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Abstract: While traditional network security methods have been proven useful until now, the flexibility
of machine learning techniques makes them a solid candidate in the current scene of our networks.
In this paper, we assess how well the latter are capable of detecting security threats in a corporative
network. To that end, we configure and compare several models to find the one which fits better with
our needs. Furthermore, we distribute the computational load and storage so we can handle extensive
volumes of data. The algorithms that we use to create our models, Random Forest, Naive Bayes,
and Deep Neural Networks (DNN), are both divergent and tested in other papers in order to make
our comparison richer. For the distribution phase, we operate with Apache Structured Streaming,
PySpark, and MLIib. As for the results, it is relevant to mention that our dataset has been found to be
effectively modelable with just a reduced number of features. Finally, given the outcomes obtained,
we find this line of research encouraging and, therefore, this approach worth pursuing.
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1. Introduction

A network anomaly can be defined as a variation of the regular behavior of the network. That includes
both unfortunate unintended events, and deliberate attacks planned to compromise the network’s
availability. In both cases, it is essential to be able to detect those quickly so we can react in time [1].

In the past few years, machine learning has been slowly taking its place as an alternative to
policies-based traditional intrusion detection systems, as it presents quite a few advantages. Machine
learning techniques allow the development of non-parametric algorithms, adaptative to our network
and its modifications, and portable across applications [1].

Although there is still a gap between the deployment of machine learning based intrusion
detection systems and their predecessors due to different challenges [2], it is a reality that traditional
detection methods fall behind when it comes to handle large-scale volumes of data, as their analysis
processes are complex and time-consuming. Nevertheless, machine learning and big data tools and
techniques can help us overcome these shortcomings [3].

In this paper, we go through different machine learning and big data alternatives, as we model
the Intrusion Detection Evaluation Dataset (UNB ISCX IDS 2012) and deploy it so it supports extensive
data processing. The solution we will be deploying will be eventually based on the best model and
implemented on Apache Structured Streaming, using PySpark and MLIib. The storage will be also
distributed with Hadoop. Furthermore, for performance monitoring, we will use Zabbix and JMX.
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2. Results

2.1. Machine Learning Process

The phases that we went through in this project are those defined by CRISP-DM methodology:
business understanding, data understanding, data preparation, modeling, evaluation, and deployment.
In this subsection, we will be focusing on the modeling and evaluating phase, as our priority is to
show the outcomes acquired. In the next subsection, we will address deployment related aspects.

2.1.1. Naive Bayes

For this project, we used a two-level Naive Bayes model. First, we separated our binary features
from our continuous ones. For the first group, we used Bernoulli Naive Bayes, and for the latter
Gaussian Naive Bayes. After both were trained, we ensembled the probabilities given by each model
for training a last Gaussian Naive Bayes model. With this approach, we reached an 86.9% accuracy
score in the ensembled model. As a relevant remark, we were reaching about a 96.9% accuracy in
the ensembled model before taking out a couple of the correlated redundant features. These features
happened to be quite descriptive, so, by letting them in, we were imposing a “positive bias” in the
model, as the information encoded in those features was taken into account twice.

2.1.2. Random Forest

Due to the flexibility of Random Forest in terms of feature input, we could easily assess how well it
behaves with different feature set approaches. We discovered that we could use a reduced set of original
features and still get a 99.7% of accuracy on our dataset. After trying a wider range of features and applying
hyperparametrization on the number of trees and the number of maximum features per tree split, we managed
to raise that number to 99.8% with the configuration of 2000 trees and 15 maximun features per tree split.

2.1.3. Deep Neural Networks (DNN)

The DNN based model, as expected by the properties of the algorithm, was the one that entailed
the largest amount of configuration of the three. Feature wise, we scaled the continuous variables,
as DNN is quite sensitive to their values. For the initial architecture of the network, we started from
the final disposition of layers and neurons described in Gabriel Fernandez’s project [4]. Even so, after
performing hyperparametrization, our architecture changed, ending with two hidden layers of 160
neurons each. The score was archived after all of the configurations were 99.6%.

2.2. Distribution

After all the algorithms were evaluated, we decided to prioritize the distribution of the one whose
results were better, which is Random Forest. The next step consisted of reimplementing the model
using PySpark and MLIib, which is the Spark’s machine learning library. Then, we defined the right
transformations to deliver the input dataset in the right format for Random Forest to process in a pipeline,
and finally we trained the model. After that, we developed a PySpark script to submit to Spark in which we
defined aspects such as the input and output streams of data, and the query we wanted to make over the
streaming data.

We assessed the efficiency of the distribution strategy with one and four workers, comparing the
metrics “inputRate” and “processingRate”. We found out that the performances were very similar.
In fact, the rates became slightly worse when using four workers. We think that this phenomenon is
caused by the overhead introduced by Spark, as we use it both for the ingestion and processing of data.
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3. Conclusions and Discussion

From a general point of view, we define the outcomes obtained as positive. They certainly align
with both our hypothesis and other authors’ ideas [1,3] about how machine learning in the network
security domain can make a difference.

About the models, and concretely respecting Naive Bayes, its simplicity and strong assumptions
about feature independency [5] probably take a part in why it falls behind in terms of capability
of prediction with respect to our other choices. On the other side, Random Forest overtook every
other alternative in almost every aspect. With a default configuration and using only a few of the
original features, it was already the best scoring algorithm. Concerning DNN, its outcomes came
close to the ones of Random Forest. In addition, this is the algorithm that benefits the most from
hyperparametrization.

In reference to the distribution outcomes, the results display an issue that needs to be addressed
to successfully take advantage of one of the benefits that we have been claimed machine learning can
offer, handling the processing of extensive volumes of data.

In future lines of research, we would perform similar experiments to other datasets as the results
could be influenced to some extent by the peculiarities of the data. As for the models, we probably
could somewhat improve the results for DNN if we explored more sophisticated feature engineering
techniques, such as Feature Embedding. Finally, in view of the outcomes of the distribution phase, we
would delegate the data ingestion to a separated solution, such as Kafka.

4. Materials and Methods

The dataset used for this project was the UNB ISCX IDS 2012, and the main tools that allowed us
to work through all the phases of the machine learning process but the deployment were: Scikit-Learn
v0.23.1, Tensorflow v2.1.0, Pandas v1.0.5, and Numpy v1.18.5. These supplied us with all the core
functionality we needed for handling our dataset, modeling, and evaluating. However, we also made
use of some complementary libraries. Concretely, for visualization, we employed Matplotlib v3.2.2
and Seaborn v0.10.1, and for the transformation of IP related features, Netaddr v0.8.0.

Our distributing architecture was based on Spark v3.0.0 and Hadoop v2.7.0. For developing
applications on this architecture, we employed PySpark and MLIib v3.0.0. Finally, we delegated the
monitoring and stream metrics visualization to Zabbix v5.0.0 and JMX.
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