
proceedings

Proceedings

Matlab Framework for Image Processing and Feature
Extraction Flexible Algorithm Design †

Razvan Cazacu

Faculty of Engineering, Department of Industrial Engineering and Management, University of Medicine,
Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania;
paul.cazacu@umfst.ro
† Presented at the 14th International Conference on Interdisciplinarity in Engineering—INTER-ENG 2020,

Târgu Mures, , Romania, 8–9 October 2020.

Published: 24 January 2021
����������
�������

Abstract: Image processing and the analysis of images in order to extract relevant data is an
ever-growing topic of research. Although there are numerous methods readily available, the task
of image preprocessing and feature extraction requires developing specific algorithms for specific
problems by combining different functions and tweaking their parameters. This paper proposes a
framework that allows the flexible construction of image processing algorithms. Its user interface
and architecture are designed to ease and speed up the process of algorithm creation and testing as
well as serve as an application for the use of these algorithms by end users. The framework was built
in Matlab and makes use of its integrated Image Processing toolbox.

Keywords: image processing; feature extraction; Matlab; framework; algorithm design

1. Introduction

Enhancing and extracting useful information from digital images plays an important role in
most scientific and engineering fields. There are numerous tools and software packages available for
pure image processing. However, feature extraction requires the development of specific algorithms
depending on image particularities and the type of data that needs to be retrieved from the images.
Matlab is the leading platform for technical computing and is one of the most widely used languages
for the creation of feature extraction algorithms. Its Image Processing toolbox [1] contains almost a
thousand of the most common functions related to this field [2–4], allowing for the preprocessing,
analysis, segmentation, registration, and postprocessing of digital images.

In addition to the core language and its plethora of toolboxes, Matlab also benefits from a very
large community of programmers and researchers constantly extending its rich bank of tools and assets.
They are all drawn by the versatility of the integrated computing environment, the volume of available
resources, and the multitude of possibilities to share the created content with both programmers
and end users, inside or outside the Matlab application. One of the methods for extending Matlab
core functionality is the creation of frameworks, some based on available toolboxes, which can be
used to program or solve problems in specific areas of interest, such as conducting behavioral and
neuroimaging experiments [5], processing of digital elevation data [6], or the implementation of genetic
algorithms for optimization problems [7].

Automatic characterization of materials and material structures is an essential tool for the speed
and accuracy of their quality assessment. Algorithms such as those built for analyzing the cupping
profiles of laminated wood products [8], the identification of fission gas bubbles [9], or for the extraction
of information from SEM micrographs of nanotube structures [10] fall into this category. Developing,

Proceedings 2020, 63, 72; doi:10.3390/proceedings2020063072 www.mdpi.com/journal/proceedings

http://www.mdpi.com/journal/proceedings
http://www.mdpi.com/journal/proceedings
http://www.mdpi.com
https://orcid.org/0000-0002-0956-4801
http://dx.doi.org/10.3390/proceedings2020063072
http://www.mdpi.com/journal/proceedings
http://www.mdpi.com/2504-3900/63/1/72?type=check_update&version=2


Proceedings 2020, 63, 72 2 of 8

testing, tweaking, extending, and improving such algorithms is an iterative process that could be
greatly sped up and eased by using a dedicated framework for flexible algorithm design.

The main drive behind building the framework proposed in this paper is the need for automatic
characterization of highly ordered titanium oxide nanostructures (nanotubes/nanopores) formed on
titanium-based surfaces as a result of an optimized electrochemical anodization process [11]. This technology
has applications in the production of solar energy harvesting cells [12] and, most importantly,
in medicine [13]. The formation of nanoscale tubes on the surfaces of dental or orthopedic implants [14] can
be used as a tool for releasing drugs at the tissue level [15] and can help osteogenesis at the bone-implant
interface for a better osseointegration of the implants [16]. The size, shape, and uniformity of nanotubes
are important factors that determine the nanolayer quality and its capacity to favor osseointegration; thus,
accurately extracting and interpreting these data from associated digital images is an essential process.

2. Materials and Methods

The framework for Image Processing Algorithm Design (IPADesign) was built with the nanotube
micrograph interpretation in mind such as to allow the development and inclusion of most processing
scenarios for this particular application. However, its structure was designed for maximum flexibility
and should be suitable for most other feature extraction algorithms. This section describes the
architecture of the framework and its underlying data while the next section deals with the graphical
user interface and the actual implementation in Matlab.

The framework consists of a graphical user interface, part of which is dynamically generated;
the engine running the algorithms; a base abstract class used to derive the classes encapsulating image
processing functionality; and a number of predefined such classes (IPAFunctions) implementing the
most common functions.

The general structure of the application and its associated files is schematized in Figure 1. The data
it uses is grouped into 3 categories: metadata, document data, and algorithm data.

Proceedings 2020, 63, 72 2 of 7 

 

Developing, testing, tweaking, extending, and improving such algorithms is an iterative process that 
could be greatly sped up and eased by using a dedicated framework for flexible algorithm design. 

The main drive behind building the framework proposed in this paper is the need for automatic 
characterization of highly ordered titanium oxide nanostructures (nanotubes/nanopores) formed on 
titanium-based surfaces as a result of an optimized electrochemical anodization process [11]. This 
technology has applications in the production of solar energy harvesting cells [12] and, most 
importantly, in medicine [13]. The formation of nanoscale tubes on the surfaces of dental or 
orthopedic implants [14] can be used as a tool for releasing drugs at the tissue level [15] and can help 
osteogenesis at the bone-implant interface for a better osseointegration of the implants [16]. The size, 
shape, and uniformity of nanotubes are important factors that determine the nanolayer quality and 
its capacity to favor osseointegration; thus, accurately extracting and interpreting these data from 
associated digital images is an essential process. 

2. Materials and Methods 

The framework for Image Processing Algorithm Design (IPADesign) was built with the 
nanotube micrograph interpretation in mind such as to allow the development and inclusion of most 
processing scenarios for this particular application. However, its structure was designed for 
maximum flexibility and should be suitable for most other feature extraction algorithms. This section 
describes the architecture of the framework and its underlying data while the next section deals with 
the graphical user interface and the actual implementation in Matlab. 

The framework consists of a graphical user interface, part of which is dynamically generated; 
the engine running the algorithms; a base abstract class used to derive the classes encapsulating 
image processing functionality; and a number of predefined such classes (IPAFunctions) 
implementing the most common functions. 

The general structure of the application and its associated files is schematized in Figure 1. The 
data it uses is grouped into 3 categories: metadata, document data, and algorithm data. 

 

Figure 1. Application architecture and its associated files. 
Figure 1. Application architecture and its associated files.



Proceedings 2020, 63, 72 3 of 8

The metadata are the data used to keep track of the dynamic part of the user interface, the settings
of the application, and the list of folders containing files associated with the framework. Only part of
these data is saved and thus is persisted between sessions.

The document data are the structure and all the data associated with a specific image processing
problem. They contain the original image or images requiring processing and a collection of up to
4 algorithm structures. These are each composed of an object containing algorithm data and a cell
array with processed images from all intermediate steps. In a typical scenario, only one image will
be processed with a single algorithm. However, it is possible to load more original images for batch
processing or to be used in functions requiring multiple image input. At the same time, a document
allows for working with more algorithms at once for comparison purposes or even have the same
algorithm cloned in order to assess in parallel the intermediate results obtained during its execution.
The data of a document can be saved as a workspace (.mat file) and later reloaded in the application for
editing. Alternatively, the workspace can be loaded in Matlab and analyzed or postprocessed outside
the application.

The algorithm data are all the information associated with a developed algorithm and can be
saved separately as a workspace (.mat file) or loaded in a document. They contain all data required
to build an image processing procedure but do not hold any information about the actual processed
images. An algorithm consists of a succession of steps, each representing a certain image processing
transformation or inquiry. A step has three properties that define how it will be treated by the algorithm
running engine:

• Tag: unique identifier of a step, typically the name of the function associated with this step,
followed by a numeric index accounting for possible multiple uses of the same function;

• Active: a Boolean (true/false) value indicating if this step is to be considered or not when running
the algorithm (to allow maximum flexibility in testing algorithms);

• InParamLinks: a list of strings linking this step function’s parameters to values returned by functions
in previous steps, wherever the case (not a typical situation, but implemented for flexibility).

The most important component of a step is the actual image processing function. This part of the
framework was implemented using the Object Oriented Programming paradigm. Each function is
encapsulated in a class inheriting from an abstract class (IPAFunctionBase) as shown on Figure 2.

Proceedings 2020, 63, 72 3 of 7 

 

The metadata are the data used to keep track of the dynamic part of the user interface, the settings 
of the application, and the list of folders containing files associated with the framework. Only part of 
these data is saved and thus is persisted between sessions. 

The document data are the structure and all the data associated with a specific image processing 
problem. They contain the original image or images requiring processing and a collection of up to 4 
algorithm structures. These are each composed of an object containing algorithm data and a cell array 
with processed images from all intermediate steps. In a typical scenario, only one image will be 
processed with a single algorithm. However, it is possible to load more original images for batch 
processing or to be used in functions requiring multiple image input. At the same time, a document 
allows for working with more algorithms at once for comparison purposes or even have the same 
algorithm cloned in order to assess in parallel the intermediate results obtained during its execution. 
The data of a document can be saved as a workspace (.mat file) and later reloaded in the application for 
editing. Alternatively, the workspace can be loaded in Matlab and analyzed or postprocessed outside 
the application. 

The algorithm data are all the information associated with a developed algorithm and can be 
saved separately as a workspace (.mat file) or loaded in a document. They contain all data required 
to build an image processing procedure but do not hold any information about the actual processed 
images. An algorithm consists of a succession of steps, each representing a certain image processing 
transformation or inquiry. A step has three properties that define how it will be treated by the 
algorithm running engine: 

 Tag: unique identifier of a step, typically the name of the function associated with this step, 
followed by a numeric index accounting for possible multiple uses of the same function; 

 Active: a Boolean (true/false) value indicating if this step is to be considered or not when running 
the algorithm (to allow maximum flexibility in testing algorithms); 

 InParamLinks: a list of strings linking this step function’s parameters to values returned by 
functions in previous steps, wherever the case (not a typical situation, but implemented for 
flexibility). 

The most important component of a step is the actual image processing function. This part of the 
framework was implemented using the Object Oriented Programming paradigm. Each function is 
encapsulated in a class inheriting from an abstract class (IPAFunctionBase) as shown on Figure 2. 

 
Figure 2. Diagram of the abstract base image processing function class and its derived classes. Figure 2. Diagram of the abstract base image processing function class and its derived classes.



Proceedings 2020, 63, 72 4 of 8

The abstract class has the role of a template, allowing the algorithm running engine to communicate
with the image processing functions using an agreed communication protocol. It consists of 3 properties:

• BatchType (ReadOnly): the default value (1) indicates the function will treat input images as a
batch, processing each of them separately. A value of 2 should be set in the derived classes for the
functions that aggregate all input functions and return a single output.

• NrImgsIn (ReadOnly): number of image inputs. The default value of 1 means the function
processes images resulted from only 1 of the previous steps (or the original images), while greater
values can be used in cases where input images originate from multiple previous steps.

• ImgInNames: a list of strings containing the tag(s) of the previous step(s) providing the input
images. It should have a number of elements equal to NrImgsIn or be empty. If empty, the engine
assumes only 1 input image, the one provided by the previous step (most common scenario).

and 3 methods:

• Process: abstract method that needs to be overridden in the derived classes, implementing the
logic of the image processing function. It has only 1 argument, the input image(s), and 1 output,
the processed image(s). Possible additional arguments and results are implemented in the derived
classes as public properties.

• ShowInfo: implemented in derived classes only in the case of functions returning information
other than images. It typically outputs feature extraction data in a visual form (GUI, graphs).
It can optionally be called by the Process method to show the information when the algorithm
runs; however, it is a separate method and can be accessed from the application GUI at any time.

• GetUserInput: used in the case of functions requiring the user to provide coordinates of points
from the original image(s). Useful for functions extracting scale data from images providing such
information and in some other fringe scenarios.

All classes implementing image processing or feature extraction functionality need to inherit from
the IPAFunctionBase abstract class. NrInImage and BatchType have to be set in the constructor if
they have other values than the default (1 for both). Besides overriding the main method (Process)
and possibly the other 2 methods, the class can define additional parameters in the form of public
properties. By convention, these are grouped into 2 categories and should follow the following name
conventions:

• in_ParamName parameters: properties whose names begin with the “in_” particle are considered
input arguments for the image processing function. These can be set on the app GUI at algorithm
construction time.

• out_ParamName parameters: properties whose names begin with the “out_” particle are results
returned by the function other than images. They can be end results (feature extraction information)
or intermediate data used by the “in_” parameters of subsequent steps.

For maximum flexibility, the Step field of a given step can either be an instance of an image
processing class or, alternatively, it can simply contain Matlab code (FreeCode) that will be executed by
the engine. This can be a series of commands separated by semicolons (;) or the name of a script to
be called.

3. Results and Discussion

The framework is implemented in Matlab as an application that can be used directly as it is or
extended with more image processing functionality by complying to the framework’s structure and
tools. The abstract class along with the derived classes implementing core image processing functions
are stored in a subfolder of the application called IPAFunctions. Classes specific to certain problems
can be added and stored in different locations. The application keeps a list of paths where these classes



Proceedings 2020, 63, 72 5 of 8

are located, similar to Matlab’s built-in search paths. When building an algorithm, the user can choose
from the list of all available image processing classes in the specified locations.

The graphical user interface (GUI) presented in Figure 3 consists of three main parts:

• Tools area. Fixed interface area with menus and controls for all operations except algorithm
creation: saving and loading documents and algorithms, managing function paths, running
algorithms, and controlling and navigating the image display area.

• Algorithm area. Dynamically generated and managed part of the interface, consisting of a list of
controls associated with algorithm steps. Each line contains a control for the selection of the step,
a checkbox associated with the Active field, a static text specifying the tag of the step (containing
the name of the associated class), and a button opening the parameters window. Steps can be
added, deleted, or reordered using the controls in the upper area.

• Image display area. Main panel for displaying the original and transformed images. It can show
a single image belonging to the active algorithm, four images from different steps of the active
algorithm, or four images from specified steps on each of the four algorithms in a document.

Proceedings 2020, 63, 72 5 of 7 

 

The graphical user interface (GUI) presented in Figure 3 consists of three main parts: 

 Tools area. Fixed interface area with menus and controls for all operations except algorithm 
creation: saving and loading documents and algorithms, managing function paths, running 
algorithms, and controlling and navigating the image display area. 

 Algorithm area. Dynamically generated and managed part of the interface, consisting of a list of 
controls associated with algorithm steps. Each line contains a control for the selection of the step, 
a checkbox associated with the Active field, a static text specifying the tag of the step (containing 
the name of the associated class), and a button opening the parameters window. Steps can be 
added, deleted, or reordered using the controls in the upper area. 

 Image display area. Main panel for displaying the original and transformed images. It can show 
a single image belonging to the active algorithm, four images from different steps of the active 
algorithm, or four images from specified steps on each of the four algorithms in a document. 

 
Figure 3. Main GUI of the application. Tools area—upper zone; algorithm area—left, image display—
right. 

For each step of the algorithm, the class parameters are specified in a dedicated window (Figure 
4), accessed via the respective buttons as depicted in Figure 3. The parameters window is generated 
dynamically by the application. Depending on the NrImgsIn property of the respective class, the 
window offers a number of drop-down controls listing all previous tags for choosing the steps 
providing input images for this step. The chosen values are saved in the ImgInNames property of the 
class. The default value (previous step) is for the most common case when the input image is taken 
from the previous step, no matter which function that represents. In this case, ImgInNames is left 
empty. Below the choice of input images, the window lists all “in_” parameters. The user can set 
static values for the parameters, enter expressions to be evaluated at run time (by convention, the 
engine treats the entered text as an expression if it starts with the equal sign “=”), or choose from the 
“out_” parameters of previous steps (this is recorded as an entry in the InParamLinks field of the Step 
object). At the bottom of the window, two buttons allow the user to call the class methods to visually 
show the results (only available after running the algorithm) and to obtain user input. 

Figure 3. Main GUI of the application. Tools area—upper zone; algorithm area—left, image display—right.

For each step of the algorithm, the class parameters are specified in a dedicated window
(Figure 4), accessed via the respective buttons as depicted in Figure 3. The parameters window is
generated dynamically by the application. Depending on the NrImgsIn property of the respective
class, the window offers a number of drop-down controls listing all previous tags for choosing the
steps providing input images for this step. The chosen values are saved in the ImgInNames property
of the class. The default value (previous step) is for the most common case when the input image is
taken from the previous step, no matter which function that represents. In this case, ImgInNames is left
empty. Below the choice of input images, the window lists all “in_” parameters. The user can set static
values for the parameters, enter expressions to be evaluated at run time (by convention, the engine
treats the entered text as an expression if it starts with the equal sign “=”), or choose from the “out_”
parameters of previous steps (this is recorded as an entry in the InParamLinks field of the Step object).
At the bottom of the window, two buttons allow the user to call the class methods to visually show the
results (only available after running the algorithm) and to obtain user input.



Proceedings 2020, 63, 72 6 of 8

Proceedings 2020, 63, 72 6 of 7 

 

 
Figure 4. Example of a “Parameters” window. 

In addition to the main graphical interface and the parameters dialogs, each image processing 
function has the option to output its specific results in a distinct window by overriding the ShowInfo 
method of the base abstract class. This functionality can be accessed from the parameter window of 
a step by clicking the respective button (shown in Figure 4). 

An algorithm can be tested or used at any time by accessing the Run (current algorithm) or Run 
all (all algorithms in document) buttons. This will trigger the main engine of the framework, which 
uses all setup steps and parameter data, along with the associated files to output all intermediate and 
final results—images and extracted information. The images are shown in the image display area and 
can be navigated with the respective GUI buttons while the non-image data can be visualized or 
exported using the ShowInfo method. 

4. Conclusions and Further Research 

The framework described in this paper can be a useful tool in the development of image 
processing and feature extraction algorithms, offering a flexible environment for speeding up the 
design, testing, and ultimate use of such algorithms. It was created to cover most scenarios involved 
in the automatic characterization of nanotube layers, but the generality of its architecture makes it a 
suitable tool for most other image processing applications. 

Besides its core functionality, the framework’s versatility also depends on the number of 
available classes. Each such class implements a specific image processing function, either from 
Matlab’s dedicated toolbox or user-defined. The framework’s repository of classes can easily be 
extended by deriving from the abstract base class. This establishes the template, ensuring 
compatibility between new content and the algorithm running engine. 

The user interface and application structure were designed to ensure maximum flexibility in the 
addition of new components, the construction of algorithms, and their use by final users. However, 
this power and flexibility comes with an overhead in execution time. The implication of running the 
algorithms from a superior programming layer was not studied in this paper. Although the extra 
computational effort introduced by the application itself should not have a significant weight 
compared to the execution time of the computationally intensive image processing functions 
themselves, a further study could establish the actual relative impact of the extra added layer. 

The main purpose for creating the framework is its use in the assessment of TiO2 nanotube 
structure quality by extracting statistical data regarding nanotube uniformity, shape, and size from 
SEM micrographs. Future research will focus on the issue of developing, testing, tweaking, and 
improving algorithms that can optimally achieve this task. 

Figure 4. Example of a “Parameters” window.

In addition to the main graphical interface and the parameters dialogs, each image processing
function has the option to output its specific results in a distinct window by overriding the ShowInfo
method of the base abstract class. This functionality can be accessed from the parameter window of a
step by clicking the respective button (shown in Figure 4).

An algorithm can be tested or used at any time by accessing the Run (current algorithm) or Run all
(all algorithms in document) buttons. This will trigger the main engine of the framework, which uses
all setup steps and parameter data, along with the associated files to output all intermediate and final
results—images and extracted information. The images are shown in the image display area and can
be navigated with the respective GUI buttons while the non-image data can be visualized or exported
using the ShowInfo method.

4. Conclusions and Further Research

The framework described in this paper can be a useful tool in the development of image processing
and feature extraction algorithms, offering a flexible environment for speeding up the design, testing,
and ultimate use of such algorithms. It was created to cover most scenarios involved in the automatic
characterization of nanotube layers, but the generality of its architecture makes it a suitable tool for
most other image processing applications.

Besides its core functionality, the framework’s versatility also depends on the number of available
classes. Each such class implements a specific image processing function, either from Matlab’s dedicated
toolbox or user-defined. The framework’s repository of classes can easily be extended by deriving from
the abstract base class. This establishes the template, ensuring compatibility between new content and
the algorithm running engine.

The user interface and application structure were designed to ensure maximum flexibility in the
addition of new components, the construction of algorithms, and their use by final users. However,
this power and flexibility comes with an overhead in execution time. The implication of running the
algorithms from a superior programming layer was not studied in this paper. Although the extra
computational effort introduced by the application itself should not have a significant weight compared
to the execution time of the computationally intensive image processing functions themselves, a further
study could establish the actual relative impact of the extra added layer.



Proceedings 2020, 63, 72 7 of 8

The main purpose for creating the framework is its use in the assessment of TiO2 nanotube
structure quality by extracting statistical data regarding nanotube uniformity, shape, and size from SEM
micrographs. Future research will focus on the issue of developing, testing, tweaking, and improving
algorithms that can optimally achieve this task.

Funding: This research was supported by the University of Medicine, Pharmacy, Science and Technology “George
Emil Palade” of Târgu Mures, , research grant number 292/2/14.01.2020.

Acknowledgments: The author would like to thank the University of Medicine, Pharmacy, Sciences and
Technology “George Emil Palade” of Targu Mures and the team involved in researching the production of
nanostructures on titanium-based surfaces. The idea and resources for this paper are based on the work and
results of this team. A special mention goes to its leader, Strnad Gabriela, for her vision and support.

Conflicts of Interest: The author declares no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to
publish the results.

References

1. The MathWorks, I. MATLAB Image Processing Toolbox (R2019a), Natick, MA, USA. Available online:
https://www.mathworks.com/products/image.html (accessed on 20 June 2020).

2. Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson: New York, NY, USA, 2018.
3. Nixon, M.S.; Aguado Gonzalez, A.S. Feature Extraction & Image Processing for Computer Vision, 4th ed.;

Academic Press: London, UK, 2020.
4. Petrou, M.M.P.; Petrou, C. Image Processing: The Fundamentals, 2nd ed.; John Wiley & Sons Ltd.: Chichester,

UK, 2010.
5. Schwarzbach, J. A simple framework (ASF) for behavioral and neuroimaging experiments based on the

psychophysics toolbox for MATLAB. Behav. Res. 2011, 43, 1194–1201. [CrossRef] [PubMed]
6. Pan, F.; Xi, X.; Wang, C. A MATLAB-based digital elevation model (DEM) data processing toolbox (MDEM).

Environ. Model. Softw. 2019, 122, 104566. [CrossRef]
7. Cazacu, R.; Grama, L.; Mocian, I. An OOP MATLAB Extensible Framework for the Implementation of

Genetic Algorithms. Part I: The Framework. Procedia Technol. 2015, 19, 193–200.
8. Li, L.; Gong, M.; Chui, Y.H.; Schneider, M. A MATLAB-based image processing algorithm for analyzing

cupping profiles of two-layer laminated wood products. Measurement 2014, 53, 234–239. [CrossRef]
9. Collette, R.; King, J.; Keiser, D.; Miller, B.; Madden, J.; Schulthess, J. Fission gas bubble identification using

MATLAB’s image processing toolbox. Mater. Charact. 2016, 118, 284–293. [CrossRef]
10. Caudrová Slavíková, P.; Mudrová, M.; Petrová, J.; Fojt, J.; Joska, L.; Procházka, A. Automatic characterization

of titanium dioxide nanotubes by image processing of scanning electron microscopic images. Nanomater.
Nanotechnol. 2016, 6. [CrossRef]

11. Strnad, G.; Cazacu, R.; Chetan, P.; German-Sallo, Z.; Jakab-Farkas, L. Optimized anodization setup for the
growth of TiO2 nanotubes on flat surfaces of titanium based materials. MATEC Web Conf. 2017, 137, 02011.
[CrossRef]

12. El Ruby Mohamed, A.; Rohani, S. Modified TiO2 nanotube arrays (TNTAs): Progressive strategies towards
visible light responsive photoanode, a review. Energy Environ. Sci. 2011, 4, 1065–1086. [CrossRef]

13. Ribeiro, A.; Gemini-Piperni, S.; Alves, S.A. Titanium dioxide nanoparticles and nanotubular surfaces:
Potential applications in nanomedicine. In Metal Nanoparticles in Pharma, 1st ed.; Rai, M., Shegokar, R., Eds.;
Springer International Publishing: Basel, Switzerland, 2017; pp. 101–121.

14. Strnad, G.; Portan, D.; Jakab-Farkas, L.; Petrovan, C.; Russu, O. Morphology of TiO2 surfaces for biomedical
implants developed by electrochemical anodization. Mater. Sci. Forum 2017, 907, 91–98. [CrossRef]

15. Gulati, K.; Saso, I. Dental implants modified with drug releasing titania nanotubes: Therapeutic potential
and developmental challenges. Expert Opin. Drug Deliv. 2017, 14, 1009–1024. [CrossRef] [PubMed]

https://www.mathworks.com/products/image.html
http://doi.org/10.3758/s13428-011-0106-8
http://www.ncbi.nlm.nih.gov/pubmed/21614662
http://doi.org/10.1016/j.envsoft.2019.104566
http://doi.org/10.1016/j.measurement.2014.03.035
http://doi.org/10.1016/j.matchar.2016.06.010
http://doi.org/10.1177/1847980416673784
http://doi.org/10.1051/matecconf/201713702011
http://doi.org/10.1039/c0ee00488j
http://doi.org/10.4028/www.scientific.net/MSF.907.91
http://doi.org/10.1080/17425247.2017.1266332
http://www.ncbi.nlm.nih.gov/pubmed/27892717


Proceedings 2020, 63, 72 8 of 8

16. Gulati, K.; Maher, S.; Findlay, D.; Losic, D. Titania nanotubes for orchestrating osteogenesis at the bone–implant
interface. Nanomed. J. 2016, 11, 1847–1864. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://doi.org/10.2217/nnm-2016-0169
http://www.ncbi.nlm.nih.gov/pubmed/27389393
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Conclusions and Further Research 
	References

