
drones

Article

Survey on Coverage Path Planning with Unmanned
Aerial Vehicles

Tauã M. Cabreira *,† , Lisane B. Brisolara † and Ferreira Paulo R. Jr. †

Programa de Pós-Graduação em Computação (PPGC), Universidade Federal de Pelotas (UFPel),
96010-610 Pelotas, Brazil; lisane@inf.ufpel.edu.br (L.B.B.); paulo@inf.ufpel.edu.br (P.R.F.J.)
* Correspondence: tmcabreira@inf.ufpel.edu.br; Tel.: +55-53-3284-3890
† These authors contributed equally to this work.

Received: 4 December 2018; Accepted: 29 December 2018; Published: 3 January 2019
����������
�������

Abstract: Coverage path planning consists of finding the route which covers every point of a certain
area of interest. In recent times, Unmanned Aerial Vehicles (UAVs) have been employed in several
application domains involving terrain coverage, such as surveillance, smart farming, photogrammetry,
disaster management, civil security, and wildfire tracking, among others. This paper aims to explore
and analyze the existing studies in the literature related to the different approaches employed in
coverage path planning problems, especially those using UAVs. We address simple geometric flight
patterns and more complex grid-based solutions considering full and partial information about the
area of interest. The surveyed coverage approaches are classified according to a classical taxonomy,
such as no decomposition, exact cellular decomposition, and approximate cellular decomposition.
This review also contemplates different shapes of the area of interest, such as rectangular, concave and
convex polygons. The performance metrics usually applied to evaluate the success of the coverage
missions are also presented.

Keywords: unmanned aerial vehicles; coverage path planning; terrain coverage; exact cellular
decomposition; approximate cellular decomposition

1. Introduction

Unmanned Aerial Vehicles (UAVs) have increasingly been used in a wide range of applications,
such as surveillance [1], smart farming [2], photogrammetry [3], disaster management, civil security [4],
wildfire tracking [5], cloud monitoring [6], structure supervision [7], and power line inspection [8].
The UAVs consist of aerial platforms with no pilots on-board the vehicle. Such platforms are remotely
and manually operated by a human, but they also perform automated pre-programmed flights.
Autonomous flights can be executed using intelligent systems integrated with on-board sensors.

The Coverage Path Planning (CPP) problem is classified as a motion planning subtopic in robotics,
where it is necessary to build a path for a robot to explore every location in a given scenario [9]. Despite
the technological progress in this type of aerial platform regarding autonomous flight, it is important
to emphasize that the phases concerning take-off, mission execution, and landing are usually assisted
by two people for each UAV due to safety measures. The pilot supervises the mission and may change
the flight mode to manual in case of a failure or an emergency during the flight, while the base operator
monitors the navigation data during the mission execution, such as altitude variation and battery
discharge [10].

1.1. UAV Classification

The UAVs can be classified into two main top-level configurations, fixed-wing and rotary-wing.
Both types present specific advantages and challenges considering the control and guidance system [11].
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The fixed-wing UAV presents rigid wings with an airfoil which allows flying based on the lift created
by the forward airspeed. The navigation control is obtained using control surfaces in the wings (aileron,
elevator, and rudder). The aerodynamics support longer endurance flights and loitering, also allowing
high-speed motion. Besides, these vehicles can carry heavier payloads in comparison with rotary-wing
vehicles. However, these platforms need a runway to take-off and land and are not able to perform
hovering tasks, since they need to constantly move during missions [12].

The rotary-wing presents maneuverability advantages using rotary blades. These platforms are
able to perform vertical take-off and landing (VTOL), low-altitude flights, and hovering tasks. The use
of rotary blades produces aerodynamic thrust forces and does not require relative velocity [11].
This type of aerial platform can also be classified into single-rotor (helicopter) and multi-rotor
(quadcopter and hexacopter).

The single-rotor has two rotors, the main one for navigation and the tail one for controlling the
heading. These vehicles are usually able to vertically take-off and land and they do not require airflow
over the blades in order to move forward. Instead, the blades themselves create the needed airflow.
A gas motor enables even longer endurance flights in comparison with multi-rotors. This type of
vehicle can carry high payloads, such as sensors and manipulators while performing hovering tasks
and long-time flights in outdoors missions, However, these platforms present mechanical complexity
and elevated cost [12].

The multi-rotor can be divided into subclasses regarding the number of rotor blades. The most
common are the quadcopter and the hexacopter, but tricopters and octocopters have also been
developed. Multi-rotors are fast and agile platforms and are able to perform demanding maneuvers.
They are also capable of hovering or moving along a target. Nevertheless, these platforms have limited
payload and endurance. Mechanical and electrical complexity is quite low as these parts are abstracted
away within the flight and motor controllers [12]

There is also the hybrid UAV, which is a specific type of aerial platform including the advantages
of both, fixed-wing and rotary-wing, thus having the capability of VTOL, high-flight speed and
increased flight time. These vehicles can be classified into Convertiplanes and Tail-Sitters. The former
one consists of a hybrid platform that performs the basic maneuvers keeping the aircraft reference
line in the horizontal direction. The latter one is a platform able to vertically take off and land on
its tail, tilting forward in order to achieve horizontal flight [13]. Finally, other types of classifications
related to UAVs may be found in the literature considering mission requirements, such as altitude and
endurance. In these cases, the aerial platforms can be categorized considering low, medium, and high
altitude, and also considering short and long endurance [14].

1.2. Overview of the Existing Surveys

A wide range of surveys presenting studies related to control, perception, and guidance
of UAVs is addressed in the literature, such as system identification approaches for low-cost
UAVs [15], trajectory planning with and without differential constraints through an environment with
obstacles [16], UAV autonomous guidance under uncertainty conditions [17], helicopter navigation
and control techniques [11], and perception and state estimation for UAVs [12]. Considering specific
applications, Kanistras et al. [18] presents a survey exploring studies of UAVs employed in traffic
monitoring and management, while Colomina and Molina [19] addresses the UAV technology for
precision agriculture. A review on landing techniques is presented by Gautam et al. [20], providing a
wide outlook on the controller design.

Choset [9] presents a survey on CPP for mobile robots, where the author classifies the approaches
either as heuristic or complete. In the heuristic approaches, the robots follow a set of simple rules
defining their behavior, but such methods do not present a guarantee for coverage success. On the
other hand, complete methods can provide these guarantees using the cellular decomposition of
the environment, which consists of space discretization into cells to simplify the coverage in each
sub-region. Another important issue mentioned by the author is flight time, which can be minimized
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using multiple robots and reducing the number of turning maneuvers. Finally, the author highlights
the available environment information. Several approaches admit previous knowledge of the robot
regarding the search area (offline), while sensor-based approaches acquire such information in real-time
during the coverage (online).

The most recent survey regarding CPP presents several approaches and techniques to
perform mostly missions with land vehicles [21]. Considering exploration under uncertainty,
Juliá et al. [22] present a study about unknown environment mapping strategies. The robots are supposed
to autonomously explore the environment to collect data and build a navigation map. With the absence of
global positioning information, it is necessary to constantly correct the robot positioning and orientation
estimation using simultaneous localization and mapping techniques. Multiple robots can be employed
to either reduce exploration time or improve map quality, but require coordination strategies. In such
strategies, the robots may share perceptions and construct a common map of the workspace. This global
map may be built either as a centralized or distributed way.

1.3. Motivation of This Review

The existing surveys related to UAVs address important issues, such as control, perception, and
guidance. A few surveys address the CPP problem, but only considering land vehicles and briefly
mentioning the UAVs as an extension of these vehicles. Although land exploration techniques revised
in the previous surveys can be extended and applied to UAVs, several additional aspects must be
considered when dealing with aerial vehicles such as vehicle’s physical characteristics, endurance,
maneuverability limitations, restricted payload, environmental external conditions, among others.
On-board cameras and sensors can increase the vehicle’s weight and reduce endurance, which is
quite limited especially in multi-rotors. In such vehicles, endurance is about 20–25 min, even in more
sophisticated models released in 2018 [23]. Moreover, turning maneuvers [24,25] and wind fields [26]
increase energy consumption in outdoor missions.

This paper presents a survey on coverage path planning. Our review considers only approaches
related to unmanned aerial vehicles. The classic taxonomy defined by Choset [9] was adopted to classify
the existing approaches according to the cellular decomposition technique employed. Approaches with
no decomposition and methods using exact and approximate cellular decomposition are considered.
The latter ones, also known as grid-based methods, are divided into two subsections, full and partial
information. The full information subsection explores algorithms which guarantee the completeness
of the mission covering all the decomposed cells, while the partial information subsection presents
bio-inspired methods performing coverage under uncertainties. This review considers different shapes
of the area of interest, including rectangular, concave, and convex polygons. These scenarios are
also categorized according to the available information to perform coverage. Moreover, we explore
performance metrics usually applied to evaluate the success of the coverage missions.

This survey is organized as follows: Section 2 addresses coverage path planning problem,
describing how the areas of interest are characterized and how they are treated in the flight planning.
The different decomposition techniques employed to split and discretize the areas of interest are
presented as well as the performance metrics. Section 3 explores the simple flight patterns adopted in
areas of interest with no decomposition technique. Section 4 addresses coverage solutions for areas of
interest discretized using the exact cellular decomposition. Section 5 presents coverage approaches
for areas of interest discretized into a grid using approximate cellular decomposition. Section 6
summarizes the overall analysis, highlighting the main pros and cons of the revised CPP methods.
Section 7 concludes the survey presenting possible gaps to explored in the future regarding coverage
path planning using UAVs.

2. Coverage Path Planning

Given an area of interest composed by the robot’s free space and its boundaries, the CPP problem
consists of planning a path which covers the entire target environment considering the vehicle’s motion
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restrictions and sensor’s characteristics, while avoiding passing over obstacles. In an aerial context,
the workspace obstacles can represent no-flight zones (NFZ) that the UAV should not consider during
the planning phase, e.g., areas next to airports or irrelevant buildings.

The target environment is usually split into non-intersecting regions called cells using a
decomposition technique. The size and resolution of the cells may change according to the type of
decomposition and a specific strategy should be applied in order to guarantee the complete coverage.
For larger cells, several motions are necessary to fully cover only one unit, while in smaller cells a
single motion is enough. These cells typically have the same size of a robot (terrestrial coverage) or are
proportional to the sensor’s range (aerial coverage), representing only one point in the projected path.
The CPP problem is further explored in the next subsections consisting of the area of interest definition,
the cellular decomposition techniques, the performance metrics, and the information availability.

2.1. Area of Interest

The area of interest can be represented by a sequence of p vertices {v1, ..., vp}. Each vertex
vi can be described by a pair of coordinates (vx(i), vy(i)), while its internal angle can be referred
by γi. Considering vi, the following vertex of the polygon can be described as vnext(i), where
next(i) = i(mod p) + 1. An edge located between two vertices vi and vnext(i) can be referred as
ei, while its length by li = ||vi − vnext(i)||. Furthermore, the area may contain internal NFZ depicted as
a sequence of obstacle-points {u1, ..., up}. Figure 1 shows three examples of an area.
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Figure 1. Different areas of interest explored during CPP missions: (a) Rectangular; (b) Convex Polygon;
(c) Concave Polygon with No-Fly Zones.

The shape of the area of interest is a relevant factor to worry about during the coverage path
planning. Some approaches explore only rectangular areas or simplify the area shape to a rectangle,
while other ones support more complex shapes such as concave and convex polygons representing
irregular areas. Some methods can even deal with areas of interest containing NFZ which must
be avoided during coverage. These no-fly zones can represent regions where coverage is simply
unnecessary or locations where the UAVs are not allowed to fly. Different decomposition techniques
are usually adopted to reduce the concavities of complex areas or to split the area into smaller cells to
facilitate the coverage task.

2.2. Cellular Decomposition

One of the major concerns about the CPP problem is to guarantee a complete coverage of the
scenario. This is usually achieved applying cellular decomposition in the area of interest, splitting the
target free space into cells in order to simplify the coverage [9]. In literature, there are different cellular
decomposition methods and the most common used in CPP problem involving UAVs are exact and
approximate cellular decomposition.
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Exact cellular decomposition consists of splitting the workspace into sub-areas, also known as
cells, whose re-union exactly occupy the target area. These cells are usually explored by simple motions
as back-and-forth. In this way, the CPP problem can be reduced to motion planning from one cell to
another [9]. These motions are performed between adjacent cells sharing a mutual border. Considering
the adjacency graph representation, nodes can denote cells, while edges can identify neighbor cells,
as depicted in Figure 2. Thus, the decomposed cells are created by sweeping a line from one side to
another in the area of interest. The limits of the cells are defined by events triggered every time the
sweep line crosses an obstacle boundary. The resulting decomposition can be stored as an adjacency
graph and a search can be executed in order to find a connected path exploring each node only once.
The final coverage path is composed of the simple motions performed inside the cells and the inter-cell
connections [21].

2 3
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8 9

10

111 7

Figure 2. Adjacency graph representing the workspace splitted into cells.

There are two important exact cellular decomposition techniques worth to be mentioned:
trapezoidal decomposition and boustrophedon decomposition (Boustrophedon literally refers to
“the way of the ox”, an analogy to the animal’s motion while dragging a plow in a field.), as shown
in Figure 3a,b, respectively. The former one divides the area of interest into convex trapezoidal cells,
performs back-and-forth motions and uses an exhaustive walk to determine the cells exploration
sequence to fulfill the coverage. The latter one creates non-convex larger cells considering only
obstacle-vertices. A sweeping line is prolonged in both ways of the obstacles and these zones are called
critical points. The boustrophedon decomposition is able to diminish the amount of trapezoidal cells
and minimize the coverage path length in comparison to the trapezoidal decomposition.

(a) (b)

Figure 3. Two types of exact cellular decomposition: (a) Trapezoidal decomposition; (b) Boustrophedon
decomposition.

The approximate cellular decomposition technique discretizes the area into a set of regular cells [9].
These regular cells usually assume a square form, but they can also be represented either in a triangle
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or hexagonal form. Grid-based methods can be applied over approximate areas to generate coverage
paths [21]. The size of the cells usually fits the robots dimensions when considering coverage using
land robots. However, in aerial coverage the UAVs fly at a certain altitude from the ground carrying a
camera as a sensor to perform the task. In this case, the size of the cells is proportional to the footprint
of the camera in the UAV, as illustrated in Figure 4a, and the grid resolution is obtained through the
image requirements, such as resolution and overlapping rates, and the image sensor characteristics.

height

(a) (b)

Figure 4. Approximate cellular decomposition: (a) Projected area; (b) Regular grid with waypoints.

The UAV coverage path is composed of a set of k waypoints {w1, ..., wk}. Each waypoint wi
represents a navigation command to the vehicle, such as take-off, change of speed or move to a specific
location, and contains information about the latitude, longitude and altitude. Since the waypoints
have all the necessary localization information to guide the vehicle and the cells are proportional to
the footprint of the camera, we can simplify the problem assuming that the center of each cell refers to
a waypoint, as shown in Figure 4b.

2.3. Performance Metrics

Coverage algorithms must consider several issues to guarantee the success of a coverage
mission, such as the complexity of the area of interest, the presence or not of no-fly zones and
the possibility to employ cellular decomposition techniques. Furthermore, the coverage algorithms
should generate coverage paths according to the application requirements. For instance, the main
goal of a photogrammetric sensing application is to create an orthomosaic composed by a set of
overlapping aerial photographs. In this case, an application requirement is to guarantee the necessary
quantity of frontal and side superposition in the pictures. Another necessary requirement for this
type of application is the resolution, which can be calculated as ground sampling distance (GSD) [27].
The GSD is the length on the ground corresponding to the side of one pixel in the image, or the distance
between pixel centers measured on the ground. The lower the flight altitude of the UAV, smaller the
GSD and the better the image quality.

For this reason, the performance metrics used to evaluate the candidate solutions for a coverage
path must fulfill the application requirements. In addition, it should take into account whether the
coverage is simple or continuous. In a simple coverage, the area of interest is covered only once,
while in a continuous coverage the scenario is swept several times. In both cases, the coverage can
be performed by a single or multiple vehicles. Specific metrics for continuous coverage include
the number of detected objects/events, interval and frequency of visits in each environment cell,
the quadratic mean of intervals (QMI) [28], and the standard deviation of frequencies (SDF) [28].

Considering the context of a simple coverage, the most common performance metrics found
in the literature are: the total travelled distance or the path length [29,30], the time-to-complete a
mission [31,32], the area coverage maximization [33], and the number of turning maneuvers [34,35].
Minimizing the coverage path length lies in a trade-off with the area coverage maximization. In a
workspace split by cellular decomposition, the path length should not be only minimized inside each
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cell, but also in the intermediate routes between adjacent cells, i.e., the path connecting the end of one
cell and the start of the next cell. Keeping the UAV inside the area of interest, avoiding flying over
locations previously visited and flying at higher altitudes also minimize the coverage distance.

The use of multiple robots reduces the coverage flight time. For one robot, however, one can consider
the area covered per unit path length travelled. Minimizing this quantity improves time-to-completion
for both single and multi-robot coverage [9]. The use of multiple robots usually requires a coordination
process that includes splitting the area of interest and assigning the resulting sub-areas among the UAVs.
The workspace can be divided and assigned in two different steps [34] or simultaneously using a
negotiation protocol through a distributed way [10] considering relative capabilities of the vehicles.
However, a full solution including optimal area decomposition, allocation and efficient coverage is a
cooperative control problem and usually is classified as NP-hard. Besides that, once a vehicle is out of
the mission or the scenario changes, a reconfiguration process is necessary to divide and assign the
areas to the remaining vehicles. Therefore, many studies simplify this problem considering that the
vehicles fly at distinct altitudes in order to avoid collisions.

Lastly but not least, there is the number of turning maneuvers often employed as the main
performance metric in coverage. When an aerial vehicle executes a turning maneuver, it should reduce
its speed, rotate and increase its speed again. Thus, the greater the number of executed maneuvers,
the greater the time and the energy spent. In this way, the minimization of the number of maneuvers
is often explored by the authors in order to indirectly save energy and prolong the mission time.
The authors often connect metrics such as path length, time-to-complete a mission and number of turns
with energy consumption trying to minimize them in order to save energy. However, for an efficient
energy saving regarding UAVs, further features need to be investigated as vehicle’s motions and
constraints, turning angles, and optimal speeds. As stated by Di Franco and Buttazzo [25], different
distances may have different optimal speeds with minimum energy consumption depending on their
length. Therefore, as the major technological boundary using UAVs, the energetic consumption has
attracted the interest of researchers [24,31–33,36] and has become the main optimization criteria due to
the limited endurance of UAVs in coverage path planning missions.

2.4. Information Availability

The type of solution adopted for a coverage mission with UAVs depends on the amount of
information available about the workspace. Assuming a dynamic context where the information
may constantly change or is not fully available, one may consider a randomly decision-making.
To deal with this scenario, the vehicle must employ on-board sensors to gather workspace data to
perform the coverage, interleaving between the planning and execution of the path. This type of
online coverage is sometimes called sensor-based coverage as it uses sensor information to drive the
coverage operation. The vehicle does not have the complete knowledge (or full information) about the
workspace at the beginning and should re-construct a full map in order to successfully execute the
mission. The challenge here is to keep updated data while dealing with dynamic behavior, e.g., the
localization of a moving target.

On the other hand, some coverage approaches have all the information available and are aware
of the scenario’s layout before the planning phase. In this case, the coverage is offline and is usually
sectioned into three sequential main steps: decomposition, planning and execution. First, a cellular
decomposition technique is applied over the area in order to discretized and split the workspace.
Second, a coverage path planning algorithm having full knowledge about the environment searches
for a solution according to the predefined performance metrics. Finally, the resulting path is executed
and the mission is completed. It is important to highlight that during this final step, there is no
external interference that may lead to a change in the established path, only exceptional cases such as
pre-programmed failsafe.
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3. No Decomposition

Coverage missions performed over regular-shaped and non-complex areas of interest with a
single UAV usually do not require any type of decomposition. Simple geometric patterns are sufficient
to explore such areas. The most common patterns are the back-and-forth (BF) and the spiral (SP).
The former one is adopted by the Mission Planner, the most popular flight-control software [37],
to enable the area coverage using a standard pattern. In this pattern, the motions consist of straight
lines crossed in both directions with closed-angle maneuvers at the end of each round. The latter one
usually performs motions passing by the external vertices of the area and reducing the radius towards
the central point.

Some approaches explore only rectangular areas, according to Andersen [38], where the author
compares different types of flight patterns. In this work, the back-and-forth pattern is classified into
parallel and creeping line, as illustrated in Figure 5a,b, and it is preferable when the search area is large
and there is no information about the likely target meeting point. The square flight pattern consists
of straight lines and 90◦ turning maneuvers to the right side. The pattern starts at the central point
and extends towards the borders, following a pattern similar to an ellipse shape, and it is normally
employed when a uniform area coverage is desired, as shown in Figure 5c.

major axis

(a)

minor
axis

(b) (c)

(d) (e)

Figure 5. Simple flight patterns in rectangular areas with no decomposition: (a) Parallel; (b) Creeping
Line; (c) Square; (d) Sector Search; (e) Barrier Patrol.

The sector search pattern, presented in Figure 5d, consists of a straight line with 120◦ turning
maneuvers to the right when the vehicle reaches the border of the area. After three sectors, the path
returns to the initial point at the center of the area. Then, the same pattern is repeated with 30◦ of
displacement. The barrier patrol consists of the definition of 12 points spatially distributed in the
search area, as illustrated in Figure 5e. The vehicle initiates its trajectory in the starting point and
using a circular movement achieves the next point. From this point, instead of continuing the circular
trajectory, it follows to the point closer to the right-corner and achieves the center point.

An analysis of the effect of wind disturbances in the mission execution time of BF coverage paths
performed by a fixed-wing UAV is presented by Coombes et al. [39]. Using a circular area of interest
covered with BF motions, the authors explore different sweep directions varying from 0 to 360 degrees
in increments of 10 degrees with a predefined wind direction with six different speeds. According
to the simulated experiments, the coverage direction must be perpendicular to the wind direction
to minimize flight time. However, the turning maneuvers are directly affected by the choice of the
perpendicular direction (clockwise or counterclockwise). The authors believe that in more complex
scenarios decomposed into cells, the transition distance between those cells has more impact in the
flight time than the wind direction.
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Recent studies present energy-aware solutions exploring the dynamics and the behavior of
the UAVs to save energy. Considering regular-shaped areas as rectangles and convex polygons,
Di Franco and Buttazzo [25] presented an energy-aware back-and-forth CPP approach (E-BF) for
photogrammetry with energy and resolution constraints imposed by the mission. In this approach,
an algorithm determines the best configuration of back-and-forth motions at maximum altitude
according to resolution constraints while minimizing the number of turns. The authors claim that it
is possible to minimize the amount of energy flying at an optimal speed. This optimal speed varies
according to the travelled distance.

The algorithm finds the first vertex of the longest edge and computes the scan direction parallel
to it. Then, it calculates the number of stripes and waypoints, the distance between the stripes and
consecutive waypoints, and the overlapping rates. Finally, a straight line connects the farthest vertex to
the initial vertex. An algorithm improvement is also presented to avoid previously explored covered
zones, as shown in Figure 6a. Turning the number of stripes in even and increasing the overlapping
rate, the returning path can also be used as a scanning path, as illustrated in Figure 6b. The authors
also proposed offline and online failsafe measures. The former one is checked offline in order to verify
if the battery has enough energy to execute the mission. The latter one is checked online during the
flight and constantly analyzes if the remaining energy is capable of bringing back the aerial vehicle to
the starting point.

start

end

(a)

start

end

(b)

Figure 6. Energy-aware back-and-forth coverage path planning algorithm: (a) Odd number of stripes;
(b) Even number of stripes.

An energy-aware spiral CPP algorithm (E-Spiral) is proposed by Cabreira et al. [40] for
regular-shaped areas of interest. The algorithm consists of building a coverage path passing by
each vertex of the area. Once the first coverage layer is completed, the algorithm should reduce the
radius in order to move the vehicle towards the central point, as illustrated in Figure 7. The algorithm
performs turning maneuvers with wider angles and does not need to reduce the speed to zero on
every turn, which decreases the acceleration and deceleration periods. This behavior keeps the optimal
speed adopted in straight segments of the path for longer periods, providing an even more effective
energy saving than the one proposed by Di Franco and Buttazzo [25].

The E-BF [25] and the E-Spiral [40] adopt the energy model proposed by Di Franco and Buttazzo [24]
derived from real measurements. The approaches are compared in simulations performed in 3750 different
convex polygonal areas varying features, such as the angular points, the nonuniformity, and the size.
Using a quadrotor, the authors also performed real experiments using both patterns in a rectangular and a
polygonal area to analyze the energy spent during the missions. The E-Spiral overcomes the E-BF, both
simulations and real flights, and can be considered the most efficient CPP approach for convex polygonal
areas considering energy spent during missions.
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start

end

(a)

start

end

(b)

Figure 7. Energy-aware spiral algorithm with energy and resolution constraints: (a) Rectangular area;
(b) Polygonal area.

A triple-stage CPP algorithm for UAVs is presented in Li et al. [33], where the authors explore
important features not addressed by Di Franco and Buttazzo [25], such as payload and power variation.
The first step is to build a 3D terrain model using control points in order to obtain an analytical model.
Next, the stable power consumption is calculated considering take-off weight, flight speed, and air
friction. The authors consider that the vehicle moves with constant speed in a steady state, deriving
the optimal speed aimed at minimizing energy. Furthermore, an energy consumption map is built to
show the amount of energy spent on every part of the path. Finally, an optimization is performed with
a Genetic Algorithm in order to discover minimum-cost paths comprising all vertices.

Energy-aware algorithms for smoothing trajectories are presented by Artemenko et al. [31].
The authors observed that a UAV spends a lot of time and energy making turns, once the vehicle has
to decelerate, rotate and accelerate every time it performs these maneuvers. Thus, using the concept
of Bézier curves, the algorithms modify conventional trajectories such as SCAN (back-and-forth),
HILBERT, and LMAT, shown in Figure 8, by smoothing maneuvers along a given path. A more
effective turning maneuver can be performed smoothing the movement with minimum deceleration.
The authors compare the modified trajectories with the conventional ones and conclude that the new
trajectories are able to reduce the amount of energy and time spent, keeping the level of the localization
accuracy (LoLA).

(a) (b) (c)

Figure 8. Conventional CPP paths: (a) Hilbert curves; (b) SCAN; (c) LMAT.

Forsmo et al. [41] employs the Mixed Integer Linear Programming (MILP) for coverage missions
in rectangular areas involving UAVs. The waypoints distribution over a certain area considers the
UAV on-board camera in order to obtain full coverage. The authors simplify the problem considering
only rectangular obstacles and placing the aerial vehicles in distinct zones of the area, not using any
type of area decomposition nor properly dealing with the collision avoidance issue among the vehicles.
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Simulation experiments were performed to evaluate the proposed solution considering different cases
with constraints, such as waypoint visitation order and camera range reduction.

Coverage missions may require a team of aerial vehicles working in a cooperative way in order
to improve the task performance given the complexity and size of different scenarios. A cooperative
coverage algorithm with critical time for rectangular areas using multiple fixed-wing heterogeneous
UAVs is presented by Ahmadzadeh et al. [42]. The vehicles fly at distinct and fixed altitudes, such as 80 m,
90 m, 100 m, and 110 m, and with constant velocity. Furthermore, the vehicles present maneuverability
restrictions and fixed cameras either in the front or in the left wing. An approach based on Integer Linear
Programming is used to generate a solution considering these restrictions.

The paths of the UAVs with the frontal camera are basically circular, while the paths of the
UAVs with the left side camera are composed of straight lines and left turns. When this vehicle turns
right, the camera focuses on the horizon and does not capture any image of the coverage area or
image resolution drastically decreases. The authors compare the proposed approach using the four
fixed-wings vehicles against simple methods such as back-and-forth. Due to motion constraints and
field of view, simple patterns such as back-and-forth presented a coverage of about 80% of the area
of interest, while the proposed approach obtained 100% of coverage. The proposal was tested and
evaluated in simulations performed in MATLAB and in real flights.

4. Exact Cellular Decomposition

The exact cellular decomposition can be adopted in the area of interest depending on the size and
complexity of the workspace. Using this technique, irregular-shaped areas are split into sub-areas in
order to reduce the concavities and simplify coverage. These sub-areas can be covered by single or
multiple UAVs. In the former case, the CPP approach must concern the coverage path in each one
of the sub-areas and the intermediate paths connecting those sub-areas. In the latter one, the CPP
approach must worry about the relative capabilities of each vehicle in order to compute the size of each
sub-area. Furthermore, a safety margin should be considered to prevent collision among the vehicles.
First, we revise some CPP approaches for single UAVs using back-and-forth and spiral patterns for
convex and concave areas. Next, we explore cooperative strategies dealing with multiple UAVs.

4.1. Single Strategies

An exact cellular decomposition approach considering concave polygonal areas is explored by
Jiao et al. [43], Li et al. [44]. Initially, the workspace is decompounded in non-concave sub-areas
through a minimum width sum approach exploring a greedy recursive method previously proposed
by Levcopoulos and Krznaric [45]. Then, back-and-forth motions perpendicular to the sweeping
direction, which is the minimum distance between an edge and a vertex, are performed in order to
minimize the turning maneuvers [46]. Two sub-regions entirely adjacent and with the same sweep
direction, obtained from the convex decomposition (from Figure 9a), are combined into the sub-region
P4 to avoid unnecessary back-and-forth moves, as revealed by Figure 9b. It is also possible to change
the motion direction from one sub-region to another in order to obtain a coverage improvement, as
shown in Figure 9c. Finally, the optimal sequence of sub-regions is defined to join the final trajectory,
as illustrated in Figure 9d.

Another coverage approach exploring the exact cellular decomposition for convex and concave
areas is presented by Torres et al. [35]. The authors aim to capture pictures using aerial vehicles in
order to achieve a 3D reconstruction. Convex polygons can be swept by BF motions according to the
optimal direction. However, in more complex areas as concave polygons, it is needed to check if the
mission can be performed in the same way with no gaps during the stripes, i.e., none of the stripes
cross a part outside of the polygon. This particular case is illustrated in Figure 10a. When the path is
interrupted, as shown in Figure 10b, an exact decomposition of the polygon is used to simplify the
area creating sub-regions.
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Figure 9. Decomposition and coverage of concave polygons: (a) Convex decomposition; (b) Sub-region
combination; (c) Coverage path; (d) Undirected graph.
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Figure 10. Coverage using back-and-forth pattern in concave polygons: (a) Non-interrupted path;
(b) Interrupted path.

Once the optimal sweeping direction is defined for each sub-region, four different back-and-forth
alternatives are explored considering two criteria related to the direction and the orientation.
The former one explores if the coverage is going to follow the optimal motion direction or opposite
way. The latter one considers the orientation of the first turning maneuvers, clockwise (left turn) or
counterclockwise (right turn). The alternatives influence the transition distances, i.e., the distance
between the last point of a given sub-region A and the first point of a given sub-region B. Permuting the
sub-regions coverage order with the alternatives of each one, it is possible to minimize the transition
distances and, consequently, minimize the path length. When the coverage is complete, the approach
directly connects the final point with the first one using a straight line.

Exploring all permutations may consume an elevated computational time depending on the
number of sub-regions. Thus, the authors use only the adjacent sub-regions for the transitions,
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reducing the number of permutations. The proposed approach was evaluated in two scenarios. In the
first scenario, a concave area is decomposed in five sub-regions pondering only four adjacencies.
The authors drastically diminish the amount of permutations and the computational time spent
generating a solution with an insignificant increment in the total distance. In the second scenario, the
approach is compared to the one proposed by Li et al. [44] using the same area, as shown in Figure 11.
The proposed approach decomposes the area into only four sub-regions, computing only 80 turning
maneuvers against 87 of the original work.

end

start

(a)

𝑝1

𝑝2

𝑝3

𝑝4

(b)

Figure 11. Comparison between the decomposition approaches in concave areas: (a) Convex
decomposition [44]; (b) Concave and convex decomposition [35].

A coverage path planning technique for fixed-wing UAVs exploring wind to decrease the flight
time is presented by Coombes et al. [47]. The authors incorporated the wind in the model to compute
the coverage paths in a previous work [39] and extended their work by proposing a decomposition
method to split the complex region into convex polygons. The area of interest is decomposed through
trapezoidal decomposition exploring several rotations of the polygon. Cell recombination is employed
using Dynamic Programming to merge cells into convex polygons. It is important to notice that this
decomposition method also considers optional cells external to the region in order to find different
decomposition with lower flight times.

The UAVs explore the area using back-and-forth motions perpendicular to the wind direction
and are allowed to fly outside the area of interest. The initial and final waypoint of each straight line
intersects the contour of the area and the UAV performs 180 degrees turning maneuvers to move from
the final point of one line to the first point of the next one. This maneuver in the presence of wind is
called a trochoidal turn. It consists of the shortest curve connecting the waypoints considering the
fixed-wing restricted turning rate. The transition distance between adjacent cells is also considered
during the path computation.

The authors present a cost function called Flight Time in Wind (FTIW) to compute the flight time
needed by the aircraft to cover an area. The total time is the sum of the time to fly the straight lines, to
perform the trochoidal turns, and to make the transitions between the cells. The proposed method
(FTIW) is compared with previous techniques that aim to minimize the number of turns (NT) [44]
and the sum of the altitudes (MSA) [46]. Using a real field and several random polygons generated
by a Monte Carlo simulation, the authors claim that their FTIW approach overcomes both previous
approaches considering the flight time needed to execute coverage.

Xu et al. [30] and Xu et al. [48] present an optimal coverage algorithm for fixed-wing UAVs able
to avoid flights in obstacle-regions with arbitrary shapes and previously explored regions. The area of
interest is decomposed into a simple set of cells using Boustrophedon Cellular Decomposition (BCD),
originally proposed by Choset and Pignon [49], in an offline phase through a bitmap representation.
The BCD is an exact cellular decomposition able to work with non-polygonal obstacles, which presents
more efficient coverage paths than the trapezoidal decomposition. From the decomposition, an
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adjacency graph can be built with the vertices representing the cells and the edges connecting the
adjacent cells, as illustrated in Figure 12.

cell 2

1 3

4

cell

cell cell

Figure 12. Area of interest with obstacles decomposed into cells and the graph representation.

Cells are explored using back-and-forth motions in an online phase. The order between the cells
follows a Eulerian circuit with start and end at the same vertex. Depending on the next cell location,
it is necessary to go through sub-regions previously explored in the scenario. Thus, a more efficient
technique is proposed to eliminate the disjunctions adding an extra sweep line. This line guarantees
the continuity of the path when it reaches the border of the cells and prevents repeated explorations.
The original and the modified approach were applied in simulations and real flights. Both were
evaluated regarding the total path length and the time to perform the coverage. The method proposed
by the authors was 10% more efficient in both criteria.

A convex decomposition method to split complex shapes into smaller shapes and transform
concave shapes with sharp edges into convex shapes is presented by Öst [29]. The author explores
the back-and-forth and the spiral motion, as illustrated in Figure 13, combining them with the
proposed area decomposition technique. The authors claim that back-and-forth pattern with no
area decomposition presents reliable outcomes with respect to different combinations. This confidence
is because all maneuvers have 90◦ turns, which allow us to predict the pattern after four moves.
Despite generating slightly longer paths, this pattern is capable of handling complex shapes without
losing coverage. However, the algorithm consumes a considerable time testing all different rotations
in the polygon between 0◦ and 180◦ to find the optimal motion direction.

(a) (b)

Figure 13. Simple flight patterns in polygonal areas: (a) Back-and-Forth; (b) Spiral.

Shortest paths are generated with spiral pattern in rounded shapes with large inner angles,
according to Öst [29]. However, sometimes the pattern does not conclude the coverage in complex
areas. Mixed variations comprising patterns and decomposition are able to generate a path with minor
distance, but these combinations do not always deal with all the instances in a good way. It has proved
to be really effective only when the area has too many protrusions in different directions, such as a star
shape. In some cases, the decomposition may contain more vertices with a large number of small inner
angles, generating self-intersections during the junction of the areas.
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4.2. Cooperative Strategies

Cooperative strategies employ multiple UAVs to cover an area of interest. This type of strategy is
usually applied when the workspace is too large to be covered by a single UAV. Depending on the
complexity of the problem, the coverage approach may only split the area into sub-areas and plan
coverage paths individually for each UAV. More complex approaches deal with motion synchronization,
decentralized information and communication issues, and different levels of local priority.

4.2.1. Back-and-Forth

A cooperative strategy in a convex polygonal area using a team of heterogeneous UAVs is
presented by Maza and Ollero [34]. A ground control station decomposes the area and assigns
the resulting subregions to each vehicle considering the relative capabilities and initial locations.
Each vehicle computes the back-and-forth motions aiming at minimizing the number of turning
maneuvers. Figure 14 presents the area of interest decomposed with three vehicles and the respective
coverage paths. The distance between the parallel stripes is related to the camera footprint of each
vehicle. A reconfiguration process is employed when a vehicle fails, so the area is partitioned again
and the remaining vehicles should recompute their sweep directions.

Figure 14. Cooperative coverage in convex polygon area using a team of heterogeneous UAVs.

4.2.2. Spiral

A spiral CPP algorithm for missions in coastal regions using multiple heterogeneous UAVs is
explored by Balampanis et al. in several works. The authors discretize the workspace considering
the sensing capabilities of the aerial vehicles using a Constrained Delaunay Triangulation (CDT) [50]
introduced by Balampanis et al. [51] and Balampanis et al. [52]. The authors state that the classical grid
decomposition creates regular square cells that are partially over no-fly zones or outside the workspace.
Thus, the CDT provides triangle cells within the area of interest matching almost the exact shape of
the area.

In order to generate more uniform triangles, they applied the Lloyd optimization [53]. This technique
approximates the cell angle to 60 degrees, enhancing the uniformity. Then, a spiral algorithm previously
proposed by Balampanis et al. [54], and improved by Balampanis et al. [55] by introducing a smoothing
parameter, is used to generate the coverage paths in the resulting sub-areas. The proposed strategy
has been tested in Software-In-The-Loop simulation. A further analysis regarding coverage patterns is
performed by comparing the spiral-like pattern using the CDT/Lloyd optimization (triangle cells) with
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the classical grid decomposition (square cells) using back-and-forth motions. The authors claim that their
approach is capable of covering fully a given area with a smoother trajectory without entering into NFZ
or going outside the area. However, the approach presents longer coverage paths with a higher number
of turns compared with the back-and-forth.

4.2.3. Line Formation

A cooperative coverage strategy exploring line formation is proposed by Vincent and Rubin [56]
to detect intelligent targets moving in dangerous environments. The authors consider that the
targets try to deliberately escape from the search performed by the vehicles inside a rectangular area.
The mission is based on five criteria, such as maximize the probability of detecting a target, minimize
the tracking time and the number of aerial vehicles employed in the mission, provide robustness on
the assumption of a failure of one or more UAVs and minimize the amount of information shared
among the vehicles.

The vehicles are organized in a line formation and execute long straight movements, as illustrated
in Figure 15. As vehicles explore the area in a close formation, the communication among them is
simplified and it favors the continuity of the mission in case of a failure in one of its components.
There are two types of control messages exchanged between the vehicles, maintenance messages and
update messages. The maintenance message is periodically exchanged between the vehicles and
if one of them fails to transmit the message, the adjacent vehicles assume that the vehicle is out of
action. The update messages are exchanged by the vehicles to achieve an agreement for the pattern
reconfiguration. The success of the coverage pattern depends on the return to the previously explored
neighborhood areas, once the target may move to such areas in an attempting to escape from the
sensors of the vehicles.

Figure 15. Cooperative coverage strategy in rectangular areas of interest with intelligent targets.

4.2.4. Decentralized Technique

A decentralized algorithm for partitioning rectangular areas during surveillance missions is
presented by Acevedo et al. [57]. Homogeneous vehicles distribute the sub-regions using a one-to-one
coordination technique and explore adjacent areas. The vehicles have a short range of communication,
as shown in Figure 16, and must share information passing by near points in a synchronized way.
The sub-regions are equally distributed with paths of the same size generated by the sub-perimeter
method. This method developed by the authors uses the information about the area to generate an
interior similar region, such that the maximum distance from the inner zone to the border of the area is
less or equal than the coverage range. The system is adaptable to modifications in the team, such as
a departure of a vehicle for repairs or a battery recharge. The main goal is to develop a cooperative
patrolling strategy to optimize the observation interval among consecutive attempts in any spot and
minimize sharing time of detected information with the other members (latency).
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Figure 16. Decentralized algorithm for surveillance task in rectangular areas with information exchange
using a team of homogeneous UAVs.

More recently, Acevedo et al. [58] extend their approach for surveillance in irregular-shaped areas
with heterogeneous vehicles. The irregular area contains obstacles and irregular borders, thus it is
discretized into regular regions, as shown in Figure 17a. The numbered black rectangles in this figure
represent forbidden flight zones used to delimit boundaries and indicate obstacles. In this context,
instead of partitioning the area of interest, a single path that covers the entire region is segmented
and distributed to the vehicles, sharing information among the neighbors. Faster vehicles cover larger
path segments and all vehicles invert the patrolling direction at the end of each part. In simulations,
an urban scenario with constructions is considered, as illustrated in Figure 17b, with four vehicles
flying in low altitude, while avoiding obstacles. The system is able to adapt itself to the entrance and
the exit of vehicles during the mission.
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Figure 17. Surveillance mission in irregular-shaped areas with path segmentation using a team of
heterogeneous UAVs: (a) Irregular area approximation; (b) Segmented single path.

Finally, Acevedo et al. [59] explore the one-to-one coordination approach using a grid-shape area
partition strategy. The area of interest is partitioned into non-overlapping sub-regions monitored by
heterogeneous vehicles following distinct paths. This technique allows the vehicles to self-adjust the
partitioning according to their maximum capacities, maintaining the synchronization in a distributed
and decentralized way. Furthermore, this solution is able to rearrange primary conditions, such as
area shape and vehicles capacity.

4.2.5. Local Priority

A continuous coverage and decomposition approach for convex polygonal areas with local
priority is proposed by Araujo et al. [60]. The workspace is decoupled in minor areas with a sweeping
method, where a portion of the area should be assigned to each vehicle according to its relative
capability, such as the amount of area covered per unit of time. The authors developed a method to
generate an optimal number of stripes inside each sub-region, considering the kinematic constraints of



Drones 2019, 3, 4 18 of 38

the fixed-wing vehicles. Using a diameter function that describes the polygon altitude, a perpendicular
optimal sweep direction can be obtained which minimizes the number of stripes and, consequently,
the number of turning maneuvers. The stripes have the same width of the on-board camera footprint
and an overlapping between the stripes is necessary due to positioning errors and slightly variations
in the trajectory.

The authors discard the use of some flight standards, as simple back-and-forth and spiral motions,
claiming that these patterns can not neither deal with different local priorities nor perform multiple
visits in specific areas. Thus, the authors propose a back-and-forth/zamboni (Zamboni refers to the
machines that repair the ice in hockey arenas.) flight pattern, illustrated in Figure 18. The proposed
flight pattern allows visiting previously explored stripes since the degree of uncertainty of a locality
raises as time passes since the last visit. They also consider that the localities present different degrees
of priority managed by a human operator. So, after completing coverage in one of the stripes, the
vehicle must select the next stripe considering the uncertainty and the priority.

Figure 18. Back-and-Forth/Zamboni flight pattern with local priority and degrees of uncertainty for
continuous coverage missions.

5. Approximate Cellular Decomposition

A coverage trajectory is usually planned before its execution, in an offline phase, considering that
the aerial platform has full knowledge of the workspace to be covered. However, in some cases the
aerial vehicle has to interleave between planning and execution, gathering information through its
sensors to build an internal map as it moves around the scenario. In both cases, the approximate cellular
decomposition can be employed to discretize the area of interest into a grid, while a grid-based solution
can be used to perform the coverage mission. First, we revise some complete algorithms proposed to
deal with irregular-shaped areas, considering approaches based on a single (as Valente et al. [32]) and
based on multiple UAVs (as Barrientos et al. [10]) with full information about the scenario. Next, we
explore some cooperative bio-inspired approaches in order to deal with environments containing only
partial information.

5.1. Full Information

Back-and-forth flight pattern is usually employed in applications like agriculture, but this type
of motion generates inefficient trajectories considering areas of interest with an irregular shape.
A coverage path planning approach for image mosaicing in precision agriculture with irregular-shaped
fields is proposed by Valente et al. [32]. In this approach, named gradient-based, the area of interest is
discretized into a regular grid using the approximate cellular decomposition, as shown in Figure 19.
Each cell represents a waypoint of the path and its size depends on the picture dimensions of the
on-board camera. The grid configuration is attained through image demands and image sensor
characteristics. The decomposed area is converted to a regular graph numerically labeled by the
Wavefront algorithm, which is a flooding algorithm that marks the neighborhood adjacency of cells.
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Figure 19. Grid-based method in an irregular-shaped area of interest.

A Deep-limited search (DLS) [61] is applied to discover a full path without revisiting previously
explored nodes. With the DLS, the exploration length is restricted to the quantity of vertices and do
not gets stuck in loops or revisits a node. A backtracking procedure is also employed to solve issues
such as the choice among neighbors of equal values. The proposed method enables a simplistic and
faster solution to achieve a near-optimal results in complex areas with certain constraints.

Another approach exploring the Wavefront algorithm and the approximate cellular decomposition
for coverage in agricultural areas is presented by Nam et al. [62]. The coverage path is obtained over
an area of interest labeled according to the Wavefront, as shown in Figure 20a, and smoothed through a
cubic interpolation algorithm, as illustrated in Figure 20b. Different from Valente et al. [32], the authors
present a novel optimization criterion for the mission execution time based on the path length and the
number of turning maneuvers.
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Figure 20. Optimal path and coverage trajectory: (a) Wavefront; (b) Cubic Interpolation.

An optimal CPP algorithm with a quadrotor UAV is presented by Bouzid et al. [63]. The area
of interest is represented as a map containing Points Of Interests (POIs). The UAV should perform a
minimum path connecting the POIs and avoiding obstacles with distinct formats to guarantee complete
coverage in the area. The mission is planned in two steps. The algorithm computes the travelling cost
to explore the neighborhood and then determines the sequence of points that should be visited in
order to minimize the total distance. After visiting the POIs a single time, the vehicle should return to
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the initial position. In this way, the problem is treated as the Traveling Salesman Problem (TSP) and
the overall shortest path can be computed using a Genetic Algorithm (GA). The authors consider the
accumulative Euclidean distance among the points as the performance metric. Besides, they consider
the energy consumption to be constant during the whole mission, measuring it in terms of time.

In real-world applications, the quadrotor may need to charge or replace the battery a couple of
times while performing a task considering its limited on-board energy. Thus, the authors explore a
different possibility inspired on the Vehicle Routing Problem (VRP). This solution finds the minimum
group of shortest trajectories in cases with only one or several initial positions. In this scenario, the
aerial vehicle performs the designated task and keeps coming back to the base station every time it
needs to recharge its battery. At the same time, the UAV also downloads the acquired information
during each part of the mission.

A coverage approach for precision agriculture involving a team of heterogeneous quadcopters
is discussed by Barrientos et al. [10], including two main phases: task subdivision and allocation,
and coverage path planning. In the first phase, using a negotiation protocol, the subdivision of the
area and the allocation of the resulting sub-regions are simultaneously accomplished in a distributed
way. In this phase, the vehicles have to analyze the cost and the recompense of a task, i.e, cover a
certain subregion.

Considering its internal parameters, the vehicle evaluates the cost of a task execution, the initial
cost to move from the current location to the search area, certain restrictions as NFZ, turning angles
and embedded sensors, and the prize related with the mission accomplishment. The objective function
sums several terms with different weights, including the task dimension and the distance between the
starting point to the mission location. Furthermore, a penalty can be applied if one task superposes
another or the exploration goes beyond the general area.

In a second phase, the area is discretized into a regular grid using approximate cellular decomposition.
Each vehicle uses a Wavefront algorithm to create a coverage path for its sub-region minimizing the
flight time, the quantity of turning maneuvers and the amount of revisited cells. Also, the vehicles
keep a constant altitude to guarantee a desired resolution according to the field of view of the on-board
camera. Finally, the authors present a control system to improve the vehicle’s altitude stabilization during
high-speed maneuvers. Experiments were performed with three vehicles in a vineyard field, characterized
by its irregular-shaped format and its changeable altitude profile. The sub-regions boundaries delimit a
safe zone, in which the vehicles should not get in to avoid collisions, as illustrated in Figure 21.
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Figure 21. Coverage path planning in irregular-shaped areas containing no-fly zones in the subregions
bounds for collision avoidance.

Focusing also on precision agriculture, a meta-heuristic algorithm named Harmony Search (HS)
is proposed by Valente et al. [64] to minimize the number of turning maneuvers in irregular areas.
The proposed algorithm is based on jazz musician’s improvisation and its main body is a Harmony
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Memory (HM). The HM consists of a matrix, where the lines are composed by vectors comprising
possible solutions, while the columns represent decision variables. The cost-function result is placed in
the last column.

Following the approach proposed by Valente et al. [64], the matrix initialization is performed
randomly and an iteration known as improvisation begins when the first generation is complete. New
vectors are created through exchanges between neighboring cells according to a certain probability. If a
new harmony has an improvement in comparison to the worst solution, it replaces the old vector in
the matrix. Otherwise, the matrix would remain unchanged. The authors compared the HS approach
against the Wavefront algorithm employed by Barrientos et al. [10] using the same scenario with three
subregions, as shown in Figure 22. The HS achieves a smaller number of turns than the Wavefront, but
a longer computational time. However, the authors do not consider computational time as a problem,
once the planning is performed offline.
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Figure 22. Comparison between different coverage path planning approaches in irregular-shaped areas
using three UAVs: (a) Wavefront Algorithm [10]; (b) Harmony Search [64].

More recently, Sadat et al. [65] and Sadat et al. [66] propose approaches for online non-uniform
coverage path planning. In this context, the vehicle can change its altitude during the coverage
according to the importance of each part of the area. The authors use a tree structure to deal with
grids considering different resolutions. The closer the node is to the leaves, the higher is the resolution.
Sadat et al. [65] introduced three methods to explore the tree: Breadth-First strategy, Depth-First, and
Shortcut Heuristic, while Sadat et al. [66] proposed an Hilbert-based approach, as shown in Figure 23,
comparing it with the previous strategies and the lawnmower pattern. When visiting a zone of interest,
the resolution is increased by traversing down the tree. In this way, the area that was being explored
by a parent node, now is being fully covered by their child nodes at an increased resolution. On the
other hand, if the zone is not interesting, the search goes up in the coverage tree and decreases the
resolution. Therefore, a single vehicle moves around the area exploring zones at different altitudes to
perform the mission.

High-resolution aerial sensing with multiple heterogeneous UAVs for non-convex areas is
discussed by Santamaria et al. [67]. The vehicles present different coverage range and image sensors,
so the area of interest is discretized into a grid with cells of different sizes through the approximate
cellular decomposition, as illustrated in Figure 24. Initially, a roughly estimation determines the
portion of the area to be explored by the UAVs considering their on-board sensor footprint. A flooding
technique selects a starting position and extends the neighborhood area until it reaches the estimated
amount of cells. Places located out of the area or within NFZ are invalid cells. After the first completed
round, the unsigned cells are addressed to the nearest area and a re-balance is executed to uniformly
distribute the cells.
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Figure 23. Coverage performed at distinct altitudes according to the importance of each zone. The closer
the node is to the leaves, the higher is the resolution.

Figure 24. Area of interest discretized into a grid through the approximate cellular decomposition with
cells of different sizes.

Following the approach presented by Santamaria et al. [67], flight paths to cover each of the
sub-areas are computed using an algorithm to find long-distance segments of free cells, called strides.
The algorithm computes the strides for all unexplored adjacent cells of the actual position, selecting
the longest line. The last cell of the selected line turns into the current cell, repeating the process.
When there are no unvisited neighbor cells, the algorithm generates trajectories from the actual location
to the closest unexplored cells, selects the minor path and adds the corresponding cells to the coverage
plan. The shortest distance is also computed to return to the landing location. The proposed approach
was integrated with the AMFIS [68], which consists of ground control station for real-time vehicle
controlling and monitoring.
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5.2. Partial Information

Biological systems are able to adapt, evolve and survive in natural environments characterized by
quick modifications, elevated uncertainty, and restricted information [69]. Since such natural systems
are robust and sophisticated, they have been replicated as computational systems over the last decades
in order to solve complex optimization problems and application topics [70].

Thus biologically-inspired approaches consisting of algorithms based on fundamental aspects
of natural intelligence have emerged, such as behavioral autonomy and social interaction, evolution
and learning [70]. Considering the CPP problem with aerial vehicles, several authors have explored
different approaches in the literature, including real-time search methods [36], random walk [71],
cellular systems [72–74], evolutionary computation [75,76], and swarm intelligence [77–79]. Coverage
with uncertainty considering information points is also addressed [80–85]. Most of the approaches
are pheromone-based and explore the natural behavior of ants to guide the vehicles through a
grid-discretized scenario.

5.2.1. Pheromone-Based Methods

Pheromone-based methods alternate between planning and execution, allowing a fine adjustment
when performing such operations. They are inspired by the actions of real ants that employ chemical
tracks to orientate navigation. These methods represent the workspace as a grid and use an u-value
associated to each environment cell. This value represents the pheromone marks left by the vehicles
moving through the scenario, i.e., the quantity of visits on each location [86]. Pheromone can be inserted
in and/or taken off from a local, evaporate through time and/or be propagated to the neighborhood,
according to the adopted strategy. Different flavors of pheromone can represent different kinds of
information, while some types of pheromone can attract or repel vehicles.

The field of view of the vehicles is usually restricted to the adjacent cells, enabling sensing and
motion actions only in the cells immediately orthogonal, as shown in Figure 25a. The scenario may
be discretized as a connected graph during the search, as illustrated in Figure 25b. The versatility
of some of these approaches to deal with different applications in a military context is discussed
by Sauter et al. [87]. These methods have been proposed to solve CPP problem with land vehicles.
As these methods present a low computational cost, any autonomous vehicle may employ them
appropriately [86]. However, most of the previous studies are limited only to simulations [72,86,88]
and just a few methods have addressed contexts with aerial vehicles in real-world scenarios [36,74].
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Figure 25. Environment representation in pheromone-based methods: (a) Field of view; (b) Connected graph.

5.2.2. Real-Time Search Methods

A performance of real-time multi-robot coverage algorithms is analyzed by Nattero et al. [36].
The authors explore classical heuristics, such as Edge Counting [89], PatrolPGRAPH* [90], Node
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Counting [91], and Leaning Real-Time A* [92]. The algorithms were evaluated in simulations with
land robots in terms of the required coverage time and, implicitly, the energy required to perform a
mission. Four types of experiments were executed varying aspects, such as grid size, grid topology,
quantity of robots and required visits.

The Node Counting overcomes the other solutions during the simulations and it was implemented
in a real system with a quadcopter and a hexacopter. An off-board control implemented using Robot
Operating System (ROS) [93] is applied to guide vehicles sending target positions and periodically
receiving the localization information of the vehicles. Control dynamics and vehicles localization
are executed on-board through ETHNOS framework [94]. The decision process is centralized in the
off-board station, which communicates with the vehicles using an ROS/ETHNOS interface. To apply
virtual pheromones in an aerial scope, a centralized process is required, which makes the system less
robust to failures once all vehicles depend on the communication with the ground control station to
perform their tasks.

5.2.3. Random Walk

An approach for field coverage and weed mapping is presented by Albani et al. [71]. The proposed
approach consists of an exploration strategy that uses a reinforced random walk to detect the existence
and the amount of weeds using UAV swarms. Each individual UAV splits the search plane into two
parts, preferring to explore the semi-plane ahead according to a utility value. This value is defined
by the vehicle’s momentum and the angular difference between the current cell and the scanning
direction, influencing the decision about the next cell to visit. The value is elevated for locations
line up with the momentum vector. Additionally, the influence from neighboring UAVs reflects on
the performed motions, randomly guiding the vehicles to poorly explored zones. This is carried out
by computing a repulsion vector. The vehicles also exchange information among them in order to
prevent previously surveyed covering zones. Finally, the swarm convokes their members in direction
to promising zones to execute the weed mapping using an attraction vector.

5.2.4. Cellular Automata

An algorithm based on cellular automata, originally applied by Zelenka and Kasanicky [72] to
coordinate robots in land coverage tasks, is employed by Zelenka and Kasanicky [74] to control two
quadcopters in exploration and monitoring tasks. The adaptive decentralized system works with a
shared memory represented by the environment. Virtual marks simulate the pheromones to coordinate
the vehicles. A ground control station (GCS) splits the environment into virtual cells, monitors the
position of the vehicles and prevents collisions sending new coordinates. Despite being considered as
an adaptive decentralized system by the authors, the vehicles share a global memory using the GCS
and do not make the decisions alone.

The authors also explore the strategy considering the degradation of the environment’s virtual
marks to emulate the loss of communication [73]. The process of evaporation or degradation
consists of reducing the amount of pheromones of a certain place when it is not visited for a while.
However the degradation drops the algorithm efficiency and causes a lot of collisions between vehicles.
The accumulation of a high amount of pheromones in small places may also cause coverage problems.
When the aerial vehicles pass over the same locations, several times in short periods of time, they
prevent the evaporation process and block other vehicles to perform the mission.

5.2.5. Coverage with Uncertainty

A waypoint planning algorithm for surveillance is presented by Lim and Bang [81]. The area of
interest has the form of a hexagonal grid and contains Information Points (IP), as shown in Figure 26a.
Each IP works with a certainty value that quantifies the information confidence. When the certainty
value is significant, the IP contains trustworthy information and the exploration in the surrounding
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areas is not necessary. However, this certainty drops along the time with the absence of observations.
Lower values denote poor information and demand a new observation in the location.
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Figure 26. Hexagonal grid method with information points representing the uncertainty: (a) Information
Points; (b) Certainty calculation with IPs.

The algorithm uses cost functions such as certainty, distance and interest level to guide the
vehicles and select the next points to be explored. In a previous work [95], the authors present details
about the cost functions. Regarding the certainty cost function, it is necessary to consider the average
certainty of neighboring IPs, guiding the vehicle not only to the point but to the region with the lowest
certainty. The A* algorithm is employed to generate the path to reach the next point chosen using cost
functions. As a cooperative surveillance mission, a sub-region is assigned to each vehicle to avoid
coverage overlapping.

Khan et al. [80] presented an approach for merging distributed information in cooperative search.
The multiple UAVs have several restrictions regarding the sensing capabilities and information trading.
Besides, false alarms with a certain probability are also considered by the sensors. The mission consists of
a group of small-scale UAVs searching for target locations within a rectangular area discretized into square
cells. The vehicles can perform motions in four different directions or remain in the present location.
The individual vehicles can sense the area and update the search map, while sharing local information
with each other. Fusing their local maps, the aerial vehicles are capable of speeding up the search, while
improving the sensing capabilities in relation to approaches without a cooperative strategy.

Popović et al. [82] introduced an Informative Path Planning (IPP) for weed detection in precision
agriculture using UAVs. The authors use a fixed-horizon approach for adaptive planning, alternating
between plan execution and replanning. They employ a two-stage replanning, where the 3D path of an
aerial vehicle is constantly refined, while respecting motion restrictions. This optimization is obtained
using the Covariance Matrix Adaptation Evolution Strategy (CMA-ES).

The authors present a multi-resolution IPP for terrain monitoring with aerial platforms [83].
The proposed approach is built upon the method established in the previous work [82]. But instead of
a binary classification of weed occupancy, the method focuses on biomass monitoring. The method
builds a probabilistic map with all the visual data gathered in flights at distinct altitudes. The method
proposed by Popović et al. [82] and further explored by Popovic et al. [83] is evaluated in simulation
with respect to the back-and-forth and the state-of-the-art IPP algorithm. The authors also run their
IPP approach in an AscTec Pelican UAV, emulating the weed classifier through the use of AR tags [82]
and on a DJI Matrice 100, mimicking the vegetation monitoring on painted green sheets [83].

A learning-based algorithm for persistent surveillance problem using UAVs is addressed
by Ramasamy and Ghose [84]. The problem can be described as a continuous CPP, where the UAV should
explore all the locations of an certain area from time to time, while minimizing the interval between
those visits. The problem may be more complex considering the necessity of increasing or reducing the
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frequency of visits depending on the zone profile—an interesting one or a risky one. Ramasamy and
Ghose [85] extend their work dedicating more attention to the preferential surveillance in a known area.
They explore an approach considering different ways of quantitative priority specifications. Besides,
they present further simulation results to support a more detailed analysis.

5.2.6. Genetic Algorithm

A combination of digital pheromones and evolutionary strategies for coordination of multiple
UAVs is explored by Paradzik et al. [75]. The workspace is decoupled in rectangular sub-regions
assigned to each vehicle using a Genetic Algorithm (GA), originally proposed by Holland [96].
The population individuals carry information regarding the vertices’ coordinates and the width/length
of the rectangular sub-regions. The individuals go through the selection, the reproduction and the
mutation phases for generating new individuals during the natural evolution process of the algorithm.
A fitness function evaluates the best individuals (sub-regions) based on digital pheromones containing
information about the region. Figure 27 shows an example of sub-region created using the GA.

Figure 27. Area of interest decomposed into rectangular subregions using GA and covered using the
back-and-forth flight pattern.

The authors use two pheromone flavors: search and path. Search pheromone corresponds to the
uncertainty and the need for coverage of a region, while path pheromone indicates the locations that
are already included in the path of some vehicle. Path pheromone is applied to prevent collisions
and decrease the revisiting probability. The aerial vehicles should pursuit trajectories aiming at
maximizing the amount of search pheromone, while minimizing the quantity of path pheromone.
The pheromone-based GA only divides the environment and the vehicles employ back-and-forth
motions to cover each sub-region. In addition, each vehicle uses the A* algorithm to plan a path from
its initial location to the nearest vertex of the assigned sub-region.

Considering another effort based on a GA [76], a coverage path planning approach with 3D
structure mapping is proposed to handle scenarios with obstacles and buildings. The area of interest is
a polygon discretized as a grid containing buildings (yellow), tall vegetation (green) and forbidden
flight zones (red), as shown in Figure 28a. The cells are labeled with the following values: 0 for
free areas, −1 for forbidden zones or outside zones, −2 for tall vegetation that demands altitude
adjustments and −3 for buildings. Using a GA, the coverage path is generated considering only the
free spaces and the areas with vegetation below the altitude flight.
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Figure 28. Grid representation of the area of interest and main steps of 3D mapping method: (a) Labeled
grid area; (b) Structure mapping.

During the path execution, adjacent cells containing buildings may be detected, triggering the
3D mapping. In this case, the vehicle stops the coverage and surrounds the building at a certain
distance to photograph it, following the next steps: hovers at the current altitude (A), goes up/down
according to the height of the building (B), changes the camera angle (C) and flies surrounding the
building (D), as shown in Figure 28b. Once the mapping is completed, the vehicle continues the
original coverage coverage path. Figure 29 illustrates a complete path avoiding forbidden flight zones,
while surrounding the buildings.

Figure 29. Complete coverage path with forbidden flight zone and building generated by GA.

The approach proposed by Trujillo et al. [76] is extended by Darrah et al. [97] for coverage missions
over larger areas using multiple multi-rotors. The area of interest is partitioned into equitable sub-areas
to be covered by multiple vehicles or by several flights performed by a single vehicle. The partitioning
method applies the flood fill algorithm integrated with game theory. In this scenario, each UAV is
a player and has a starting position. These players take turns flooding the neighbor cells according
to a predefined pattern in a diamond shape, as illustrated in Figure 30. The corresponding order is
from left to right, flooding the closest neighbors. The players can not flood building cells or cells
previously occupied by other players. The sub-areas are not equally sized. A smaller sub-area may
contain building structures to be mapped, while a larger area may present areas of avoidance. Thus,
the partitioning method balances the tasks and guarantees an approximate amount of work for each
assigned UAV. The coverage paths for each sub-area are obtained using an improved version of the
approach proposed by Trujillo et al. [76]. The changes ensure that the multi-rotor’s path ends as close
as possible to where it started.



Drones 2019, 3, 4 28 of 38

45 39 29 18 31 41 47

37 27 16 8 20 33 43

25 14 6 2 10 22 35

13 5 1 S 4 12 24

26 15 7 3 11 23 36

38 28 17 9 21 34 44

46 40 30 19 32 42 48

Figure 30. Flood fill pattern with the starting position S and the ordered neighbor cells to be flooded
from dark blue to light blue.

Hayat et al. [98] proposed a Multi-Objective Path Planning (MOPP) with a Genetic Algorithm
for Search and Rescue (SAR) missions using multiple UAVs. The mission is composed by two steps,
search and response. The former one monitors an event (e.g., stationary target) by guaranteeing the
whole coverage in a given area. The latter one spreads detection updates on the network. The planning
task that occurs during the search phase is performed in a centralized way by the MOPP algorithm,
while the time-to-complete the mission is minimized by the GA. This time comprises the period to
discover the target and the period to configure a communication trajectory. Thus, the approach needs
to optimize two main features, the area coverage and the network connectivity.

5.2.7. Ant Colony Optimization

Ant Colony Optimization (ACO) is adapted for coverage with multiple UAVs by Kuiper
and Nadjm-Tehrani [78]. The vehicles share a virtual pheromone map indicating recently visited
areas through high rates of pheromone. These pheromones are repulsive and guide the vehicles
to unexplored areas. Based on this study, Rosalie et al. [79] introduce the Chaotic Ant Colony
Optimization to Coverage (CACOC), which is a technique integrating the ACO with the chaotic
dynamical system to surveillance missions in a military context. The approach allows the GCS operator
to forecast the UAVs paths, while keeping it unpredictable to the enemies. Although there is no need
for communication among vehicles and the base to track the position of the vehicles, the swarm of
vehicles still shares a virtual pheromone map. Rosalie et al. [99] further explore the CACOC approach
by evaluating its coverage performance by using the V-Rep simulation environment [100].

Cheng et al. [77] propose another bio-inspired approach for cooperative coverage. This approach
represents the path of each vehicle as the B-spline curve containing control points, as illustrated in
Figure 31a. This optimization problem consists of maximizing the desirability of a path combining
four functions: (i) path length, (ii) minimum turning angle, (iii) maximum pitch rate, and (iv) the
superposition of the actual trajectory over different UAVs trajectories. The authors consider that the
vehicle always moves from left to right, so the first and the last control points are at the borders of
the area. The ACO algorithm optimizes the y-axis in the intermediate control points to maximize the
coverage. During the algorithm iterations, several ants are launched in the scenario, passing by the
initial, intermediate and final points.

Gaussian distribution functions represent the pheromone concentration left by each ant at the
control points, being superposed to create a joint distribution function, illustrated in Figure 31b.
The resulting function is rescaled to generate the probability density function, which indicates the
amount of pheromones in different y-positions. During subsequent iterations, the ants select the
control point positions following this probability density function. This function has a pheromone
evaporation factor to avoid local optimal points and it is updated at each iteration. In the end of the
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algorithm, the zones comprising the major amount of pheromones are selected as intermediate control
points to create a complete path for the UAV.

𝑦

𝑥

(a)

Pheromone
concentration

(b)

Figure 31. Cooperative approach using ACO with Gaussian distribution functions: (a) Control points;
(b) Gaussian distribution functions.

6. Discussion

The coverage path planning problem with UAVs has been addressed by several authors in the
literature, exploring areas of interest with different shapes and complexities. Generally, simple
areas of interest, such as rectangular and convex polygons, do not require any discretization
method or decomposition technique, being explored by back-and-forth and spiral flight patterns.
The back-and-forth pattern usually defines the sweep direction based on the major axis and uses 90◦

angles for the turning maneuvers. In polygonal cases, the turning angle may vary both back-and-forth
and spiral. In general, these patters require low computational time to find coverage paths and are
easy to perform by the aerial platform. One of the main issues involving these platforms is the quite
limited flight endurance to perform coverage missions.

Several studies seek to minimize distance, flight time or maneuvers in order to decrease energy
consumption. During turning maneuvers, the vehicles should decelerate, rotate and accelerate, extending
flight time and, consequently, energy consumption. An alternative is smoothing turning maneuvers to
keep the velocity of the vehicles constant, as proposed by Artemenko et al. [31]. Recent efforts developed
state-of-the-art energy-aware back-and-forth [25] and spiral [40] algorithms mainly concerned about
energy consumption considering resolution and energy constraints of the UAVs. These approaches adopt
an energy model explored for analyzing the energetic behavior in distinct circumstances. Thus, optimizing
velocity in straight parts of the path leads to energy consumption minimization. Table 1 summarizes
the CPP approaches revised in this paper considering areas of interest with no cellular decomposition
technique. The table presents the CPP approach, corresponding reference, shape of the area of interest,
adopted performance metrics to evaluate coverage pattern, indication of single or multiple UAVs used in
the coverage, and the type of UAV: rotary-wing (RW), fixed-wing (FW), or both.

In larger and more complex areas of interest, an exact cellular decomposition may be applied to split
the scenario into subregions. The resulting sub-regions can be covered by different sweep directions to
obtain an optimal coverage [43,44]. In such areas, there is the possibility to explore four back-and-forth
alternatives, varying the direction and the orientation, aiming at minimizing the distance among the
subareas, as presented by Torres et al. [35]. Cooperative strategies are also being explored using area
decomposition according to the relative capabilities of the vehicles [34]. Obstacles and forbidden flight
zones may also be considered in the scenarios [30,48] and, depending on the mission, it might be
necessary to revisit previously explored areas [56,60]. A hybrid decomposition technique mixing exact
and approximate cellular decomposition is proposed to discretize the area of interest into triangle cells
matching almost the exact shape of the area [51,52,54,55]. The authors employ a spiral-like pattern to
perform the coverage in a complex area. A decentralized approach is employed for partitioning and
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area coverage in regular and irregular-shaped scenarios using heterogeneous aerial vehicles [57–59,101].
Table 2 summarizes the CPP approaches revised in this paper considering areas of interest discretized
through the exact cellular decomposition technique. The online/offline column in the table refers to how
the coverage path is obtained. In offline cases, the whole path is computed before being performed, while
in online cases the path can be computed or modified during coverage.

Depending on the complexity of the area of interest, simple flight patterns may generate inefficient
trajectories, requiring post-processing phases to adjust the waypoint positions and the angle between
them to overcome this issue. A considerable computational time may be spent evaluating all different
rotations to find the optimal sweep direction. Regarding spiral motions, shorter paths can be generated
in polygonal shapes with larger internal angles, but in more complex forms, the algorithm may be stuck
or may not complete the coverage task. Thus, more sophisticated approaches based on approximate
cellular decomposition have been proposed for coverage with UAVs. In Section 4, we decided to
separate the existing approaches according to the available information to compute and perform the
coverage. When the UAV has full knowledge about the workspace, including area and NFZ, the path
can be computed in an offline phase before its execution. However, in some cases, the aerial vehicle
does not have complete information about the map due to the presence of moving targets, obstacles,
or other vehicles. In this case, the UAV should gather the necessary information using its sensors to
perform the mission, usually interleaving between planning and execution.

Considering full information, grid-based solutions exploring the Wavefront algorithm for single UAV
are presented by Valente et al. [32] and further optimized using cubic interpolation by Nam et al. [62].
Cooperative strategies using multiple vehicles are introduced by Barrientos et al. [10], including area
subdivision and vehicle allocation. A meta-heuristic algorithm named Harmony Search (HS) is proposed
by Valente et al. [64] to minimize the number of turning maneuvers in irregular areas and it is compared
with the approach proposed by Barrientos et al. [10]. Parts of the area of interest may be covered
with distinct resolutions through flights at different altitudes, according to the importance of each
subregion [65,66] or depending on the different footprint sensors onboard the vehicles [67].

Cooperative bio-inspired techniques have been dealing with environments containing only partial
information. Real-time search methods are considered in simulations and a Node Counting algorithm
is applied in real flights by Nattero et al. [36]. A reinforced random walk strategy is introduced
by Albani et al. [71] for field coverage and weed mapping, where the UAVs prefer to explore the areas
ahead of its current position aligned with the momentum vector. A cellular automata approach is proposed
by Zelenka and Kasanicky [73] and Zelenka and Kasanicky [74], but presents problems regarding the
pheromone degradation and lack of evaporation. Degradation may generate communication failures
between the vehicles, while the excess of pheromones may block certain locations of the area for the
vehicles. Some approaches consider the local uncertainty during the coverage missions [81], while other
ones explore distributed information merging, where the UAVs directly exchange information to speed
up the search and enhance the performance [80]. Path replanning in a continuous UAV trajectory is also
explored, where the authors fuse visual information received into a single probabilistic map [82,83].

Another continuous coverage approach using a learning algorithm is addressed by Ramasamy
and Ghose [84], considering the preferential surveillance problem. In this problem, the aerial vehicle
should increase the visitation frequency in regions of interest and reduce the visitation frequency
in a risky region. GA combined with pheromone strategies are also explored [75,76,97,98], while
ACO using pheromone maps are introduced for coverage missions with UAVs [77,79,99]. Table 3
summarizes the CPP approaches revised in this paper considering areas of interest discretized through
the approximate cellular decomposition technique considering full and partial information. While the
CPP approaches with no decomposition or combined with exact cellular decomposition can be executed
by rotary-wing, fixed-wing, or both types of vehicles, the CPP approaches using approximate cellular
decomposition almost exclusively adopt rotary-wing UAVs. This is because the rotary-wings present
maneuverability advantages when making turns in scenarios discretized into a grid. The fixed-wing
has maneuverability restrictions, demanding a large space to make turns.
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Table 1. Coverage path planning approaches in areas of interest with no decomposition technique

Approach Ref. Shape of the area Performance metrics Single/ Multiple Type

Back-and-Forth, Square, Sector Search, Barrier Patrol [38] Rectangular Fixed and mobile target detection; Coverage rate Single RW
Back-and-Forth [39] Polygonal Flight time Single FW

Energy-aware Back-and-Forth [25] Polygonal Energy consumption Single RW
Energy-aware Spiral [40] Polygonal Energy consumption Single RW

Three-stage Energy-aware [33] 3D Topology Energy consumption Single RW
Smoothing algorithms: E-MoTA e I-MoTA [31] Regular Grid Energy consumption; Mission time; Level of localization accuracy Single Both

Mixed Integer Linear Programming (MILP) [41] Rectangular Flight time Multiple FW
Circular [42] Rectangular Coverage rate; time Multiple FW

Table 2. Coverage path planning approaches in areas of interest with exact cellular decomposition

Approach Ref. Online/ Offline Shape of the area Performance metrics Single/ Multiple Type

Back-and-Forth [43,44] Offline Polygonal Number of turning maneuvers Single Both
Back-and-Forth [35] Offline Polygonal Number of turning maneuvers; Path length Single RW
Back-and-Forth [30,48] Offline/ Online Irregular Path length; Coverage time Single FW

Back-and-Forth and Spiral [29] Offline Polygonal Path length Single FW
Back-and-Forth [34] Offline Polygonal Number of turning maneuvers Multiple RW

Spiral [51,52,54,55] Offline Polygonal Path length Multiple FW
Back-and-Forth (Line Formation) [56] Offline Rectangular Target detection; Search time, number of UAVs and information exchange Multiple RW

One-to-one coordination (Decentralized Technique) [57–59] Online Irregular Interval of visits; Information latency Multiple Both
Back-and-Forth/Zamboni (Local Priority) [60] Offline Polygonal Number of turning maneuvers; uncertainty Multiple FW
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Table 3. Coverage path planning approaches in areas of interest with approximate cellular decomposition

Approach Ref. Online/Offline Shape of the area Performance metrics Single/Multiple Type

Gradient-based approach [32] Offline Irregular/Regular Grid Coverage time Single RW

Wavefront Algorithm and Cubic Interpolation [62] Offline Irregular/Regular Grid Path length; Number of turning maneuvers Single RW

Multi-RTT* Fixed Node (RRT*FN)
and Genetic Algorithm (GA) [63] Offline Regular Grid Path length Single RW

Wavefront Algorithm [10] Offline Irregular/Regular Grid
Position and altitude errors; Wind disturbances; Mission,

flight and configuration times; Path length Multiple RW

Harmony Search [64] Offline Irregular/Regular Grid Number of turning maneuvers Multiple RW

Breadth-First strategy, Depth-First,
and Shortcut Heuristic [65] Online Square Total distance of coverage Single RW

Hilbert space-filling curves [66] Online Square Total distance of coverage Single RW

Long straight-lines algorithm [67] Offline Irregular/Grid related to the sensor
Total distance; Number of turns;
Number of jumps between cells Multiple RW

Edge Counting and PatrolGRAPH* [36] Online Graph Grid Path length; Robots distance average Multiple RW

Reinforced Random Walk [71] Online Rectangular Coverage time; Global detection efficiency Multiple RW

Cellular Automata [72–74] Online Regular Grid Exploration time with/without barriers Multiple RW

Waypoint planning with uncertainty [81] Online Rectangular Certainty of information points Multiple Both

Information merging for cooperative search [80] Online Rectangular Target localization Multiple RW

Fixed-horizon with CMA-ES [82,83] Online Rectangular Entropy; Classification rate Multiple RW

Learning-based Preferential
Surveillance Algorithm (LPSA) [84,85] Online Regular Grid Distribution of visits; Target localization; Threat avoidance Single Both

Back-and-Forth [75] Online Regular Grid Total distance; Coverage rate; Redundancy rate Multiple RW

Genetic Algorithm (GA) [76] Offline/Online Polygonal/Regular Grid Path length Single RW

GA with flood fill algorithm [97] Offline/Online Polygonal/Regular Grid Path length Multiple RW

Multi-Objective Path Planning with GA [98] Offline/Online Rectangular Mission Completion Time Multiple RW

Chaotic Ant Colony Optiomization to Coverage [79,99] Offline/Online Regular Grid
Coverage rate; Recent coverage ratio; Fairness

(coverage distribution); Connectivity (UAVs distribution) Multiple RW

ACO with Gaussian distribution functions [77] Online 3D Regular Grid Path length and rotation angle; Inclination and area overlapping rate Multiple Both
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The algorithms proposed to solve the CPP problem are usually concerned with the planning
phase to obtain a coverage path according to a performance metric. When dealing with fixed-wing
UAVs, the approaches must also consider motion constraints of such vehicles in order to plan a feasible
trajectory. However, these approaches do not consider important control tasks such as path following
or trajectory tracking, trusting exclusively the internal controller of the UAV to perform the planned
path in real flights.

7. Conclusions

This paper presents a survey on coverage path planning with unmanned aerial vehicles,
addressing simple geometric flight patterns, such as back-and-forth and spiral, and more complex
grid-based solutions considering full and partial information about the area of interest. The surveyed
coverage approaches are classified according to the classical taxonomy defined by Choset [9];
no decomposition, exact and approximate cellular decomposition. The study contemplates different
shapes of the area of interest, such as rectangular, concave and convex polygons. We also present
performance metrics usually applied to evaluate the success of the coverage missions.

The limited endurance of UAVs is the major concern to be overcome to perform more complex
coverage missions. Some authors employ multiple vehicles to enhance the coverage performance in
such missions, splitting long and high energy demand flights in more feasible flights. However, this
technique usually demands computational complexity to solve coordination and communication issues.
This cooperative context still lacks a more robust solution to handle problems more autonomously.
The area of interest is usually discretized, divided and assigned to the members of a team using
a centralized decision-making process. Moreover, communication between vehicles and a ground
control station is required for coordination, which is not robust to failures or feasible in real-world
scenarios.

The proposed approaches aim to minimize the path length, the mission execution time, and the
number of turning maneuvers to indirectly save energy. However, in some cases, performance
metrics such as path length and energy consumption may be conflicting, once shorter paths may
contain more abrupt maneuvers consuming more energy. As stated by Di Franco and Buttazzo [24]
and Cabreira et al. [40] another issues, such as vehicle dynamics, turning angle, and optimal speed
should be considered to minimize energy consumption. But these energy-aware approaches are still
restricted to regular scenarios considering only simple flight patterns.

We recently proposed a state-of-the-art energy-aware spiral coverage algorithm for regular areas
and we are currently going forward to a global solution considering more complex scenarios with a
grid-based method. Furthermore, we are also developing a decentralized approach for cooperative
coverage path planning with UAVs considering communication and energy constraints. In the future,
we intend to develop an efficient synchronization mechanism among the vehicles to avoid the need for
a ground control station. Finally, we are studying the impact of the vehicle dynamics and the external
environment conditions in a physics-based energy model for the energy-aware mission planning. With
our current survey and future works in coverage path planning problems, we expect to advance the
state-of-the-art in real-world feasible mission planning approaches for autonomous aerial vehicles.
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