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Abstract: In this study a thorough analysis is conducted concerning the prediction of groundwater 
levels of Ljubljana polje aquifer. Machine learning methodologies are implemented using strongly 
correlated physical parameters as input variables. The results show that data-driven modelling 
approaches can perform sufficiently well in predicting groundwater level changes. Different 
evaluation metrics confirm and highlight the capability of these models to catch the trend of 
groundwater level fluctuations. Despite the overall adequate performance, further investigation is 
needed towards improving their accuracy in order to be comprised in decision making processes. 
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1. Introduction 

To address challenges associated with climate resilience and sustainability principles, the 
importance of urban groundwater must be integrated into urban planning and design. Groundwater 
systems are dynamic and adjust continually to short-term and long-term changes in climate, 
groundwater withdrawal, and land use. Water level measurements from observation wells are the 
principal source of information about the hydrologic stresses acting on aquifers and how these 
stresses affect ground-water recharge, storage, and discharge. In this research we focus on Ljubljana 
polje aquifer. 

Traditionally groundwater levels are modeled with process-based models, which rely on the 
profound knowledge of the observed system dynamics. They require many additional spatial data 
on geological and hydrological properties of the aquifer. On the other hand, in data-driven modeling 
with machine-learning techniques our model is based solely on the data and some domain-specific 
knowledge is incorporated in to the system via appropriate data transformation (within engineering 
of new attributes). The goal in such a scenario would be to predict groundwater levels based on 
temporal data inputs (historic groundwater and surface water level data, weather data and forecasts, 
land-use, groundwater withdrawal and other anthropogenic data) and outputs (groundwater level). 
The model captures underlying processes based on the data without additional expert user input. In 
our work we present the whole data-mining pipeline, including exploratory data analysis, data 
pre-processing and modeling, where we explore accuracy and other benefits of a variety of 
modeling techniques on the same dataset (from interpretable modeling techniques such as 
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multivariate linear regression, linear SVM and decision trees to black-box models such as gradient 
boosted trees, random forests and artificial neural networks), which has rarely been reported in 
scientific literature for water-related scenarios. 

Authors of [1] claimed already a decade ago that data-driven modeling has overcome the initial 
stage and the main objectives shifted from method development and testing to the construction of 
useful architectures and applications of data-driven modeling for decision makers, according to the 
availability of the data. In reality, however, machine learning is still seeking its way into the practice 
and many studies have been published recently, which are researching the usability of different 
machine learning algorithms. Time-series techniques (ARX, ARMAX, ARMA, ARIMA) and artificial 
neural network models have been tested in [2]. Random forests and maximum entropy have been 
tested in [3]. Sahoo et al. [4] focused on multilayer perceptron networks. With R2 scores higher than 
0.8 they claim that data-driven approach can be used as an alternative to process modeling 
techniques. 

The Ljubljana polje aquifer has been studied extensively, mainly with process models [4–7]. The 
aquifer recharges mainly through infiltration of river water, infiltration of precipitation and in 
smaller fraction through lateral underground flow [8]. The latter is still not studied and understood 
well [9]. Therefore we can expect that appropriate data to model groundwater will be originating 
geographically within the aquifer (surface water levels, precipitation, etc.). 

Machine learning models have not been studied in the Ljubljana polje aquifer, however some 
preliminary work has been reported on automatic data acquisition [10]. Markov chains have been 
used to model heterogeneity of the aquifer [11]. Machine learning models have been used to study 
geological-geomechanical properties of Ljubljana area [12]. 

2. Materials and Methods 

2.1. Data and Data Acquisition 

For data acquisition, we used Internet of Things (IoT) middleware which consists of four main 
components, named Retrievers, Collector, API Management and Watchdog. The infrastructure is 
able to retrieve data from the heterogeneous sources, transform it into a unified format, store it and 
finally expose it via standardized web services, so it is available to users for further processing. The 
service is further described in [13]. 

In the Water4Cities project we collect three different data sets from Ljubljana (Slovenia) and 
Skiathos (Greece): groundwater information, pump sensor data from Skiathos and weather data. 
Groundwater dataset contains data from 518 stations comprising 28 regions which measure 
groundwater levels. Data are collected since 1960 (with median frequency of one day); however, 
there are some stations that started operating later, or operated intermittently, which means some 
data are not available. 

Weather data are refreshed once per day and contain temperatures (daily average, minima and 
maxima), location data, precipitation, snow blanket, new snow blanket, cloud cover and sun 
duration. Data from Ljubljana are available from 2010. 

2.2. Modeling Approach 

We are training a model that will be able to predict continuous groundwater level values based 
on a set of related attributes (weather data, available historic values of groundwater levels, etc.). We 
have collected data that combine all the related attributes and target value (groundwater level). Such 
a problem belongs to the field of supervised learning, more specifically—it is a regression problem. 

There is a plethora of algorithms, capable of such a task; however, it is important that our 
experiments are designed in a way that will give useful and accurate results. Our initial experiments 
aimed at predicting absolute value of groundwater levels. This proved to be an inefficiently defined 
problem, since absolute water level depends strongly on long-term historic processes, which we 
cannot easily grasp with limited attribute vectors. We have, therefore, set our target value not to 
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absolute groundwater level, but rather to the changes in groundwater levels. For each day we are 
trying to predict whether and how much the groundwater levels will rise or drop. 

2.3. Data-Driven Modelling Algorithms 

Groundwater level prediction is a regression problem. Based on available data (i.e., weather 
data, weather predictions, people-behavior model prediction, etc.) we are trying to generate the best 
possible continuous predictions for groundwater level change on a particular day. Data-driven 
algorithms use past data to learn the best approximation of an underlying process behind a 
particular phenomenon. 

2.3.1. Linear Regression 

One of the oldest and widely used methods is linear regression [14]. We are solving the 
following equation: = + , (1) 

where y is a vector of observed target values (in our case groundwater level or groundwater level 
change), X is a matrix that contains rows of independent variables—attributes (in our case weather, 
historic or other data), β is a parameter vector we are trying to learn and ε is a vector of errors. The 
goal is to learn parameter vector β in order to minimize errors on the validation set. There are many 
techniques for parameter estimation, the most well-known are based on least squares estimation. 

2.3.2. Regression Trees, Random Forests and Gradient Boosting 

Regression trees are an algorithm based on decision trees. When learning, we segment the 
attribute space into many different subspaces, where each particular subspace represented by a tree 
leaf has a value, which might be obtained simply by averaging all the samples from training set that 
belong to that leaf or by introducing another model (often linear regression) at each final node. 

Regression trees work well in ensembles. Breiman [15] suggested to use ensembles of regression 
trees to improve prediction accuracy. Each regression tree is trained with a particular sub-sample of 
a data set (different attributes and different samples from original dataset are used). Final value is 
given by an average over the whole ensemble. The algorithm is popular as it is fast and easy to 
parallelize and has proven very successful in numerous applications in environmental data-driven 
modeling (and elsewhere). 

Gradient boosting [16] also utilizes an ensemble of weak learners (usually trees) to provide final 
prediction, but it stacks them additively. In the first stage the algorithm approximates target values. 
In each subsequent stage the algorithm approximates pseudo-residuals (loss function differentials) 
from previous stage. An example of a simple loss function would be , ( ) = − ( ) , (2) 

where y is true value and Fm(x) is the model prediction after m-th stage. Model prediction Fm(x) 
combines all the weak learners’ results. Gradient boosting is the state of the art method in various 
fields (i.e., in particle physics). 

2.4. Evaluation Methods 

We evaluate goodness of fit with root mean squared error (RMSE) and coefficient of 
determination (R2) metrics. We define them as follows: R = 1 − ∑ ( − )∑ ( − )  (2) 

RMSE = ∑ ( − ) (3) 
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 represents prediction and  true value at time t,  is average true value on the dataset, n is the 
number of data samples. 

RMSE is a metric that can be easily interpreted in the scope of the use case as it is in the units of 
the target value. Its main disadvantage is that it cannot be compared across datasets. R2 is invariant 
to the amplitude of the target value and can be compared in different scenarios. 

We report performance of our algorithms by using 3-fold cross validation. 

3. Results 

3.1. Exploratory Data Analysis 

Initial part of the data mining process has been dedicated to feature engineering (engineering of 
new attributes). We have speculated that different weather phenomena are responsible for 
groundwater level dynamics: mainly precipitation, snow melting and weather in the whole study 
area. We have used raw values of all weather attributes (see Figure 1) and different derivatives. 
Firstly, we introduced time delay in the attribute as we speculated, that it takes time before surface 
water recharges the aquifer and secondly, we speculated that sums (or averages in the context of 
data-mining attributes) over multiple past days might play a significant role. Figure 1 depicts the 
correlation matrix of all 544 generated attributes. 

 
Figure 1. Figure represents correlation matrix of 544 original and generated attributes. Lighter color 
depicts positive correlation, darker color negative correlation. Each weather attribute has been 
transformed (with various shifts from 1 to 100 days) and then also with averages. Matrix is roughly 
divided on 2 × 2 fields, each field describing correlations between similar attributes (all 4 regions look 
similar). In each field we see a significant light block at the bottom right corner, which shows that sun 
duration and daily temperatures (average and extremes) are highly correlated to one another, even 
more so, when we take into account averaging over multiple days. 

Correlation matrix can be used in two ways. Firstly, we can read the correlations of particular 
attributes with our target variable (groundwater level daily change) and select the most correlated 
attributes to use in our models. Secondly, we can use it for filtering of highly correlated attributes. 
Highly correlated attributes will not bring additional knowledge to the model and might worsen 
model accuracy. Additionally, number of generated attributes is of the same magnitude as number 
of samples in our datasets, which might lead to overfitting of the models. 

A pair of heterogeneous attributes that are strongly correlated to the target value (groundwater 
change) are depicted in Figure 2. The attributes are 6-day precipitation average and 9-day cloud 
cover average.  
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Figure 2. Plot of two distinct highly correlated attributes vs. groundwater change. Especially with 
precipitation average we can observe that many peaks correspond to peaks in groundwater level 
change. 

3.2. Modeling Results 

Final feature vectors have been composed of candidates from top-30 correlated attributes. 13 
best and mutually least correlated features (according to Figure 1) have been selected. Modeling 
results are depicted in Figures 3 and 4. Figure 3 depicts comparison between groundwater level 
change (blue) and its prediction (orange). Visually, we can identify very good fit between the two, 
which shows that the model explains most of the fluctuations. We can observe that some extreme 
peaks in groundwater changes are not explained by our features. Further work is needed to identify 
those. 

 
Figure 3. True and predicted groundwater level change based on gradient boosting. 

Figure 4 depicts comparison between absolute groundwater level based on our model (orange) 
and true values (blue). Absolute values are calculated based on summing up groundwater level 
change predictions over time. We can see that the shape of the orange line reflects dynamics in the 
blue line, but absolute values might include big differences. 

Table 1 presents evaluation metrics on the same data-set using 4 different modeling algorithms: 
linear regression, regression trees, random forests and gradient boosting. Gradient boosting is the 
superior method. 
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Figure 4. Comparison between true value and prediction of groundwater level based on gradient 
boosting. Groundwater level has been calculated with the sum of all the changes from the beginning 
of prediction. 

Table 1. Modeling results of groundwater level change prediction, based on weather data. 4 different 
algorithms were used. Each method has been run on a dataset of 5 different nodes from Ljubljana polje 
aquifer. 

Algorithm R2 RMSE 
Linear regression 0.624 2.23	×	10−4 

Decision trees 0.415 3.46	×	10−4 
Random forest 0.609 2.31	×	10−4 

Gradient boosting 0.644 2.11	×	10−4 

4. Discussion 

In this work, we have demonstrated that data-driven modeling techniques within 
water-management domain can yield useful results with models that are computationally and 
implementation-wise much less complicated than the current state-of-the-art process-driven models. 
We have conducted experiments on Ljubljana polje aquifer groundwater data. 

Based on location of the groundwater level sensors we have achieved satisfactory results, 
however—we have encountered some anomalies, where our models were unable to model the 
underlying dynamics of the aquifer. Most of the anomalies are the drought between 2011 and 2012, 
when groundwater level dropped close to an apparent minimal level. As the models have no 
information about current groundwater level, they were unable to catch this dynamics. 
Additionally, some sensors placed near the surface water sources seem to fluctuate close to some 
predetermined level and are not so much dependent on weather itself. All these anomalies could be 
handled with additional features, better understanding of the aquifer dynamics and more precisely 
defined use-case scenarios. 

Future work includes many interesting research directions. Firstly, a systematic study on a 
wide variety of water-management use cases should be performed. Different data-driven 
approaches should be tested with a wide variety of algorithms (SVM regression, kNN, multi-layer 
perception …). So far, researchers have used arbitrary machine learning methods (often they have 
not even compared them to other available methods). The aim of the study would be to identify the 
best methods within the domain. 

As deep learning is becoming more popular in multiple fields, the methods reported in recent 
water-management literature, should be further investigated and improved. Different neural 
network architectures should be tested. Experience from other fields (i.e., particle physics), which 
deal with similar streams, show that we can often improve state-of-the-art results with deep 
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learning; however, improvement might not be significant and computationally cheaper methods 
(like random forests or gradient boosting) can achieve competitive results. 

Another approach towards computationally less demanding (and thus so called green) methods 
would be the implementation of stream learning techniques. IoT paradigm is expected to flourish 
within the water-management practice in the years to follow. Such approaches, which would 
involve a wide range of prediction models, can be beneficial. 

In many domains, such as energy management, data-driven approaches have been pushed 
aside due to different privacy-related issues. Similar tendency is noticed in water management field. 
Therefore, it is crucial to stimulate relevant stake-holders to use the methodologies in order to 
improve decision making processes within their respective organizations. Implementation of such 
methodologies is an important step towards integration of intelligent decision support systems. 

Additionally, a thorough evaluation and comparison of process and data-driven models should 
be conducted, in order to register limitations, advantages and usability of the latter in real-life 
scenarios. 

5. Conclusions 

In this study we conduct an analysis for forecasting groundwater levels. Four data-driven 
methodologies are tested; namely, linear regression, decision trees, random forests, and gradient 
boosting. Prediction of groundwater level change proved to be a better approach in comparison to 
the prediction of absolute groundwater levels. All models tested are multivariate and the predictors 
inserted are: cloud cover, snow blanket, new snow blanket, precipitation, sunlight duration, and 
average, maximum and minimum temperatures. A variable delay between groundwater change and 
the predictors was introduced to simulate the actual dynamics of aquifer recharge. Cloud cover and 
precipitation were chosen to better predict the target attribute. Gradient boosting resulted as the best 
fitting method with R2 = 0.644 and RMSE = 2.11	×	10−4. According to the results, the method catches 
adequately the trend but is not catching some groundwater level high peaks. 
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