E proceedings

Abstract

Two-Dimensional Layered Amorphous Metal Oxide Gas Sensors
(LAMOS) Perspectives and Gas Sensing Properties *

Valentina Paolucci 1'*(, Jessica De Santis 1, Vittorio Ricci

check for
updates

Citation: Paolucci, V.; De Santis, J.;
Ricci, V.; Giorgi, G.; Cantalini, C.
Two-Dimensional Layered
Amorphous Metal Oxide Gas Sensors
(LAMOS) Perspectives and Gas
Sensing Properties. Proceedings 2024,
97,190. https://doi.org/10.3390/
proceedings2024097190

Academic Editors: Pietro Siciliano

and Luca Francioso

Published: 17 April 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1

, Giacomo Giorgi >3 and Carlo Cantalini 1*

Department of Industrial and Information Engineering and Economics, University of L’Aquila, UdR INSTM
of L’Aquila, 67100 L’Aquila, Italy

Department of Civil & Environmental Engineering, Universita Degli Studi di Perugia, 06125 Perugia, Italy
CNR-SCITEC, 06123 Perugia, Italy

Correspondence: valentina.paolucci2@univagq.it (V.P.); carlo.cantalini@univagq.it (C.C.)

Presented at the XXXV EUROSENSORS Conference, Lecce, Italy, 10-13 September 2023.

+ ¥ W N

Abstract: Two-dimensional Layered Amorphous Metal Oxide Sensors (LAMOS) represent a new
class of 2D amorphous oxide (2-MOx) interfaces with unveiled properties in gas sensing applications.
Herein, we report the humidity and gas sensing response of p- and n-type chemoresistive few-layered
(2D) amorphous a-SnO;, a-In;O3, and a-Cr, O3, discussing their reaction mechanisms using DFT
modelling and electrical tests. LAMOS interfaces can be easily prepared by controlled oxidation
in air of a large class of exfoliated 2D TMDs, MCs, and TMTH (Transition Metal Dichalcogenides,
Chalcogenides, and Trihalides) like WS, MoS,, SnSe;, InySes, NiCly, and CrCls, yielding 2D amor-
phous a-MOx interfaces. LAMOS platforms preserving all the surface-to-volume advantages of their
2D precursors show excellent gas sensing properties representing a new class of material for gas
sensing applications.
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1. Introduction

The intrinsic thermodynamic instability (AG < 0) of 2D exfoliated TMDs/MCs/TMTHs
(Transition Metal Dichalcogenides/Metal Chalcogenides/Transition Metal Trihalides),
demonstrated by their spontaneous oxidation in dry/wet air laboratory conditions, rep-
resents a great opportunity to develop, via suitable thermal treatment, template-self-
assembled, amorphous-metal-oxide (a-MOx) skin layers over crystalline 2D exfoliated
TMDs/MCs/TMTH.

Departing from liquid-phase exfoliated TMDs/MCs/TMTHSs, annealing in air at
temperatures below the crystallization temperature of the native oxide, either amor-
phous/crystalline 2D heterostructures of --MO/TMDs [1,2], or fully oxidized amorphous
2D a-MOx interfaces can be prepared [3] with unexploited surface properties.

Herein, we demonstrate that the oxidation/amorphization process can be extended to
a large variety of exfoliated TMDs (WS;), MCs (SnSep), and TMTH (CrCls) where sulfur,
selenium, or chlorine atoms can be easily displaced by O, atoms under controlled oxidation
conditions, producing 2D layered n-type a-WQOj3, a-5nO,, and p-type a-Cr,O3 2D flakes
spin-coated as thin films, with excellent sensing properties to Hy, NH3, H,S, and NO,, and
long-term stability properties. This research opens new perspectives for a novel generation
of layered interfaces (LAMOS), exploiting new interaction mechanisms of these van der
Waals amorphous semiconductor interfaces with the environment.

2. Materials and Methods

Liquid-phase exfoliated commercial SnSe2, WS2, and CrCl3 powders were annealed
in air at different temperatures (180 °C-300 °C) and times (24-70 h), and spin-coated over
interdigital electrodes provided with platinum electrodes and a back side heater. Platforms
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have been tested to sub ppm H2, NH3, H2S, NO2 gases and humidity at a 100 °C operating
temperature.

3. Discussion

Figure 1a shows the SEM picture of a spin-coated thin film over interdigitated elec-
trodes (light regions) of 2D 4-5nO2 flakes of around 300 nm lateral size (Figure 1b,c), with a
vertical height of approximately 20 nm, forming localized inter-sheet junctions between
the flakes. Figure 1d shows the HRTEM of exfoliated flakes of 2D SnSe2 exhibiting a fully
crystalline and ordered 2D texture extending up to the edge of the flake (see electronic
magnification, Figure 1d). After annealing, the 2D SnSe?2 is transformed in a-5nO2, whose
amorphous structure is shown in Figure le. Grazing incidence XRD and XPS analysis of
the annealed SnSe2 flakes confirms the formation of the fully amorphous a-SnO2 layer with
a chemical composition matching that of SnO2.
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Figure 1. (a) SEM picture of 2-SnO2 spin-coated flakes over Si3N4 substrates with Pt-finger-type elec-
trodes; (b) high-magnification SEM of terraced as-exfoliated SnSe; flake; (c) lateral size distribution
of exfoliated SnSey; (d) HRTEM of the as exfoliated crystalline 2D-SnSe2; (e) HRTEM of the a-SnO2
flake after oxidation of the 2D-SnSe2.

Considering humid air as a natural background in practical gas sensing applications,
we preliminary applied combined density function theory and ab initio molecular dynamics,
demonstrating that a dissociative water mechanism occurs over .-MOx surfaces, leading
to the formation of chemisorbed hydroxyls, as shown in Figure 2a. Experiments that
aimed to investigate the humidity cross-response on NO2 and H2 sensing highlighted
that increasing the relative humidity increases the degree of hydroxylation, resulting in an
increase/decrease in the sensor signal response (i.e., Rg/Ra or Ra/Rg) to 1 ppm NO2 and
100 ppm H2, as shown in Figure 2b,c, respectively.
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Figure 2. (a) Schematization of H20 dissociative chemisorption mechanism over 2-SnO2 at a 100 °C
operating temperature; (b,c) adsorption/desorption responses to 1 ppm NO2 and 100 ppm H2 with
increasing RH.

Adsorption/desorption mechanisms of water and gases over amorphous interfaces
(a-MOx), investigated via theory and experiments, resulted in being congruent with those
of crystalline metal oxides. Long-term stability properties of the electrical response to
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humidity and different gases, over a period of one year, exhibit no remarkable fluctuations
in the base line resistance (BLR) or the sensor’s signal response (i.e., RRs), demonstrating
that the amorphization/oxidation strategy effectively passivates the material from further
degradation, while preserving an excellent gas sensing response.
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