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Abstract: Remote sensing is important to precision agriculture and the spatial resolution provided
by Unmanned Aerial Vehicles (UAVs) is revolutionizing precision agriculture workflows for
measurement crop condition and yields over the growing season, for identifying and monitoring
weeds and other applications. Monitoring of individual trees for growth, fruit production and
pest and disease occurrence remains a high research priority and the delineation of each tree
using automated means as an alternative to manual delineation would be useful for long-term
farm management. In this paper, we detected citrus and other crop trees from UAV images using
a simple convolutional neural network (CNN) algorithm, followed by a classification refinement
using superpixels derived from a Simple Linear Iterative Clustering (SLIC) algorithm. The workflow
performed well in a relatively complex agricultural environment (multiple targets, multiple size trees
and ages, etc.) achieving high accuracy (overall accuracy = 96.24%, Precision (positive predictive
value) = 94.59%, Recall (sensitivity) = 97.94%). To our knowledge, this is the first time a CNN has been
used with UAV multi-spectral imagery to focus on citrus trees. More of these individual cases are
needed to develop standard automated workflows to help agricultural managers better incorporate
large volumes of high resolution UAV imagery into agricultural management operations.

Keywords: CNN; deep learning; superpixels; precision agriculture; UAS; feature extraction; citrus;
tree identification

1. Introduction

Precision agriculture plays an important role in agricultural sustainability [1,2] and since at least
the 1980s, remote sensing has been a valuable component of these efforts [3]. Remote sensing has
been important in soil management [4,5], pest management [6,7], weed detection [8–11], vegetation
health and vigor [12], among other needs. An important research focus for efficient management
of tree plantations and orchards has been developing accurate methods to delineate and enumerate
individual trees from high resolution optical imagery. The combination of spectral data from individual
tree canopies with field data can lead to improved yield prediction, understanding the growing
characteristics or detection of anomalies in the growing process of trees [13,14].

Algorithms for feature extraction or segmentation from high resolution imagery have increased in
the last decades with the proliferation of high spatial resolution imagery [15]. Many algorithms exist for
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agricultural tree crown detection and enumeration using high-resolution remote sensing imagery and
Lidar (Light Detection and Ranging) [16,17] and high resolution imagery alone [18–23]. For example,
Santoro, et al. [24] proposed an automatic four-step procedure for individual fruit tree identification
using GeoEye-1 imagery by minimizing typical background noise from orchards. Ozdarici-Ok [25]
detected and delineated individual citrus trees from GeoEye-1 images using vegetation extraction,
fast radial symmetry transform and simple object-based hierarchical operations. The authors showed
that an object-based approach achieved higher accuracy than a pixel-based approach in the detection
and delineation rates. Özcan, et al. [26] used probabilistic voting for crown detection and watershed
segmentation for crown delineation in order to help forecasting the crop yield in an olive, peach, pear
and citrus orchard using Google Earth images. Enumeration and delineation of oil palm trees from
high-resolution satellite imagery has also received important attention [27,28].

The advent and use of unmanned aerial vehicles (UAVs) in precision agriculture represents an
important milestone in the acquisition and analysis of high resolution imagery on demand [2,29,
30]. UAVs represent a low-cost method for image acquisition with successful and promising usage
in tree identification analysis, particularly in agricultural settings. For example, Malek, et al. [31]
identified palm trees from UAV images using an extreme learning machine classifier. Jiang, et al. [32]
proposed an improved scale-space filtering algorithm in a GPU-environment for papaya tree detection,
achieving high accuracies with an increase in the speed of computation. In an agrosilvopastoral
environment, Surový, et al. [33] successfully estimated position and heights of tree plantations based
on a 3D point cloud and orthophoto derived from UAV images. Goldbergs, et al. [34] used the
canopy maxima and watershed segmentation for individual tree detection in Australian Savannas
based on structure-from-motion (SfM) 3D point clouds from a low-cost UAV. Díaz-Varela et al. [35]
used a combination of DSM local maxima and object-based image analysis (OBIA) method using
UAV orthomosaic imagery for the estimation of olive tree crown parameters (tree height and crown
diameter). A similar approach was used by Torres-Sánchez et al. 2015 [14]. There is also extensive
literature about the use of UAVs and individual plant detection to map nuisance weeds in agricultural
fields [8,30,36].

Deep-learning (DL) algorithms are increasingly used in remote sensing applications [37]. Deep
Learning, as a subset of Machine Learning (ML) and Artificial Intelligence (AI), includes a variety
of methods that automatically learn features from large amounts of data and perform well with
large numbers of training samples [38]. And while AI, ML and DL algorithms were introduced
into the geoscience and remote sensing community some time ago [39,40], we are experiencing their
increased use and appreciation [41–44] for their ability to accurately solve common remote sensing
analysis problems including classification and segmentation. Common DL algorithms include various
neural networks and other unsupervised and supervised feature-learning algorithms. Deep-learning
techniques play an important role in agriculture applications, especially for plant enumeration and
identification [45].

Recently, many researchers have been focusing on convolutional neural networks (CNNs)
for the segmentation of high resolution imagery. CNNs are hierarchical architectures that can
be trained on large-scale datasets to perform object recognition and detection [46]. For example,
Guirado, et al. [47] compared convolutional neural networks (CNNs) with OBIA methods for scattered
shrub detection from Google Earth images, achieving higher performance with less human intervention
and transferability of the CNN model used. Li, et al. [45] detected and counted oil palm trees in
Malaysia from QuickBird images using a CNN framework. They detected more than 96% of the oil
palm trees, outperforming three other state-of-the-art methods for tree detection (i.e., local maxima,
template matching and artificial neural networks). With a more detailed analyses, Chen, et al. [48]
counted apples and orange fruits in an unstructured environment based on fully convolutional
networks and Wang et al. [49] and Sa et al. [50] implemented Faster Region-based CNN (Faster R-CNN)
algorithms for mango fruit flower detection and fruit detection (sweet pepper and melon), respectively.
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The exploitation of deep learning techniques for tree identification from UAV imagery is still under
development and, to our knowledge, a CNN classification has not been applied yet for multi-age citrus
tree identification in an agricultural orchard. In this study, we provide a simple cases study of citrus
trees detection from UAV images using a combination of a CNN framework with post-processing using
object-based image analysis. Our intent was not to test this methods’ performance in all conditions or
with numerous targets: this is a case study using imagery collected in ideal conditions, as is common
practice with agricultural managers, to examine the performance of a novel algorithm, to provide
the impetus for further exploration. The study area is located in one of the world’s most productive
agricultural areas (San Joaquin Valley, California) and is part of the Lindcove Research and Extension
Center of the University of California.

2. Materials and Methods

2.1. Study area

The study area is located at the Lindcove Research and Extension Center (LREC) in Tulare County,
CA (36.360981◦N, −119.062048◦W) (Figure 1). The Center has been in operation since 1959 and covers
75 ha (190 acres) in the San Joaquin Valley. The Center grows nearly 600 tree crop varieties, mostly
citrus species, with trees of various ages and sizes. The San Joaquin Valley has hot, dry summers and
cool rainy winters and is highly productive agriculturally, contributing the majority of the California’s
agricultural production. Citrus is an important crop planted on over 100,000 ha (250,000 acres) in
California and worth nearly $2B annually [51]. Field and laboratory research at LREC focuses on the
citrus crop but also includes projects on avocado, olive, walnut and pomegranate crops [52]. LREC
research includes the development of new citrus varieties, determining the best rootstock and fruit
producing (citrus, avocado, walnut and pomegranate) combinations for San Joaquin Valley conditions
and developing and implementing novel methods for pest and disease control that protect natural
enemies and honey bees. Experimental design includes planting of research trees in fields of common
or mixed crop varietals, with same or varying rootstock and of similar or varying age. A reference tree
database of 2,912 individual trees was created previously by manually locating individual trees on
high resolution (1 m) National Aerial Imagery Program (NAIP) imagery from 2012. Each tree in the
point file was attributed with its location, variety, rootstock and planting date. This database was used
for subsequent validation.
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Figure 1. Study area location near Visalia, California (left) and a false color image as acquired by the
UAV with a spatial resolution of 0.12 m and covering 64.6 ha (right).

2.2. UAV Imagery Collection

Imagery was acquired January 31st, 2017 in clear conditions between the hours of 13:00 and 14:00
to minimize effects of shadowing on the images. The imagery was collected as a proof-of-concept, as
an alternative to NAIP as a high resolution image source for subsequent management and research
planning. A senseFly eBee fixed-wing UAV was used (wingspan of 109.7 cm) with a Parrot Sequoia
multi-spectral camera with average along- and across-track overlaps of 75% and 75%, respectively.
To maximize resolution and coverage area, the UAS was operated at a consistent 104m AGL using
SRTM terrain data to ensure consistent altitudes across the captured area. The Parrot Sequoia camera
has four sensors (green: 530–570 nm, red: 640–680 nm, red edge: 730–740 nm and near-infrared:
770–810 nm), a RGB composite sensor and an external irradiance sensor with GPS and IMU placed
on top of the UAV to capture sensor angle, sun angle, location and irradiance for each image during
flight. This additional sensor data were primarily used for image calibration. Two image acquisition
missions were performed following a standard flight protocol where physical radiometric targets were
imaged prior to flight and a systematic gridded flight pattern was used. 4,574 multispectral images
were collected (flight 1 = 3,985 and flight 2 = 589) (Figure 2). Flight planning and mission control
software was SenseFly’s eMotion software [53].
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Figure 2. Examples of green (a), red (b), red edge (c) and near infrared (d) bands as acquired by the
senseFly eBee fixed-wing UAS using a Parrot Sequoia multi-spectral camera.

2.3. Photogrammetric and Image Processing

Imagery was photogrammetrically processed using Pix4D Mapper software [54]. To ensure
absolute measurements, radiometric target data was used to calibrate the reflectance values prior to
the photogrammetric process. Image tie-points were then generated for locations with two or more
overlapping images and used to produce a 4-band ortho-imagery mosaic with GSD of 12.841 cm in
WGS1984, UTM Zone 11N projection (Figure 2). The red and near infrared bands were used to create
a Normalized Difference Vegetation Index (NDVI) image using the formula (NIR−Red)/(NIR+Red).

2.4. CNN Workflow

The analysis was developed and tested using a 64-bit operating system, with Intel® Core™
i5-6500 CPU @ 3.20 GHz and 16 GB RAM. We applied the CNN workflow using Trimble’s eCognition
Developer 9.3 [55], which is based on the Google TensorFlow API [56]. Trimble’s eCognition Developer
is one of the most popular software for object-based image analysis and the application of the
CNN using this platform gave the opportunity of integrating the CNN approach with object-based
post-processing of the results, thus performing the entire analysis in one software. Application of the
CNN in eCognition consisted of three steps: (1) derivation of 4,000 training samples of 40 × 40 pixels
for the three classes used (5 minutes), (2) training the CNN model (13 minutes) and (3) applying the
trained CNN model to the validation area not used in training (2 minutes).

2.4.1. CNN Training and Classification

Finding the best architecture for the CNN is an ongoing debate in the world of deep learning.
It usually starts from a simple model and the hyper-parameters are tuned iteratively until a good
model is found for a specific application. Our study area was first divided into a training area in
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the north and a validation area in the south. An initial CNN was trained with three classes - trees,
bare soil and weeds - with 4,000 samples per class. The samples were derived based on the dataset of
manually identified individual trees (trees in the north used for training and trees in the south used
for validation) and randomly generated samples in areas without trees, which were classified as bare
soil or weeds. To increase the number of training samples and the robustness of CNN, we derived
a 3 × 3 pixel buffer area around our training point samples. In this way, every tree is now represented
by 9 pixels around the center of the tree and the algorithm will randomly choose locations out of these
9 pixels. Training samples were patches of 40 × 40 pixels because this size best matched the size of
the targeted trees. Trial-and-error approaches with sample sizes smaller or bigger than 40 × 40 pixels
were tried; values smaller than this increased the multiple-crown detection errors while values bigger
than 40 × 40 missed some of the small trees. A size of 40 × 40 was also in line with most of the tree
sizes in our study areas (Figure 3).

All 4 spectral bands from the UAV dataset were used in the training step (i.e. green, red, near
infrared and red edge). Examples of the training samples are shown in Figure 3. We chose a simple
CNN model that uses one hidden layer that convolve the input layers using different kernels and
generating different feature maps [57]. For this hidden layer, a kernel size of 4 × 11 × 11 (4 bands and
11 × 11 pixels) was used for convolution and 40 distinct feature maps were generated. Max pooling
was applied to reduce the resolution of the feature maps using a 2 × 2 filter with a stride of 2, both in
horizontal and vertical directions. During the training of the CNN, the learning rate was set to 0.0015
after trial-and-error tests. This parameter dictates the amount by which weights are adjusted during
the statistical gradient descent optimization. Lower values of the learning rate can slow down the
process of training or finding suboptimal weights by finding local minima, while higher values will
improve speed but increase the risk of missing the optimal minimum [57]. We used 5,000 training
steps with 50 training samples used at each training step.

Figure 3. Example of training sets used. Each image is an example of one 40 × 40 pixel training for:
(a–e) trees, (f–j) bare ground and (k–o) weeds.

The initial CNN model ran quickly (13 minutes) and produced a heatmap showing probability
values of tree detection - closer to 1, better the likelihood of target presence. To extract individual tree
locations, we further smoothed the resulted heatmap with a 15 × 15 Gaussian filter and detected the
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trees by finding the local maxima in a 9 × 9 pixel neighborhood, with values higher than a certain
threshold (0.5).

This initial classification resulted in some confusion between weeds located at the edges of parcels
and trees and there was some difficulty in distinguishing small trees from large trees. The first problem
was solved by removing detected “trees” with low NDVI (<0.7). The second challenge required
additional processing, detailed in Section 2.4.2.

2.4.2. Classification refinement

Trees with large canopies were identified multiple times by the CNN workflow. In order to
aggregate the targets representing the same tree, we segmented the heatmap produced by CNN
(the probability of tree detection) and the NDVI layer into superpixels. In this case, the process
constrained the segmentation towards circular objects in the heatmap and constrained the segmentation
to differentiate between green and bare soil in the NDVI layer. Superpixels have been used as
a pre-processing stage to over-segment high resolution imagery into low-level groups, thus simplifying
later computation [58]. We used the Simple Linear Iterative Clustering (SLIC) algorithm [58,59] because
of its simplicity and applicability. SLIC has only one parameter, k, which is the desired number of
equally sized superpixels to be generated. Since we were interested in larger trees identified multiple
times, we used larger superpixels sizes than the CNN training patch size (i.e., 40x40 pixels), because
we assumed that trees larger than this size were generally detected multiple times. Superpixels sizes
were 40 x 40, 41 x 41, 42 x 42, . . . 50 x 50 pixels, values higher than these did not improve accuracy.
For each iteration, superpixels that contained multiple points detected as tree were selected. Only
those with shape close to a circle (Roundness less than 0.5; values closer to 0 indicate a perfect circle)
and with a symmetric shape (asymmetry less than 0.5; this feature computes the variance in x-direction
and y-direction and values closer to 0 indicate a symmetric shape), thus avoiding creating an object
from two consecutive trees, were selected, the points merged and the centroid of the superpixels was
selected as the newly identified tree (Figure 4).

2.5. Validation

We used the manually delimited reference tree dataset (n = 2,912) for validation. As the reference
dataset included only trees, our validation process focused on trees alone and ignored weeds and bare
ground. Each tree identified by the CNN method was compared to its closest manually located tree.
We used common evaluation statistics for binary classification [60–62] and calculated True Positives
(TP) (a tree is correctly identified), False Positives (FP) (a tree is incorrectly identified; a commission
error) and False Negatives (FN) (a tree is missed; an omission error). TP, FN and FP indicate perfect
identification, under-identification and over-identification, respectively. We then calculated Precision
(P), Recall (R) and F-score (F). Precision (i.e., positive predictive value) describes the correctness
of detected trees and how well the algorithm dealt with false positives (Equation (1)), Recall (i.e.,
sensitivity) describes the tree detection rate and how well the algorithm dealt with false negatives
(Equation (2)) and the F-score is the harmonic mean of Recall and Precision and reports the overall
accuracy taking both commission and omission errors into consideration (Equation (3)).

P = TP/(TP + FP) (1)

R = TP/(TP + FN) (2)

F-score = 2*((P * R)/(P + R)) (3)

3. Results

The first pass at classification using CNN performed well but resulted in some confusion between
weeds located at the edges of parcels and trees and was challenged in distinguishing small trees from
large trees and in many cases, multiple crowns were detected within single large trees (Figure 4d).
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The second classification phase iteratively segmented the smoothed heatmap and NDVI layer using
SLIC superpixels of sizes larger that 40 × 40 pixels (Figure 4e,f) reduced the number of mistaken tree
identifications results and resulted in better matching with the ground reference samples (Figure 4i).

The final classified image is shown in Figure 5. The CNN approach accurately detected many
similar sized trees in the southern portion of LREC (the test region) (Figure 5a) and effectively dealt
with medium size trees (Figure 5b), similar sized trees (Figure 5d) and heterogeneous tree canopies
sizes (Figure 5f) that were correctly classified. Some refinements were needed where large canopy trees
were present to reduce the effect of multiple crown detection (Figure 5c). In the final classification,
a total of 3015 individual trees were detected, compared to 2912 reference trees. The TP (truly detected
trees) was 2852 FN (missed trees) was 60 and FP (falsely added trees) was 163. Higher value of falsely
detected trees was influenced by former existing trees with in-between weeds that left a pattern in
the landscape similar with a tree canopy (e.g., 72 false detected trees in southern part of the test area).
Missed trees are mostly related to newly planted trees with very small canopies that are not detectable
by the algorithm.

By combining an object-based post-processing approach for the CNN results of tree detection,
the accuracy of the results was improved significantly. Without refinement, the CNN approach
achieved an F-score of 78%, Precision was 65% and Recall 98%. After reducing the effect of multiple
crown detection, the overall accuracy (F-score) for the final classification was 96.24%, with a Precision
of 94.59% and Recall of 97.94%.
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Figure 4. Probability heatmap of tree presence resulted from CNN with values between 0 and 1 (black
to white) (a). To reduce the effects of possible noise, the heatmap was smoothed (b) and trees were
identified using a threshold of 0.5 (c). The subset depicted here demonstrates the problem of multiple
crown detection for large trees (d) that was solved by iteratively segmenting the smoothed heatmap and
NDVI layer using SLIC superpixels of sizes larger that 40x40 pixels (e). Multiple crown detection were
identified (f) and a single hit per tree was recomputed (g). The results after the refinement (h) better
matched the ground reference samples (i).
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Figure 5. Final tree detection from the test area with white crosses indicating the location of trees:
(a) the southern portion of LREC; (b) medium size trees correctly classified; (c) large canopy trees with
reduced effect of multiple crown detection, after the object-based refinement; (d) similar sized trees
were correctly classified; and (e) heterogeneous tree canopies sizes were correctly classified.
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4. Discussion

In the last decade, there has been a proliferation in literature reviewing the application of
UAV imagery collection and analysis for ecological applications, natural resource monitoring and
agricultural management [29,63,64]. Literature concerning the use of UAVs for agriculture application
are increasing rapidly, particularly in the arena of precision agriculture. UAV workflows are
increasingly being added to agricultural management for precise observation, measurement and
monitoring of crop condition over the growing season [14,65–68]; for estimation and measurement of
crop yields [69–71], for identifying and monitoring weeds [8,30,36] and for the precise application of
pesticides or fertilizers [72]. Core to these needs is the fundamental task of feature (or object) extraction.

In an agricultural setting, feature extraction involves the ability to extract from high resolution
optical imagery individual plants (e.g., trees and weeds) from the image mosaic. And while agricultural
settings can be more uniform than natural ones, the case in this paper focused on a complex orchard
environment in a research setting, with multiple varieties of tree crops of different ages grown, resulting
in high scene spatial variability. In such cases, the complexity of spatial and structural patterns of
targets in high resolution imagery can make feature extraction difficult. In our case, we used a two-step
method that employed CNN as an initial classifier and then a Simple Linear Iterative Clustering (SLIC)
algorithm to refine results and successfully deal with the multi-scale problem of varying tree age.

Our accuracy results are high (Overall Accuracy, F-score = 96.24) and comparable with other
studies that used UAV imagery for tree detection. Torres-Sánchez et al. used DSMs from UAV-based
multi-spectral data with OBIA methods to calculate the geometric features of individual olive trees
(n = 135) resulting in 97% accuracy [14]. Using different methods, Wallace et al. investigated the ability
to detect individual trees in boreal forests using UAV-based hyperspectral imagery and the associated
point cloud [73]. They were examining a comparable number of trees (4151 reference trees) as in our
study but in a forested environment. In a smaller study (367 reference trees) using a local-maxima
based algorithm on UAV-derived Canopy Height Models, Mohan et al. reported an F-score of 86%
in an open canopy mixed conifer forest in Wyoming, USA [74]. Not surprisingly, UAV-based LiDAR
data yields very high overall accuracies (typically around 98%) for individual tree detection [75,76]).
Ours is the first study to use CNN on the imagery data alone to achieve highly accurate individual
tree detection.

UAV imagery collection for agricultural applications is increasing globally and more of these
individual cases are needed to develop more standard workflows that will help field and research
managers deal with large volumes of high resolution imagery. UAV collected imagery can be
extremely high resolution: ground sample distance (GSD) can range from a few cm [14,33] to much
higher, depending on flying height and camera. At these fine resolutions, image sizes will add up.
For example, a 4-band image mosaic of a 100 ha (250 acre) study area at 10 cm GSD can be moderate
in size (e.g., 0.5 Gb) but the complete data package containing the multiple input images and final
photogrammetric products can be 5 Gb in size. With repeat missions over the growing season and
over larger study areas, data volumes will rise.

While this work highlighted one case study using a simple convolutional neural network, deeper
CNNs with multiple hidden layers or ability to regionalize data should be tested to understand
improvements. For example, newer CNN algorithms called Region Based CNNs (e.g., Fast R-CNN,
Faster R-CNN) that detect objects by identifying regions that are most likely to contain the object to be
identified [77,78] are proving to be fast and efficient in detecting objects. These have most often been
used in detection of cars (e.g., [79]) but there is a growing literature around detection of agricultural
features such as flowers and fruit [49,50].

Individual case studies are critical in a new and growing field and integration of multiple
missions over larger study areas and with different targets can provide elements for larger projects
focused on: generalizable results across conditions and targets [77]; camera, platform and protocol
benchmarking (e.g., as has been done for airborne LiDAR [80]), data fusion and scaling [81] and
multi-temporal analysis. For example, there is a burgeoning field of remote sensing analysis dedicated
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to multi-temporal data analysis. The increase in multitemporal scenes acquired by the Landsat
and Sentinel satellites and cubesats such as Planet have catalyzed growth in multi-temporal and
multi-scalar image fusion algorithms [82–84] that assist in understanding land cover and agricultural
dynamics. UAVs will play a role here: the ability to acquire high-resolution imagery on demand
through the growing season will necessarily mean that these data will be mined for their ability to
provide multi-temporal insights to agricultural plant phenology, yield, vigor and so forth. However,
UAV images do have additional challenges when compared to satellite based platforms. For example,
multi-sensor fusion is challenged by poor georegistration of multi-date UAV images that can limit the
effectiveness of any subsequent analysis of agricultural dynamics [85]. Additionally, flying height,
camera specifications and lack of spectral calibration can influence the final accuracy of resulting image
mosaics [86].

5. Conclusions

Methods to delineate, enumerate and monitor individual trees in an agricultural setting from
high resolution optical imagery are required for efficient and precise crop management. Monitoring
of individual trees for growth, fruit production and pest and disease occurrence remains a high
research and operational priority and the delineation of each tree using automated methods as an
alternative to manual delineation will be useful for future long-term crop management. There are
many methods for feature extraction, for example, object-based image analysis (OBIA) [8,15,20] and
watershed segmentation from DSM [14,35] but these methods can struggle to deal effectively with
multi-scale objects and landscapes with complex spatial patterning. Machine Learning methods in
remote sensing for classification and segmentation are on the increase for their ability to accurately
solve common remote sensing analysis problems in large datasets given sufficient training. In this
paper, we showed a simple ML method (convolutional neural networks) performed well on a relatively
complex (multiple targets, multiple size trees, etc.) tree crop research property with high accuracy
(overall accuracy = 96.24%, Precision (positive predictive value) = 94.59%, Recall (sensitivity) = 97.94%).
To our knowledge, this is the first time a CNN has been used with UAV imagery to focus on
the citrus crop. As UAV imagery collection for agricultural applications is increasing globally,
more of these individual cases are needed to develop more standard workflows that will help
field and research managers better incorporate large volumes of high resolution imagery into their
management operations.
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