after carbon, oxygen, and hydrogen. The biogeochemical nitrogen cycle is one of the main
cycles in the biosphere [1–6]. The nitrogen cycle is an interconnected chain of reactions for
the transformation of various forms of nitrogen compounds [7], the main role of which
belongs to microorganisms [8–15]. The concentration of nitrogen compounds determines
the water body’s biological productivity to a large extent. A change in the composition
and ratio of the various forms and concentrations of nitrogen compounds indicate the
direction of the dominant biological and biogeochemical processes, including the processes
of self-purification of water bodies [2]. In addition to assessing water quality, information
on the content and distribution of various forms of nitrogen is important for nutrient
balance and the water’s chemical composition [16].
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Because the nitrogen cycle in aquatic systems is strongly dependent on redox condi-
tions, chemically stratified water bodies are particularly important for the biogeochemistry
of N in continental settings. Biogeochemical processes in meromictic water bodies are very
interesting from the point of view of limnology and aquatic ecology because lakes of this
type exhibit peculiar features: There is no water mixing between different layers and the
anaerobic zone persists throughout the whole year. There are three zones in the structure
of meromictic lakes: Mixolimnion—a zone in which convective and wind mixing of water
occurs; monimolimnion, which is an anaerobic zone, a non-mixing layer that does not
have contact with the atmosphere; and a chemocline, which is a layer of abrupt change of
hydrochemical characteristics at the boundary of the mixolimnion and monimolimnion,
where a complex microbial community is usually formed [17,18].

Of greatest interest in water bodies of this type are the processes occurring in the
chemocline and monimolimnion of lakes. The oxygen minimum zone (OMZ), formed
in the chemocline, is a site of intensive nitrogen turnover due to the influx of organic
material from the overlying water layers and the formation of a large amount of organic
matter in the chemocline zone. The OMZ contains unique microbial communities that
use alternative electron acceptors for respiration. The OMZ conditions provide an almost
complete nitrogen (N) cycle. Remineralization can occur both due to the reduction of
nitrate to nitrite and can be associated with the non-assimilatory reduction of nitrate to
ammonium, whereas the formation of gaseous nitrogen can occur due to heterotrophic
denitrification and anammox. Many microorganisms inhabiting the oxygen minimum
zones are capable of performing various functions in the nitrogen and other cycles of
elements [19].

Nitrifying bacteria (both ammonium and nitrite oxidants) are present throughout the
entire oxygen minimum zone. Even in waters with the lowest oxygen content, chemoau-
totrophic activity and oxidation of nitrogen compounds are usually detected in situ. The
greatest abundance of nitrifying bacteria and their greatest activity is found in the gradient
region at the upper boundary of the oxygen minimum [19,20]. A close relationship is
found between nitrification and denitrification in the oxygen minimum zone where the
rapid cycling of intermediate products of the nitrogen cycle, including nitrate, nitrite, and
nitrogen oxide (I), occurs [20].

An increase in exports from mixolimnion and the formation of a large amount of
organic matter in the chemocline (hence, respiration within this zone) leads to the depletion
of dissolved oxygen, followed by other main alternative electron acceptors (nitrate, sulfate,
etc.). Some of the sulfide/sulfur oxidizers can use NO3

−/NO2
− as electron acceptors and

release gaseous N2 and/or N2O, while the released energy is used to fix inorganic carbon
via so-called chemolitoautotrophic denitrification. The latter process can also be associated
with hydrogenotrophy, methanotrophy, and iron oxidation [19].

Microorganisms of the non-biogeochemical nitrogen cycle are also capable of influenc-
ing its transformation under the specific conditions of meromictic lakes. Microorganisms
of the methane cycle (including both methanogenesis and methane oxidation) play an
important role in the binding of global carbon and nitrogen cycles in microaerophilic and
anoxic environments [21–26]. In addition to the fact that methanotrophic bacteria use
methane as a source of carbon and energy, they also modify the nitrogen cycle, especially
at the boundary of the aerobic–anaerobic interaction (chemocline zone) or just above or
below it [27]. Methanotrophic bacteria can assimilate nitrogen as ammonia or nitrate and
can compete with nitrifying bacteria for ammonia and oxygen [26,28,29].

Studies of small Red/Ox-stratified boreal lakes [24] have demonstrated that methan-
otrophs of boreal lakes can associate methane oxidation with NOx

− reduction under
hypoxic conditions. Recent studies of a shallow, seasonally stratified subalpine lake [30]
have shown that NH4

+, being the main nutrient in this aquatic ecosystem, has a positive
correlation with methane-oxidizing bacteria (MOB). The latter can metabolize NH4

+ for
growth. Investigations of the oxygen-stratified Lake Fohnsee (southern Germany) have
shown that anaerobic methane oxidation, denitrification, and anammox can simultaneously
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occur in the anoxic water column [31]. Analysis of gas taken from various anaerobic envi-
ronments, where a significant amount of organic matter accumulates and decomposes with
the release of methane, demonstrated that free nitrogen of biological origin can constitute
up to 30% of all the released gas [7]. A relationship between methane oxidation and nitrate
reduction during hypoxia has recently been shown for the Gammaproteobacterium Methy-
lomonas denitrificans, attributing to this species a previously overlooked role in coupling
carbon and nitrogen cycles [32].

The methane cycle in Lake Svetloe is fairly well known [33–38]. The microbial commu-
nities participating in the methane cycle are represented by several genera of methanogens
and methanotrophs typical of freshwater lakes [35]. Methane oxidation was found in both
oxygen and anoxic conditions with a maximum in chemocline. Methanotrophic bacteria
Methylobacter sp. and methylotrophic Methylotenera sp. and Methylophilus sp. showed simi-
lar profiles of relative abundance throughout the epilimnion, chemocline, and hypolimnion
of Lake Svetloe [35,36]. However, in contrast to fairly good knowledge of the carbon and
methane cycle in Lake Svetloe, the knowledge of the nitrogen cycle remains highly limited.

This work presents the first data on the spatiotemporal dynamics of the concentra-
tions of organic and inorganic nitrogen forms in the subarctic meromictic Lake Svetloe
(NW Russia). The lake is a rare type of freshwater meromictic water body with high
concentrations of dissolved methane and ferrous iron, manganese, and low concentrations
of sulfates and sulfides in the hypolimnion [34,36,39,40]. Iron-rich and sulfur-depleted
meromictic lakes with conditions suitable for photoferrotrophy are considered modern
analogues of the ancient Archean Ocean [21,41]. The high transparency of the waters, low
water color, and the distribution of the photic layer throughout the depth create favorable
conditions for the development of phytoplankton and the specific microbial community
of the chemocline [33,36]. Our specific objectives were to (i) assess vertical and seasonal
dynamics of dissolved nitrogen forms and (ii) relate the spatial pattern of these concentra-
tions to already known cycles of carbon, oxygen, methane, iron, and manganese in the lake,
taking into account the microbiological control on the N cycle.

2. Study Site and Methods
2.1. Site Description

Lake Svetloe is located in the northern part of the boreal zone of European Russia
(N 65◦04.98′, E 41◦06.26′), 65 km NNE of Arkhangelsk, and its watershed is not subjected
to any direct anthropogenic influence. The maximum depth of the lake is 39 m (Figure 1).
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Two pronounced relief depressions conditionally divide the lake into two parts with
maximum depths of 39 and 20 m (Figure 1). In accordance with the meromictic status, three
layers in the water column of the lake can be distinguished: (1) Mixolimnion (from 0 to
20 m), subject to convective mixing throughout the year and exhibiting aerobic conditions;
(2) chemocline, which is a transitional zone at a depth of 20–24 m, where microaerophilic
conditions are formed; in this zone, oxygen is produced by cyanobacteria and is actively
consumed by other microorganisms [36]; and (3) monimolimnion (from 25 m to the bottom),
which is an anaerobic layer [36,39]. Lake Svetloe is characterized by a predominance of
autochthonous dissolved organic matter with a low content of dissolved organic carbon
(83.3 to 333.3 µM, [39,40]) and high water transparency (12 to 16 m Secchi depth).

The water in the chemocline of Lake Svetloe has a faint pink color of varying inten-
sity, due to the development of phototrophic communities inhabiting the boundary of
the aerobic and anaerobic zones. Studies of phototrophic bacteria in the communities
of the chemocline zone have demonstrated that the dominant bacteria are oxygenic pho-
totrophic cyanobacteria of the genus Synechococcus (maximum development at a depth of
23 m) [33,36], which have positive chemotaxis to nitrogen sources [42–44] and are capable
of fixing molecular nitrogen [45].

2.2. Sampling and Analyses

Sampling was carried out from 2010 to 2016 and included 30 survey campaigns during
all hydrological seasons. Sampling was carried out over the entire water column from the
surface to the bottom, with a step of 1 to 6 m. Water samples were taken at the deepest
point of the lake approximately in the middle of the water body (N 65◦4.975′, E 41◦6.497′)
from a PVC boat from May to October, and from the ice in winter (November to April)
using a pre-cleaned polycarbonate horizontal water sampler (Aquatic Research Co, ID,
New York, NY, USA).

A water sample for measurements of nitrite, nitrate, and total nitrogen was collected
with a water sampler, to the tap of which a PVC outlet tube was attached. First, the bottle
was rinsed 2–3 times with water from the sampler. Then the outlet tube of the sampler was
lowered to the bottom of the bottle and began to fill it with water, passing several volumes
of water, that is, until the water that was in contact with the air in the bottle was entirely
displaced. As such, most of the water sample was not in direct contact with the atmosphere.
Then the polypropylene containers were closed with screw caps with an inner cone with
slight compression of the bottle itself. This technique minimized the possibility of having
residual air in the vial. It should be noted that when examining the water samples in the
laboratory after transportation, we did not observe the precipitation of Fe (III) hydroxide,
which would inevitably form during the oxidation of Fe (II) in a neutral to slightly alkaline
medium. Chemical analysis of water samples was carried out on the day of sampling.

A water sample for the determination of N-NH4 was taken in a separate glass container
in the same way as for other forms of nitrogen described above. Fixation of N-NH4 with
reagents was carried out immediately after filling the bottle with water. In addition, at
the beginning of the study of Lake Svetloe, we carried out a parallel determination of the
content of N-NO2 and N-NO3 directly on the lake shore, and afterwards, the samples were
delivered to the laboratory. The results of parallel measurements were reproducible within
the uncertainty of analyses.

The nitrogen forms’ (N-NO2, N-NO3, N-NH4, TN) determinations were based on
colorimetric assays [40,46]. The indophenol blue method was used to measure ammonium
(N-NH4), with a relative error of up to 12% and a detection limit of 1 µМ. A spectrophoto-
metric method employing sulfanilamide and N-(1-naphthyl)ethylenediamine dihydrochlo-
ride was used for the analysis of nitrite (N-NO2), with a relative error of up to 18% and a
detection limit of 0.03 µМ[47,48]. A spectrophotometric method employing sodium salicy-
late was chosen for the determination of nitrate (N-NO3), with a relative error of up to 18%
and a detection limit of 7 µМ. The total dissolved organic nitrogen (Norg) was evaluated
from the difference between the total dissolved nitrogen (TN, persulfate oxidation, relative
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error up to 12%, detection limit of 18 µМ) and the total dissolved inorganic nitrogen (DIN,
or the sum of nitrite, nitrate, and ammonium nitrogen). All concentrations for the nitrogen
compounds are given in micro mole per liter (µM) of nitrogen. Generally, we obtained a
single result for each sample from a discrete horizon. The sample size and reliability of the
mean estimates were achieved by the number of vertical surveys along the water column
in different seasons (30 profiles).

3. Results
3.1. Main Hydrochemical Characteristics

The main hydrological parameters of the lake are presented elsewhere [34,39,40].
The vertical profile of oxygen, temperature, conductivity, and water density are shown
in Figure S1 of the Supplementary Material. The numerical values of physicochemical
parameters (oxygen, temperature, and pH) of the water column of Lake Svetloe in different
seasons of the year are shown in Table S1 of the Supplementary Material. Seasonal water
temperature variation occurs to a depth of 22 m; further below, the water temperature
decreases with a gradient of about 0.7 ◦C/m, and below 27 m, the water temperature is in
the range of 3.5–3.6 ◦C all year round. Specific conductivity of the surface horizons ranges
from 150 to 250 µS/cm, whereas in the bottom horizons, it ranges from 340 to 380 µS/cm.
In the mixolimnion, the pH varies from 7 to 8.4 (maximum values during periods of
mass phytoplankton bloom), in the chemocline, the pH varies from 6.8 to 8, and in the
monimolimnion, a narrower range of variation is observed (from 6.8 to 7.6). A general
decrease in pH is observed with depth. At depths of 24–25 m, there is a slight increase in
pH values associated with the development of anoxygenic bacteria or cyanobacteria.

The dissolved oxygen concentration in the summer period in the thermocline (3–7 m)
reaches its maximum values (over 375 µM). In the lower layers, it gradually decreases to the
minimum values in the chemocline. In winter, high oxygen content is noted throughout the
mixolimnion with an abrupt increase above the chemocline. In the chemocline, at depths
of 21 to 24 m, a layer with microaerophilic conditions is formed, which persists throughout
the year. The absence of oxygen from a depth of 24–25 m down to the bottom was noted.
In the chemocline layers, the sign of the redox potential changes. At the depth of 22–24 m,
according to estimates (our data and [36]), Eh has a negative value, −107–(−168) mV.

The lake is a meromictic waterbody of iron-manganese type. The sulfide concentration
is lower than that of iron and manganese, which is quite rare among meromictic lakes [39].
The most characteristic intervals (25–75%) of the concentrations of iron and manganese
(dissolved fraction <0.45 µm) in the zones of mixolimnion, chemocline, and monimolimnion
are equal, respectively: Fe—0.01–0.028, 0.6–41.7, 111–144 µM; Mn—0.006–0.028, 12–43,
52–54 µM. A sharp increase in the concentration of Fe and Mn also occurs when the Red/Ox
conditions change.

Lake Svetloe exhibits a low concentration of dissolved organic carbon (DOC) (the
minimum and maximum values were 68 µM and 358 µM, respectively); the average value
over the entire water column was 167 ± 64 µM. The maximum values of the DOC concen-
tration in the mixolimnion were observed in the surface layers during the phytoplankton
bloom. The minimum and maximum values of dissolved inorganic carbon (DIC) were
1725 µM and 5704 µM, respectively; the average value over the entire water column was
3407 ± 130 µM.

3.2. Nitrogen Compounds

The various forms of nitrogen concentration of the water column of Lake Svetloe
in different seasons of the year are shown in Table S1 of the Supplementary Material.
The distribution of the N-NH4 concentration in the water column of Lake Svetloe is
characterized by a sharp increase in the chemocline during all seasons (Figures 2a and 3).
The maximal concentration reaches, on average, 144 to 177 µM in the bottom layer. In the
mixolimnion, N-NH4 concentrations rarely exceeded 1.2 µM. In summer, the concentrations
of N-NH4 in the surface layers were lower (up to 0.7 µM) than in winter.
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The distribution of N-NO3 during all seasons demonstrated a slight decrease in
concentration in the chemocline zone with a subsequent increase in the deeper layers
(Figures 2c and 3). The concentration of N-NO3 in the monimolimnion did not exceed
the values achieved in the mixolimnion and varied in the range of 9–13 µM. The TN
concentration in the mixolimnion varied within the range of 9 to 23 µM (Figure 4).
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There was a sharp increase in TN in the chemocline (by one order of magnitude).
The TN concentration reached 293 µM near the bottom layer. The share of Norg in the
mixolimnion varied from 16 to 75% of TN, and in the monimolimnion, it ranged from 12 to
95% of TN (Figure 4).

The vertical distribution of mineral forms of nitrogen (Figure 3) demonstrated that the
N-NO3 form always predominated in the mixolimnion of Lake Svetloe. The predominance
of N-NH4 is observed from a depth of 22 m; the content of N-NO2 in all seasons was very
low and varied within the range of 0–1.4 µM, which is 0.1–4% of the sum of inorganic
forms of nitrogen (Figure 2b).

4. Discussion

Comparative analysis of inorganic forms of nitrogen concentration in some meromic-
tic lakes (Table 1) showed that there is a similar tendency of an increase in the content
of ammonium from the mixolimnion to the monimolimnion with a sharp increase in the
N-NH4 concentration in the chemocline. In the vertical distribution of nitrate concentration,
there are similar features between lakes Svetloe (this study) and Pavin [49]. In both lakes, a
decrease in the concentration of nitrate nitrogen in the chemocline zone is observed. In con-
trast to the compared meromictic lakes, the concentration of nitrates in the monimolimnion
in Lake Svetloe remains at the level of the mixolimnion. A similar dynamic is observed
only in the meromictic Lake Zug, where nitrate is present in the anoxic hypolimnion [50].

The surface horizon of Lake Svetloe (0.5–3 m) is almost always distinguished by an
increased number of heterotrophic bacteria, including ammonifying ones, and a slight
excess of ammonium concentrations in comparison with the lower layers of the epilimnion,
which may indicate a more active ammonification. By the content of nitrogen compounds,
the mixolimnion layer can be characterized as oligotrophic, which is also confirmed by the
values of the isotopic composition of suspended organic carbon: For the upper oxygen layer,
the values δ13Corg of −27.2 to −30.2‰ are common for the phytoplankton of oligotrophic
freshwater lakes [36].
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Table 1. The content of mineral forms of nitrogen in Lake Svetloe (25–75%) and other meromictic lakes in the world.
Concentrations are given in µM.

Lake
N-NH4 N-NO2 N-NO3

Reference
Mix Chem Monim Mix Chem Monim Mix Chem Monim

Lake Svetloe 0.5–1.2 13–91 144–177 0–0.07 0.3–0.8 0.6–1.4 5–9 5–8 9–13 This Research

Lake Matano up to 20 20–300 200–300 <0.1 all layers < 0.1 only 90–100 m 0.1–0.2 [21]

Lake Pavin – – max 389 – – – max 32 – – [49]

Lake La Cruz 1.1–12.8 122.2 up to 3000 0.04–0.11 0 0 5–20 0 0 [18,51]

Kabuno Bay – – – N-(NO2 + NO3) [52]up to 1 Up to 0.5 in dry season up to 1.5 up to 0.5

Lake Kuznechikha 1.4–3.5 17.8–50 83–121 – – – – – – [53]

Char lake – – – – – – <0.7 – <0.7 [54]

Lake Chernoe – – up to 265 – – – – – – [55]

Hall Lake 0 – 305 – – – 13.3 – 4.4 [18,56]

Lake Zug 10 – – – 20–25 17–18 1–5 [50]

The microbial communities of the mixolimnion of Lake Svetloe are typical of those for
aerobic lake environments [57] and are mainly represented by microbial groups participat-
ing in the initial stages of organic matter decomposition [35,36]. Measurements of the rate
of dark CO2 assimilation indicate low activity of heterotrophic bacterioplankton [35,36].

Aerobic nitrification of ammonia to nitrite and nitrate is a major process in the global
nitrogen cycle. Low concentrations of N-NH4 and high concentrations of nitrates were
observed in the mixolimnion, except for the peak periods of phytoplankton development,
when the concentration of nitrates can decrease below 1.6 µМ. This testifies active processes
of nitrification, which proceed to the final compound of nitrate in the water of Lake Svetloe.
Low N-NO2 concentrations in the mixolimnion and a large amount of N-NO3 in this layer
may indicate that nitrification processes proceed to the final stage in the presence of a
sufficient amount of oxygen in the mixolimnion.

The peak in the development of phytoplankton communities (maximum oxygenic
phototrophic activity [35,36]) is most often observed at a depth of 6–10 m, which is also
evidenced by an increase in pH and dissolved oxygen concentration at this depth. There
is also a slight increase in the concentration of organic nitrogen and a decrease in the
inorganic nitrogen concentration, notably of nitrates.

The concentration of dissolved oxygen already starts to decrease at 16–17 m, reaching
the minimum at 20–21 m. As a result, the intensity of aerobic processes sharply decreases
and organic matter that is not completely mineralized enters the chemocline. In the
mixolimnion of the lake, the suspended organic matter content and the total number of
microorganisms are significantly lower than in the chemocline and monimolimnion [35,36].

The largest amount of organic matter is formed in the chemocline zones. The major
peak of microbial processes in the chemocline coincides with the local maximum for carbon
isotope fractionation [35,36]. Oxygenic phototrophic cyanobacteria, highly abundant in
the chemocline, provide specific conditions for the functioning of the ecosystem. For
example, the first peak of oxygenic photosynthesis is observed in the mixolimnion of
the lake, and the second peak of oxygenic and anoxygenic photosynthesis is observed
in the chemocline [35,36]. In accordance with previous works [58], we believe that the
presence of constant stratification in such water bodies creates a “trap” for nutrients in the
anaerobic zone. The organic matter formed in the chemocline enters the anaerobic layers,
monimolimnion, where the anaerobic ammonification takes place.

Given that the majority of organic matter in Lake Svetloe undergoes biodegrada-
tion essentially under microaerophilic/anaerobic conditions of the chemocline and moni-
molimnion, the manifestation of the biogeochemical nitrogen cycle is expressed in these
horizons in the most vivid and complex relationship with other cycles of elements. Due
to the production of a significant amount of organic matter in the chemocline [36] and
additional accumulation of OM in the chemocline linked to a sharp increase in the ver-
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tical density gradient [18], a sharp increase in ammonium ions (up to 200 times) con-
centration occurs within this relatively thin water layer. A sharp increase in the con-
centration of ammonium ions in the chemocline of the lake in comparison with the
mixolimnion indicates intensive ammonification processes. As a result, at the bound-
ary of aerophilic/microaerophilic/anaerobic conditions, aerobic and facultative anaerobic
ammonifiers are likely to develop intensively.

The chemocline zone can be considered a very strong biological filter of methane.
Indeed, in this zone, the proliferating methanotrophic bacteria [35,36,59] use nitrogen in
the form of ammonia/ammonium or nitrate in the process of methane oxidation. Methan-
otrophic bacteria can assimilate nitrogen as ammonia or nitrate and can compete with
nitrifying bacteria for ammonia and oxygen [28]. It is possible that the nitrifying bacteria
development in the chemocline of Lake Svetloe is limited due to the active process of
methane oxidation since simultaneous nitrification and methane oxidation were observed
only while maintaining relatively high levels of ammonium and oxygen [27]. The use of
nitrate and/or suppression of the nitrification process is consistent with a slight decrease
in nitrate concentrations in the chemocline (Figure 2).

The oxidation of ammonia is carried out by both bacteria and archaea Crenarchaeota or
Thaumarchaeota [60,61], which can play a dominant role in the oxidation of ammonia. The
distribution of ammonium-oxidizing bacteria (AOB) and ammonium-oxidizing archaea
(AOA) along the water column and during the seasons is influenced by environmental
factors, such as oxygen concentration [62,63], ammonia concentration [64,65], pH, and
concentrations of nitrites, nitrates, and phosphates [66].

Under conditions of low oxygen concentration, ammonium-oxidizing archaea are
highly stable [67–69]. In addition, they are probably not influenced by methanotrophic
bacteria, as in AOB. The presence of archaea Thaumarchaeota in the oxygen minimum
zone [35] at a depth of 17–22 m is consistent with sufficient ammonium concentration and
the presence of oxygen. As is known, under anaerobic conditions, ammonification is slow
and does not lead to significant ammonia/ammonium production. Therefore, a sharp
increase in the concentration of ammonium in the monimolimnion is not observed.

Gamma, δ-, and ε-proteobacteria have an ammonifying capacity, and some of them
are capable of other alternative respiratory pathways, such as dissimilatory iron, sulfate,
and sulfur reduction [70]. The ability to ammonify nitrates and nitrites has been also found
in chemolithotrophs such as oxidizers of Fe (II), hydrogen and sulfides, as well as anammox
bacteria [70,71]. Overall, the effect of high concentrations of ammonium on a decrease in
the assimilability of nitrates in bacteria, cyanobacteria, and archaea, including halophilic
species, was found. When microorganisms capable of assimilating nitrate are exposed to
ammonium, the cells’ ability to use nitrate is drastically reduced [70,72–75].

There is another pathway for the formation of ammonium, the so-called dissimi-
latory nitrate reduction to ammonium (DNRA) process, also known as nitrate/nitrite
ammonification [19,70]. Under microaerophilic or anaerobic conditions, DNRA may occur
with the participation of bacteria, cyanobacteria, and archaea, including some halophilic
species [70,72–75]. For this, nitrate is transported into cells by an active transport system
and is reduced to ammonium by the sequential action of assimilatory nitrates (Nas) and
nitrite reductases (NiR) [73,76,77]. In natural environments, dissimilated nitrate reduction
occurs under a high ratio of ammonium nitrogen to nitrate nitrogen [7]. In Lake Svetloe, the
ratio of ammonium to nitrate strongly increases from a depth of 24 m (Figure 5), which may
indicate the predominance of dissimilatory nitrate reduction over denitrification under
anaerobic conditions.
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The monimolimnion of Lake Svetloe remains a fairly stable environment. The decom-
position of the main fraction of organic matter, which occurs under the anaerobic conditions
of the monimolimnion, is accompanied by the accumulation of nitrogen in the N-NH4 form,
as evidenced by high concentrations of N-NH4 in all layers regardless of the season. In the
monimolimnion of lakes, nitrate is usually present in minimal concentrations, but for Lake
Svetloe, rather high concentrations are observed up to the bottom sediments (Figure 2).

Nitrification usually does not occur under anaerobic conditions, whereas the denitrifi-
cation processes are quite pronounced. Most likely, oxygen is still present in the chemocline
and monimolimnion of Lake Svetloe. Microbiological studies of Lake Svetloe [35–37]
reported a high relative abundance of cyanobacteria in the chemocline zone. Cyanobac-
teria were also found in the monimolimnion down to the bottom sediments, but in a
lower relative abundance. Oxygen produced by photosynthetic cyanobacteria can be used
by nitrifying bacteria, ammonium-oxidizing bacteria, or ammonium-oxidizing archaea,
bacteria of the Nitrospirae family, found in small amounts in the chemocline of Lake
Svetloe [35], representatives of which carry out the complete oxidation of ammonium into
nitrate (comammox).

Comammox was discovered and described relatively recently [78,79]. After oxygen,
the nitrate ion is the next preferred electron acceptor for respiration [80]. Moreover, it is
the nitrate form of nitrogen that is the first preferred alternative electron acceptor among
all nitrogen compounds. Consequently, nitrate ions are primarily subjected to assimila-
tion/dissimilation under anaerobic conditions. The presence of nitrates down to the bottom
horizons may indicate, as mentioned above, the presence of oxygen, which promotes the
formation of nitrates.

It is also possible that under conditions of high concentrations of manganese and
ammonium, anaerobic conditions occur with the formation of nitrates according to the
reaction [81,82]:

4 MnO2 + NH4
+ + 6 H+ ⇒ 4 Mn2+ + NO3

− + 5 H2O

Usually, the oxidation of Mn to form Mn particles occurs where Mn (II) and oxygen
are present. Manganese oxides fall below the redox boundary, where there are very
few sulfides acting as a reducing agent, but a sufficient amount of ammonium [50,83].
Manganese reduction can occur under oxidized conditions [84,85]; therefore, oxidation and
reduction can occur simultaneously in the same water layer. For meromictic Lake Zug, it
has been suggested that ammonium oxidation in the presence of manganese can be a source
of nitrates, thus increasing their concentration up to 18 µM in the monimolimnion [50]. It
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is important to note that in the anaerobic conditions in the monimolimnion layer of Svetloe
Lake, nitrate concentration is still maintained at the 10 µM level, which is even higher than
surface concentration. Considering the high concentration of iron and manganese, and in
agreement with available literature information, it is most possible that redox-sensitive
metals support ammonia oxidation to nitrite and nitrate.

However, we could not unambiguously identify the driver of manganese oxidation
in the anaerobic horizons of the Lake Svetloe water column. It should be noted that a
measured concentration value of zero does not mean the complete absence of a compo-
nent. Oxygen can be found in concentrations below the detection limit of the method,
for example, in a form not measurable by this method (e.g., peroxide or free radical).
There may be an established balance of redox processes as a result of which the formed
oxygen is immediately consumed in the reaction. As such, the scenario described above is
quite possible.

Microorganisms associated with the process of nitrate/nitrite-dependent anaerobic
oxidation of methane (ANME-2d) [35,37], that is, archaea of ANME 2d clusters, including
‘CaNdidatus Methanoperedens nitroreducens’ and bacteria of the NC10 type (‘CaNdidatus
Methylomirabilis oxyfera’), are absent or found in very small numbers in Lake Svetloe.
Apparently, nitrate/nitrite-dependent anaerobic oxidation of methane is minimal [21,25].

A slight increase in nitrite in the bottom layers can occur due to the oxidation of
ammonia to nitrite. In the 27–35 m horizons of Lake Svetloe, ammonia-oxidizing archaea
Thaumarchaeota of the genus Nitrosopumilus are abundant, constituting up to 6.6% of
all 16S rRNA gene sequences [35,37]. Ammonia-oxidizing archaea are ubiquitous in
marine, freshwater, and terrestrial ecosystems. They are now considered to be a significant
contributor to the carbon and nitrogen cycle. Representatives of this genus are autotrophs
that receive energy from the aerobic oxidation of ammonia to nitrite and the fixation of
inorganic carbon [66,86,87].

The permanent redoxcline and simultaneous presence of ammonia and nitrite pro-vide
stable conditions for anaerobic ammonia oxidation (“anammox”) [88]. Anammox is the
anaerobic oxidation of ammonium with nitrite, resulting in the formation of molecular nitro-
gen N2. Although anammox is an anaerobic process, oxygen does not appear to completely
suppress it up to a concentration of ~13.5 µM [89]. Anammox-conducting bacteria live in
many natural ecosystems usually under conditions of limited ammonia and make a signifi-
cant contribution to the nitrogen cycle [71]. The anammox reaction uses NH4

+ иNO2
− in a

stoichiometric ratio of about 1:1 [19]. In lake ecosystems, this process has been suggested
for sediments [90] or for the chemocline of several meromictic lakes: Lake Tanganyika [91],
Lake Rassnitz (Germany; [92]), and Lake Lugano (Switzerland, Italy; [93]). However, for
Lake Svetloe, the anammox process is the least likely, since the bacteria Planctomycetes
that carry out this process [71,94] have not been found in the lake monimolimnion [35]. It is
possible that high ammonium content and low nitrite concentrations in the chemocline and
monimolimnion are limiting factors for their development [19,71]. It is also not excluded
that, in Lake Svetloe, anammox is additionally inhibited by methanol [89], formed during
methane oxidation [95].

5. Conclusions

Analysis of the data on the spatio-temporal dynamics of the nitrogen forms and
concentrations in the low-sulphide, ferro-manganese meromictic subarctic lake demon-
strated the predominance of anaerobic processes in the nitrogen cycle. When the Red/Ox
conditions change, the dominant form of mineral nitrogen changes from oxidized (NO3)
to reduced (NH4). The N-NO3 form always predominated in the mixolimnion of Lake
Svetloe, and seasonal fluctuations in the nitrogen concentration were associated with phy-
toplankton consumption. Below the depth of 22 m, N-NH4 predominated, whereas the
concentration of N-NO2 never exceeded 4% of the sum of inorganic forms of nitrogen. In
the horizons of the chemocline and monimolimnion, there was a close relationship between
the biogeochemical cycles of methane and nitrogen. This is indirectly confirmed by the
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local minimum of the nitrate concentration in the chemocline, where the methanotrophic
bacteria could use N-NH4 or N-NO3 for methane oxidation.

A peculiar feature of the nitrogen cycle in Lake Svetloe is high concentrations of nitrate
in the anaerobic waters of monimolimnion. This phenomenon is possibly a consequence
of the iron-manganese type of meromixia of the waterbody. Under conditions of high
concentrations of manganese and ammonium, anaerobic oxidation of ammonium with the
formation of nitrates could occur, where MnO2 acts as an oxidizing agent. This process is
described in the literature for other meromictic bodies. The functioning of the nitrogen cycle
in the meromictic Lake Svetloe reflects the climatic features of the subarctic (long glacial
season), geochemical factors of the catchment (low DOC content and high transparency),
the type of meromixia of the lake (high concentrations of Fe and Mn), and the features of
the carbon cycle (methanogenesis/methane oxidation). Further, a more comprehensive
analysis of these relationships should provide the necessary information on the functioning
of the ecosystem, and the biogeochemical nitrogen cycle provides such an opportunity.
Further work is required in this direction, in particular, the assessment of the content of
gas components of the nitrogen cycle such as N2 and N2O. In this regard, NO might be
especially important among other processes as it is closely related to denitrification.
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and seasonal variability of values of temperature (A), oxygen concentration (B), specific electrical
conductivity (C) and density (D).
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