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Abstract: High resolution mapping of coastal habitats is invaluable for resource inventory, change
detection, and inventory of aquaculture applications. However, coastal areas, especially the interior
of mangroves, are often difficult to access. An Unmanned Aerial Vehicle (UAV), equipped with a
multispectral sensor, affords an opportunity to improve upon satellite imagery for coastal management
because of the very high spatial resolution, multispectral capability, and opportunity to collect real-time
observations. Despite the recent and rapid development of UAV mapping applications, few articles
have quantitatively compared how much improvement there is of UAV multispectral mapping
methods compared to more conventional remote sensing data such as satellite imagery. The objective
of this paper is to quantitatively demonstrate the improvements of a multispectral UAV mapping
technique for higher resolution images used for advanced mapping and assessing coastal land cover.
We performed multispectral UAV mapping fieldwork trials over Indian River Lagoon along the
central Atlantic coast of Florida. Ground Control Points (GCPs) were collected to generate a rigorous
geo-referenced dataset of UAV imagery and support comparison to geo-referenced satellite and
aerial imagery. Multi-spectral satellite imagery (Sentinel-2) was also acquired to map land cover
for the same region. NDVI and object-oriented classification methods were used for comparison
between UAV and satellite mapping capabilities. Compared with aerial images acquired from Florida
Department of Environmental Protection, the UAV multi-spectral mapping method used in this study
provided advanced information of the physical conditions of the study area, an improved land feature
delineation, and a significantly better mapping product than satellite imagery with coarser resolution.
The study demonstrates a replicable UAV multi-spectral mapping method useful for study sites that
lack high quality data.

Keywords: coastal management; multi-spectral drone mapping; NDVI; object-oriented classification;
Sentinel-2

1. Introduction

High quality mapping of land cover is invaluable for analysis applications such as resource
inventories, change detection, and inventories of aquaculture. However, coastal vegetation ecosystems,
especially the interior of mangrove forests, are often difficult to access. To overcome this challenge,
many researchers use remote sensing technology to monitor and analyze coastal ecosystems [1,2].
Satellite remote sensing data, e.g., Sentinel series, can provide multi-spectral and historical observations,
but due to relatively low spatial resolution, mangroves are difficult to distinguish from adjacent thorn
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scrubs from satellite sensors [2,3]. In such cases, high quality data with finer resolution collected from
multi-spectral imagery can be a more appropriate option for land cover monitoring for coastal areas.

A typical satellite remote sensing system, such as Landsat 8 OLI/TIRS, ASTER, and Sentinel-2,
has a relatively coarse resolution of 10 to 30 m [4,5], while image sensors mounted on unmanned
aerial vehicles (UAVs) can provide images with a finer resolution (sub-meter) and more spatially
accurate information [6]. Acquiring data with UAV approaches is also often less expensive and more
convenient than hiring out manned aircrafts, especially in more remote and inaccessible places. In
addition, although satellites capture images of remote areas and difficult terrain, they often have
infrequent and inflexible temporal revisit cycles. UAVs, on the other hand, can collect on-demand data.
A typical UAV/drone mapping project will involve multiple stakeholders (e.g. scientists, engineers,
pilots), technologies (e.g. drone platforms, controllers, software packages, sensors), parameters (e.g.
flight altitude, scientific sensor calibration date and processes, scientific parameters, FAA airspace
regulations), and complex processes (e.g. data stitching, data management, data pre- and post-
processing), many of which can influence the utilization and interpretation of the data [7]. In order to
fly drones under the FAA’s Small UAS Rule (Part 107) for research purposes, remote pilots must obtain
a certificate from the FAA. There is also background knowledge needed for pre- and post- processing
of the drone mapping products, such as image stitching and geo-referencing.

Multi-spectral mapping facilitates coastal land cover analysis because vegetation can be extracted
semi-automatically via image classification techniques. The living green plants have a higher DN
value in near infrared (NIR) bands, thus satellite remote sensing with multi-spectral sensors have been
widely used for coastal land cover analysis [8]. Earlier research using UAV mapping for land cover was
limited by its stock camera which lacked a multi-spectral sensor [9–11]. Despite using high-resolution
UAV imagery, vegetation analysis results are usually no better than the multi-spectral mapping with
coarse spatial resolution.

UAV technology has been developing rapidly. A variety of sensors onboard UAV platforms
have been implemented and there have been many research projects employing UAVs to collect
hyperspectral [12–14] and thermal data [15,16]. Some researchers also used LiDAR sensors mounted
on UAV platforms to collect elevation data and develop DEMs [17–19]. With advances in multi-spectral
mapping sensors, UAV mapping can achieve the same spectral resolution but much higher spatial
resolution compared with satellite mapping. Although it is well known that UAV mapping provides
better land cover analysis resulting from its high resolution [3,14,20], few studies have made both
qualitative and quantitative comparisons between UAV mapping methods with conventional remote
sensing datasets, such as satellite imagery and aerial imagery.

In this research, we utilized two types of UAV techniques—traditional three bands and
multi-spectral—to collect images at a higher spatial resolution than those provided by satellite sensors
for a portion of the Indian River Lagoon along the central Atlantic coast of Florida. Additionally,
ground control points (GCPs) were collected in the study area to rectify and geo-reference the UAV
imagery as well as to register remote sensing data. The objective of this study is to compare the
qualitative and quantitative improvements of multi-spectral UAV sensors compared to multi-spectral
satellite sensors. We calculated the normalized difference vegetation index (NDVI) to illustrate that
more spatial information about vegetation can be extracted from multi-spectral UAV mapping than
from satellite imagery. In comparison with coarse resolution satellite imagery, the UAV mapping
method used in this study provided advanced information about the physical conditions of the study
area, an improved land feature delineation, and a more comprehensive understanding of the conditions
of the vegetation. Another main objective of the study was to examine the improvements that finer
resolution data would facilitate for a more comprehensive land cover analysis in the study area. An
object-oriented classification method was used to classify land cover for UAV and satellite mapping
products, respectively. Quantitatively, both UAV and satellite mapping classification results were
compared with aerial imagery acquired by the Florida Department of Environmental Protection.
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2. Study Area

This study focused on River Breeze Park in Oak Hill, located along the Indian River Lagoon (IRL)
on Florida’s Atlantic coast (Figure 1). The Indian River Lagoon is an estuary comprising three smaller
water bodies: Mosquito Lagoon, Banana River, and Indian River. Oak Hill sits on Mosquito Lagoon in
the northernmost part of the IRL, in an area known as Florida’s Space Coast. The IRL system is one of
the most biodiverse estuaries in the Northern Hemisphere and is home to more than 4,300 species of
plants and animals (https://fau.edu/hboi/irlo). Because of its ecological importance and degradation
due to human activity, the Indian River Lagoon was named an “Estuary of National Significance” in
1990, becoming part of the United States National Estuary Program (https://fau.edu/hboi/irlo). The
study region of IRL is a typical natural marsh consisting of red mangroves (Rhizophora mangle) or
cordgrass (Spartina alterniflora) at the water’s edge with flat high marsh areas of herbaceous halophytes,
such as Batis maritima, Salicornia virginica, and Salicornia bigelovii, mixed with scattered black mangroves
(Avicennia germinas) further inland [21].
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were removed for housing and development [22]. In 2019, lagoon health is better near ocean inlets, 
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Mangroves are an important component of coastal ecosystems, yet the IRL has seen a devastating
loss in mangroves over time. In the IRL, between the 1940s and 2013, 85% of mangroves were removed
for housing and development [22]. In 2019, lagoon health is better near ocean inlets, and pollution is
worse in areas away from inlets, such as Mosquito Lagoon, North IRL, and the Banana River.
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3. Data and Methods

3.1. Data

3.1.1. UAV Data Acquisition

In this study, we used two UAVs: A Parrot Bluegrass quadcopter with a Parrot Sequoia+

multispectral sensor (Figure 2a); the sensor has four separated bands including, Green (550 nm), Red
(660 nm), Red Edge (735 nm), and Near infrared (790 nm), and a DJI Phantom 4 Pro quadcopter
(Figure 2b) equipped with a stock 1/2.3 inch (1.10 cm) RGB CMOS camera sensor with 12.4 m effective
pixels (DJI.com) [23,24].
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Figure 2. (a) Parrot Bluegrass quadcopter with Parrot Sequoia sensor; (b) DJI Phantom 4 Pro quadcopter
with stock RGB camera.

A series of UAV flights over the study area were conducted on 31 October 2018, 28 February,
5 March, and 9 May 2019. Data acquired on 5 March have the best image quality; imagery for the
other dates were used as ancillary data to fill data gaps. Flights were scheduled on clear days with
good visibility and relatively low wind speed. Both UAV systems were set to fly at a height of 120 m
(400 ft), achieving an ideal balance between image coverage and spatial resolution, while adhering
to US Federal Aviation Administration (FAA) Part 107 flight guidelines. Figure 3 shows the flight
plans for both UAV mapping systems. The flight path was pre-defined to evenly cover the study area
and overlapping area between adjacent images was set with 70/60 frontlap/sidelap to achieve the best
image stitching quality. In this study, we focused on the Parrot Bluegrass multi-spectral imagery to
perform the analyses because it has additional near infrared (NIR) and red edge bands. The NIR bands
are very responsive to vegetation compared to the other visible bands. The normal red, green, blue
(RGB) imagery taken by the DJI Phantom 4 Pro was used as auxiliary data to support the collection of
multi-spectral imagery and help to identify ground control points. As shown in Figure 2, 76 images
were taken during each flight and then stitched and geo-referenced to a multi-spectral orthomosaic
image covering the study area.
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3.1.2. Satellite and Aerial Remote Sensing Data

The Sentinel-2 series (European Space Agency) is a relatively new satellite remote sensing system
comprised of two identical satellites with high spatial resolution (NIR and RGB bands in 10–20 m).
The Multi-Spectral Instrument (MSI) onboard these satellites acquires images in 13 spectral bands
spanning from 400 nm to 2400 nm [25]. Because it is a relatively new satellite platform with high
spatial, temporal, radiometric resolution, high signal-to-noise ratio (SNR), and wide field of view,
Sentinel-2 is a significantly better platform than the more commonly used Landsat series for coastal
monitoring and hydrological modelling [26,27].

We acquired data for the study region sourced from the Sentinel-2 on Amazon Web Services
(AWS), which is a combined level 1 product from March 2019 (Figure 4a). Four bands, all of which
have a spatial resolution of 10 m, were used—NIR, Red, Green, and Blue. Figure 4 shows the NIR
false color combination of the Sentinel-2 satellite remote sensing imagery. We used the NIR band as a
red channel of the combination, red band as green, green band as blue, thus the vegetation coverage
could be highlighted in red tones. Compared with Landsat satellite imagery, Sentinel-2 provides
higher spatial resolution (10 m) and higher radiometric resolution (12-bit). Satellite remote sensing
techniques are able to provide frequent observations of the lagoon for those regions difficult to reach by
humans, but these techniques suffer from lower spatial resolution limiting the fine scale classification
and vegetation detection necessary to understand the coastal ecosystem. Aerial photography, on the
other hand, provides a very fine spatial resolution. Florida Aerial Photography Archive Collection
(APAC), Florida’s largest collection of aerial photography, has collected over 450,000 digital images that
date back to 1951. The most recent aerial survey was completed in 2015. In addition to APAC imagery,
our team utilized UAV mapping in the study site to offer a well-balanced solution for coastal mapping,
given its relatively inexpensive manipulation; imagery processing; and on-demand, high-resolution
capability. Besides the satellite remote sensing imagery, we also acquired aerial photography collected
by the Florida Department of Environmental Protection (FDEP, Figure 4b). FDEP collects aerial imagery



Drones 2019, 3, 60 6 of 15

for the coastal areas of Florida every 3–5 years for coastal management and change detection. The aerial
imagery from FDEP used in this study was captured and processed in 2015 at 0.25 m spatial resolution.Drones 2019, 3, x FOR PEER REVIEW 6 of 15 
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3.2. Methods

3.2.1. The Use of Vegetation Indices

NDVI is a well-established indicator for the presence and condition (abundance, vigor, and health)
of vegetation [28]. It largely compensates for changing illumination conditions, surface slope, and
viewing aspects and highlights vegetation condition. Mathematically, NDVI involves the calculation
of the red band and near infrared band in multispectral imagery and has a numerical range of (−1.0,
1.0). The NDVI images are able to reflect short-term and long-term vegetation changes and land
cover phenology over time [29]. Other popular indexes such as Global Environment Monitoring
Index (GEMI) and the Angular Vegetation Index (AVI) were also developed to examine vegetational
conditions, but NDVI is the most widely used index in the remote sensing field. The NDVI is calculated
from band math of multi-spectral data as follows:

NDVI =
NIR−RED
NIR + RED

Generally, if there is much more reflected radiation in near-infrared wavelengths than in visible
wavelengths, the vegetation in that pixel is more likely to be dense and may contain some types of
vegetation. For our multi-spectral UAV mapping, it is feasible to calculate the NDVI because the RED
and NIR bands are included in the multi-spectral sensor on board the UAV system. It is also possible
to calculate NDVI for Sentinel-2 by using band 8 (NIR) and band 4 (Red). In this study, we proposed
a replicable UAV mapping method which is also capable of multi-spectral mapping and generating
NDVI maps at much higher spatial resolution than satellite platforms.
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3.2.2. Object-Oriented Classification Method

Object-oriented classification generates image objects, which are derived by dividing the whole
image into small objects according to the shape, size, and spectral content of the image segments.
Because object-oriented classification generates classes at the object level, with appropriate training
samples and parameters, it has the capability to delineate objects at a local scale [30]. This characteristic
can be particularly valuable in urban watershed studies where there are often multiple objects with
complicated spatial distribution patterns. When compared to traditional pixel-based classification
methods, which use regular pixels, object-oriented classification is more appropriate for hydrologic
modeling and vegetation detection [31]. As a result, object-oriented imagery classification has been
widely used for automatic and semi-automatic analyses [32–34].

In this research, we performed an object-oriented classification on both UAV and satellite
multi-spectral data using eCognition (Trimble.com). To perform the object-oriented multi-resolution
classification, we utilized four bands (red, green, Red Edge, NIR). Because the NIR band of Sentinel-2
is more responsive to vegetation, we assigned it a larger weight than the other bands to take advantage
of its measurements.

The shape and size of the objects on the imagery are important parameters in the object-oriented
classification. We identified the suitable size, which depicted optimal size for objects in the study
area. We set object size to 200 pixels for the UAV imagery (Figure 5) and 10 pixels for the satellite
imagery. To calibrate the classification parameters, a sample of classification results was compared to
the aerial imagery. A new classification map was produced by adjusting the coefficients of the shape
and compactness of the image objects to 0.1 and 0.5.
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Figure 5. Object-oriented imagery segmentation for the UAV orthomosaic imagery, (a) object size 200;
(b) object size 300.

The ground truth data were collected with the drone mapping fieldwork, including GPCs and in
situ targets from high-performance GPS which were used as validation data for the object-oriented
classification. We selected several ground-truth targets, such as mangroves, trees, buildings, and
water bodies for training and validation of the remote sensing data (Figure 6). Those targets will be
corresponded to the pixels/objects on the imagery; thus, those can be used to validate the classification
results. As shown in Figure 6, we collected a polygon of the target for seven of the different classes.
Ground-truth validation results show that different land features are well delineated in the classification
map. As such, the object-oriented classification was deemed to have successfully classified each class,
and the map was considered suitable for use in further analyses.



Drones 2019, 3, 60 8 of 15

Drones 2019, 3, x FOR PEER REVIEW 8 of 15 

 
Figure 6. Selection of object training samples and ground truth validations. 

4. Results  

4.1. UAV Mapping Products and Calibration 

The images captured by the multi-spectral camera on board the Parrot Bluegrass were stitched 
and processed into multi-spectral orthomosaic imagery via the Pix4D software. Meanwhile, the 
images collected by the DJI Phantom 4 Pro were processed using Drone2Map software as 2D and 3D 
products, including orthomosaic, Digital Surface Model (DSM), Digital Elevation Model (DEM), and 
point clouds. Pix4D and Drone2Map implement the same Structure from Motion-Multiview Stereo 
(SfM-MVS) photogrammetric techniques to tie multiple overlapping images together and generate 
the previously mentioned geospatial data products. Parrot multi-spectral orthomosaic imagery was 
compared with the satellite remote sensing data, while the RGB images from DJI Phantom 4 Pro 
were used as auxiliary data to help identify the GCPs.  

Figure 7 shows the orthomosaic and geo-referenced UAV products for both multi-spectral 
imagery from the Parrot Bluegrass and nature color imagery from the DJI Phantom 4. To calibrate 
the data and rectify the UAV imagery, 11 GCPs were collected from easily discernable land features, 
such as docks, roads, and corners of parking lots (Figure 7). A Trimble R1 high-performance GNSS 
System was used to collect the GCPs around the study area, which delivers GNSS positions in 
real-time without the need for post-processing. The high-performance GPS has the capability of 
measuring and recording geographic coordinates with a horizontal error less than 0.5 m. For the 
region that is not accessible for the GCPs, we selected 11 more GCP points from the Google Earth 
aerial imagery, so that the GCP points were evenly distributed throughout the study area. By 
incorporating those GCP points, a high quality orthomosaic was generated from the UAV imagery. 

Figure 6. Selection of object training samples and ground truth validations.

4. Results

4.1. UAV Mapping Products and Calibration

The images captured by the multi-spectral camera on board the Parrot Bluegrass were stitched
and processed into multi-spectral orthomosaic imagery via the Pix4D software. Meanwhile, the images
collected by the DJI Phantom 4 Pro were processed using Drone2Map software as 2D and 3D products,
including orthomosaic, Digital Surface Model (DSM), Digital Elevation Model (DEM), and point clouds.
Pix4D and Drone2Map implement the same Structure from Motion-Multiview Stereo (SfM-MVS)
photogrammetric techniques to tie multiple overlapping images together and generate the previously
mentioned geospatial data products. Parrot multi-spectral orthomosaic imagery was compared with
the satellite remote sensing data, while the RGB images from DJI Phantom 4 Pro were used as auxiliary
data to help identify the GCPs.

Figure 7 shows the orthomosaic and geo-referenced UAV products for both multi-spectral imagery
from the Parrot Bluegrass and nature color imagery from the DJI Phantom 4. To calibrate the data and
rectify the UAV imagery, 11 GCPs were collected from easily discernable land features, such as docks,
roads, and corners of parking lots (Figure 7). A Trimble R1 high-performance GNSS System was used
to collect the GCPs around the study area, which delivers GNSS positions in real-time without the
need for post-processing. The high-performance GPS has the capability of measuring and recording
geographic coordinates with a horizontal error less than 0.5 m. For the region that is not accessible
for the GCPs, we selected 11 more GCP points from the Google Earth aerial imagery, so that the GCP
points were evenly distributed throughout the study area. By incorporating those GCP points, a high
quality orthomosaic was generated from the UAV imagery.
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4.2. NDVI Comparison between UAV and Satellite Mapping

First, we aimed to compare the data quality in terms of NDVI between UAV and satellite
multi-spectral mapping products. Higher reflectance in the NIR band of the electromagnetic spectrum
reflects a healthier vegetation in terms of a high NDVI value [2,35]. On the other hand, non-vegetated
surfaces such as water bodies are represented as negative values in NDVI because of the electromagnetic
absorption quality of water [1]. Based on Equation (1), NDVI maps from UAV and satellite multispectral
mapping were generated, respectively.

Figure 8 shows the NDVI color map calculated from UAV and satellite multi-spectral mapping
products. The areas containing a dense vegetation canopy include positive values from 0.3 to 0.8,
while water bodies are characterized by negative values in this index. Both NDVI maps extract the
water and vegetation coverage well. However, the high spatial resolution map created from UAV
imagery affords much more information. As shown in Figure 8, the UAV mapping product clearly
outperforms the satellite mapping in NDVI maps, offering a more detailed land pattern and more
comprehensive vegetation information. Riparian features along the coastal area and roads and docks
near the shore are well recognized in the image created from the multi-spectral UAV mapping. The
different types of vegetation and bare earth can be distinguished in the UAV imagery. The denser and
healthier vegetation inside the lagoon can be identified on the NDVI map. The dense vegetation has
higher NDVI values around 0.7, while the sparse vegetation displays a lower NDVI value around 0.3
to 0.4. Bare earth and mud have very low NDVI values, close to zero. The histograms of the NDVI
maps from UAV mapping and satellite remote sensing are also plotted in Figure 9. The left y-axis
stands for the frequency of the UAV histogram, while the right y-axis stands for the frequency of the
Sentinel-2 histogram. With the overlay of NDVI histograms from Sentinel and UAV, it is apparent that
the variance and frequency of the UAV mapping histogram are much higher due to the finer spatial
resolution. In addition, the NDVI histogram from the UAV mapping appeared much smoother and
more informative on the UAV imagery compared to satellite imagery (Figure 9). The multi-Gaussian
distribution reflects the different types of land cover captured by the UAV NDVI maps. Different
components in the multi-Gaussian distribution stand for the different land covers with approximate
mean values of water bodies (−0.51), developed areas (−0.28), and vegetation (0.41).
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4.3. Comparison of Object-Oriented Classification Results

To illustrate the results of our analyses in more detail, object-oriented classifications on UAV
mapping, satellite remote sensing, and aerial mapping are performed using eCognition (Trimble.com).
We clipped the satellite and aerial mapping to a similar area to make a better visual comparison, as
shown in Figure 10. Multi-resolution classification was used because the satellite imagery contains
NIR, red edge, red, green, and blue bands; hence, the same classification was used on the UAV and
aerial imagery. To obtain the best classification results, we set the object size to 200 for the UAV and
aerial imagery, and 50 for satellite images. These sizes corresponded to the average number of pixels
for objects in the study region. In order to compare the object-oriented classification method with the
conventional pixel-based classification method, we also used the ISODATA unsupervised classification
method on the UAV multi-spectral image [36]. The conventional pixel-based method generates results
with more fragmentized classifications. There are some small pieces of developed areas in the water
body due to the abnormal value of pixels. On the other hand, the object-oriented classification method
is able to model the objects considering its spectral, shape, and relative locations, achieving more
accurate results and better delineation of the objects’ shape.
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Figure 10 shows the comparison of classification results of the UAV, satellite, and aerial data.
Using the satellite classification method, the UAV data achieved higher accuracy and more detailed
classification results (Figure 10b) than the satellite data (Figure 10c). For the satellite remote sensing
classifications, only the major area of the vegetation coverage can be extracted from the image. There
are few detailed variations inside of the lagoon area, and the mangrove forests cannot be distinguished
from the adjacent root or scrub. The dense vegetation is mixed with all other vegetations to a similar
homogeneous region. The shapes of residential areas and developed areas are not clear either. Roads,
decks, and boundaries of the lagoon are much clearer than that shown under the Sentinel-2 classification
results (Figure 10d).

4.4. Examining the Benefits of Finer Resolution Data

In addition to demonstrating the advantages of high spatial resolution UAV mapping and
classification, we also aimed to examine the quantitative improvements of the UAV mapping compared
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to conventional satellite remote sensing. To calculate how much improvement there was between
these two types of mapping methods, we adopted a classification validation measurement of Kappa
statistics [37,38]. The approach taken is based on Cohen’s Kappa statistic, which is proposed as a
standard meter for measuring the accuracy of all multi-valued classification problems [39]. Cohen’s
Kappa was first utilized as a measurement to estimate the degree of agreement or disagreement of two
or more observers for the same phenomenon [40]. When comparing two or more digital classification
results, the Kappa statistic is able to discriminate errors in terms of both quantity and location and to
measure the overall accuracy of agreement between the classification and reference images. Its value
ranges from 0 to 1, where 0 means no agreement and 1 means perfect agreement between the two
classifications. In this research, we use the aerial imagery as reference to compare UAV mapping with
conventional satellite remote sensing.

For validation, both the UAV classification and satellite remote sensing classification were
compared with the aerial imagery using the K-fold cross-validation method. Two-thousand points
were randomly selected to calculate the confusion matrix and Kappa value against the reference data,
and we repeated the calculation 3 times. That is, we calculated the multiple confusion matrices based on
various points selected, and the average Kappa value was used to compare the results. The minimum
allowed distance between points was set to 10 m to ensure an even spatial distribution. To standardize
for comparison purposes, the classification results from UAV and aerial mapping were merged into
different types of vegetation classes in UAV and aerial mapping to a single class, so that they have
the same class number for all types of data. That is, grass, trees, and mangroves are categorized as
vegetation coverage, while open space and highly developed areas are categorized as developed area
in the comparison of satellite classification results. When the UAV mapping products were compared
with the aerial data, the 3-fold average value of the Kappa score was 0.713. Likewise, the 3-fold average
value of the Kappa score for the satellite remote sensing mapping product was 0.538. Therefore, it can
be noticed that compared with the reference data, UAV mapping classification results outperform the
conventional satellite remote sensing in terms of a higher Kappa score (24.5% higher). In addition,
Fleiss considers Kappa as excellent when more than 0.7; 0.40–0.7 as fair to good; and poor when Kappa
is less than 0.4 [41]. Based on this study, the UAV mapping generates an excellent classification result
against the reference data, with satellite remote sensing data only generating results in the “good” level.

5. Conclusion

Numerous research studies have discussed the advantages/disadvantages of different kinds of
remote sensing approaches [6,42]. Traditional satellite remote sensing can retrieve historical data back
to the 1960s with varied revisiting cycles. Although the data is convenient to obtain by researchers,
the relatively coarse spatial resolution limits the application of satellite imagery in coastal monitoring
and management. Aerial imagery provides very high spatial resolution, but it is cost prohibitive
because of airplane and pilot costs. UAV/drone mapping techniques have developed in recent years
as a cost-effective improvement to these two mapping methods. UAV imagery with its high spatial
resolution, temporal flexibility, and ability to repeat photogrammetry in a short period affords a
significant advancement on other remote sensing approaches, and UAV mapping can be widely used
for coastal mapping, vegetation monitoring, and environmental management.

In this research, we implemented both multispectral and RGB UAV-collected images and SfM-MVS
processing to examine a portion of Mosquito Lagoon along the central Atlantic coast of Florida. Ground
Control Points were also collected in the field to support the stitching and geo-referencing of the drone
images. High resolution multi-spectral mapping products at 0.25 m spatial resolution were generated
to investigate the land cover classification results over the study region. Meanwhile, satellite remote
sensing imagery (Sentinel-2) at 10 m spatial resolution was compared with the UAV mapping results.
We calculated the well-established remote sensing index NDVI to illustrate the higher spatial details
that can be extracted from the UAV mapping method. In comparison to coarse resolution satellite
imagery, the UAV mapping method used in this study provided advanced information about the
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physical conditions of the study area, an improved land feature delineation, and a more comprehensive
understanding of the conditions of the mangroves.

Comparing the spatial resolution of the UAV mapping products and classification results, we
examined whether the better-quality source data could provide results that would be more indicative
of actual environmental management. Qualitatively, the multi-spectral UAV mapping provides a
tremendous improvement of the spatial resolution, as well as much more detailed spatial information.
Also, the NDVI map derived from UAV multi-spectral mapping is informative and with higher
variance than the satellite imagery. Histogram comparison of the NDVI map demonstrated a more
comprehensive multi-Gaussian distribution from the UAV mapping. Quantitatively, the kappa
statistical score was calculated via the estimation of a confusion matrix, and a K-fold comparison was
made between UAV classification and satellite classification against the reference data, respectively.
The validation results show that UAV mapping classification results surpassed the conventional
satellite remote sensing by 24.5% in terms of average Kappa score. The method presented in this
paper quantitatively compares UAV mapping methods with conventional satellite imagery methods
for coastal environments. This study not only demonstrates a methodology for multi-spectral drone
coastal mapping with object-oriented classification but also provides a quantitative estimation of
improvements of a UAV technique. It is our hope that the results of this study demonstrate the
quantitative improvements of UAV imagery compared to conventional satellite imagery for image
classification related to coastal environments and related management projects. Moreover, the
application of multi-spectral UAV work presented in this study may be useful in other coastal areas of
the world, especially areas with poor quality imagery.
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