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Abstract: Unmanned Aerial Vehicles (UAVs) with acceptable performance are becoming commercially
available at an affordable cost. Due to this, the use of drones for real-time data collection is becoming
common practice by individual practitioners in the areas of e.g., precision agriculture and civil
defense such as fire fighting. At the same time, as UAVs become a house-hold item, a plethora
of issues—which can no longer be ignored and considered niche problems—are coming of age.
These range from legal and ethical questions to technical matters such as how to implement and
operate a communication infrastructure to maintain control over deployed devices. With these
issues being addressed, approaches that focus on enabling collectives of devices to operate
semi-autonomously are also increasing in relevance. In this article we present a nature-inspired
algorithm that enables a UAV-swarm to operate as a collective which provides real-time data such
as video footage. The collective is able to autonomously adapt to changing resolution requirements
for specific locations within the area under surveillance. Our distributed approach significantly
reduces the requirements on the communication infrastructure and mitigates the computational cost
otherwise incurred. In addition, if the UAVs themselves were to be equipped with even rudimentary
data-analysis capabilities, the swarm could react in real-time to the data it generates and self-regulate
which locations within its operational area it focuses on. The approach was tested in a swarm of
25 UAVs; we present out preliminary performance evaluation.

Keywords: self-organization; adaptive behaviour; swarming algorithms; distributed sensing;
multi-agent systems; nature-inspired optimization; artificial intelligence; swarm intelligence

1. Introduction

Unmanned Aerial Vehicles (UAVs) [1], often referred to as drones by non-technical users,
are known in the academic literature under a variety of names: UASs (Unmanned Aerial Systems) [2],
RPAs (Remotely Piloted Aircrafts) [3], ROAs (Remotely Operated Aircrafts) [4] or, mainly, UAVs.
While this technology is not new ([5], reports on the U.S. military using UAVs for operations as far back
as the Vietnam War) it has recently (in the last 5–10 years) become commercially available to civilian
professional users as well as hobbyists. There are already a large number of diverse devices and
different device types commercially available and the difference in price can be substantial between
them [6], with toys being available for less than $100 while professional non-military devices can easily
cost in excess of $100,000 [7]. Recent developments have resulted in UAVs with acceptable performance
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becoming available at an affordable cost. The use of drones for preliminary data collection is becoming
common practice for civilian applications in the areas of, for example, precision agriculture [8] and
civil defense such as fire fighting [9], traffic management [10] or to locate victims [11].

The relatively young field of UAV-technologies has not yet agreed on a unified classification
system encompassing all devices and there are many ways to categorize UAVs [12]. For the foreseeable
future regulatory bodies will continue to impose different regulations and classifications on UAVs [13]
and those regulations may be subject to frequent change and amendment. The use of UAVs in public
airspace touches on a number technical and societal concerns and challenges [14]. The available devices
differ in manufacturer, type and capabilities and have been used for a wide variety of applications and
missions. Some fixed wing UAVs can remain airborne for hours (cf. Table 1) circling over certain areas
while cheap off-the-shelf quadrotor currently have an expected flight-time of about 15 to 20 min [13].
Special purpose UAVs can remain in the air for up to two weeks [15] or longer and as technologies
continue to improve these performance values are only expected to get better [16].

Table 1. The Federal Aviation Administration’s (FAA) Next Generation Air Transportation (NexGen)
environment classification system groups UAVs in 5 distinct groups. AGL = above ground level,
FL = flight level, cf. Reference [12] for more detail and other classifications.

Group # Payload Weight Operational Altitude Speed Endurance (Flight Time) Launch Method Example Devicesin Pounds in Feet in Knots in Hours

1 0 - 20 < 1200 AGL <100 1.5 Hand launch Raven, Wasp
2 21 - 55 < 3500 AGL <250 24 Catapult Scan Eagle
3 <1320 < FL 180 <250 5-18 Runway Hunter, Shadow
4 >1320 > FL 180 various 15-26 Runway Predator, Gray Eagle
5 >1320 > FL 180 various 17-36 Runway Global Hawk, Reaper

1.1. Challenges and Stepping Stones

In the interest of full disclosure we would like to emphasize that the work and the results presented
in this article are from simulations only. The hardware and simulation framework presented in Section 3
makes this clear but we feel the need to justify this shortcoming at this point to avoid disappointment.
Our work is based on theoretical investigations [17–20]. At NEC Research Labs, a drone was custom
built for this project and flown as shown in Figure 6.

However, as explained in Section 3, the legal and operational obstacles for operating and flying a
swarm of drones proved to be prohibitively challenging and, more importantly, restricting: the legal
setting at the time required (and, to our knowledge, still does require) a pilot for each devices as well
as the ability to take control of a drone at any time. Operating a swarm of 25 drones would therefore
require 25 pilots, with each individual tracking the specific drone allocated to the respective pilot at
all times. In addition to the HR challenges this poses and given the intended application domain
and the application itself, maintaining continuous line of sight can only be guaranteed by subjecting
the test scenario to some rather restricting conditions. Furthermore, the very concept of autonomous
operation is problematic under the letter of the law in some countries: in The Netherlands, the flying of
drones in full autonomy is currently (to our knowledge) forbidden by definition and (again, to our best
knowledge) not possible. This will change in the near future, with first legislations for autonomously
operating drones as well as an effort to unify UAV legislations within the European Union underway.

Meanwhile, the Intelligent Autonomous Systems (IAS) group at TNO is taking steps to partner
with the Dutch Military to conduct a series of preliminary tests over military terrain (side-stepping
the laws for civilian airspace) with the express goal to facilitate the testing and operating of UAVs in
full autonomy. As this is the subject of an ongoing planning effort we have decided to submit this
manuscript with simulated results only and to leave the full field-testing of the algorithm as future
and expected work, see Section 5. The hardware available at IAS, which is also the hardware expected
to be used for forthcoming projects on UAV swarming, is shown in Figures 1–3.
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Figure 2. (left, top) One of the 3 AceCore NEO drones (TNO-63) on its packing containers with two
remote controls (left, bottom), one of which with the screen for the bottom mounted camera (right).

1.2. Relevant Application Areas67

In [6] we provided an overview over some of the most promising non-military application areas68

and the challenges of operating UAVs and especially swarms of UAVs. The United States Office of the69

Secretary of Defense (OSD) distinguishes more than twenty unique UAV mission types [12], ranging70

from intelligence, surveillance [21] and reconnaissance missions [5], over locating victims [11] to e.g.,71

fire fighting [9]. The majority of the applications in [6] are sensing focused missions (as opposed to72

applications requiring actuation, i.e., the manipulation of objects in the physical environment). In the73

context of the article at hand we would like to emphasis 4 main application areas where UAVs are74

already used for various data-collection / sensing centered missions. These areas, which are briefly75

introduced below and for which the algorithm proposed in this article was mainly developed, are:76

Section 1.2.1: Precision agriculture [8,10,16,22–24]77

Section 1.2.2: Disaster response and relief [9–11,13,16,21,25–27]78

Section 1.2.3: Smart city applications and civil protection [9,11,16,21,28]79

Section 1.2.4: Land administration and wildlife protection [10,13,16,29–31]80

1.2.1. Precision agriculture81

In the context of agriculture related monitoring applications one of the defining characteristics82

is the need for detailed information for large areas. This is especially the case in the context of83

environmental or weather monitoring missions [10]. The provided information has to be timely, as84

changing conditions may affect the data collection or the measured quantity and, if e.g., abnormal85

readings a reported, of high resolution and accuracy so as to identify critical issues as early and precise86

as possible [22]. Agriculture has of course been around for millennia, but the traditional approach87

to data collection is through sampling, which is inherently unreliable, imprecise and suffering from88

a large time delay between collecting the data and evaluating it. Especially in the context of pest89

monitoring [22] and extreme conditions [16], it would be of added benefit to be able to deploy a swarm90

of devices that can cover an even larger area while at the same time being able to dispatch one of its91

members to investigate specific locations without the swarm losing sight of the entire field to do so.92

Figure 1. (left, top) One of the 3 AceCore NEO drones (TNO-63) on its packing containers with two
remote controls (left, bottom), one of which with the screen for the bottom mounted camera (right).
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1.2.2. Disaster response and relief93

UAVs can be deployed [23] during or after disasters to contribute to disaster management94

operations by e.g., performing logistic tasks such the delivery of hardware and resources to incident95

sites [9], recovering hazardous material [16], assisting with traffic monitoring and management [10,16]96

or monitoring structures and inspecting terrain [13] before human operatives are permitted access. By97

augment or replacing remaining sensing capability [32] in an environment [9], UAVs can play a crucial98

role [23], especially when existing infrastructure is compromised, malfunctioning or disconnected.99

According to [10] we will see see advances in the areas of cloud computing, wireless sensors, networked100

unmanned systems as well as big / open data over the next few years, which has the potential to make101

drones the ideal candidate for mobile / aerial urban sensing platforms [21]. UAVs can serve as flexible102

mobile platforms [10] for general monitoring [9,11] or monitoring and surveillance [10,16] missions103

but also to e.g., provide situational awareness support [13], surveil forrest and wildfires [16], detect104

victims or their life-signs [11] and participate in search and rescue or aerial tracking [16].105

Disasters often result in partial or total loss of communication and data-collection infrastructure106

and operations during, or in the wake of, a disaster are generally highly dynamic (people, victims,107

resources and threats move as the situation develops, often in response to disaster response activities).108

The use of multiple UAVs in a formation that can be treated as a single operational unit (i.e., a swarm109

[21]) acting as mobile sensor networks [10] to monitor civil defense personal or disaster victims [11] or110

for tracking and surveillance tasks in general [16] offers a number of obvious benefits. Enabling swarms111

capable of autonomously assessing the quality of the collected data with the aim to continuously112

self-organize into constellations that improve upon it is the domain of the presented algorithm.

Figure 3. UAVs used by TNO: shown on the (right) is one of the UAV experts of the Intelligent
Autonomous Systems group at TNO, assembling one of our 3 AceCore NEO drones; (left top) is
the fully assembled drone and (left bottom) the three drones being transported to a test site. These
drones are capable of sustained flight (≥20 min) under adverse weather conditions while transporting
a payload of up to 10 kg. For upcoming projects we will operate swarms of up to sic of these devices.

113

Figure 2. UAVs used by TNO: shown on the (right) is one of the UAV experts of the Intelligent
Autonomous Systems group at TNO, assembling one of our 3 AceCore NEO drones; (left top) is the fully
assembled drone and (left bottom) the three drones being transported to a test site. These drones are
capable of sustained flight (≥20 min) under adverse weather conditions while transporting a payload
of up to 10 kg. For upcoming projects we will operate swarms of up to sic of these devices.
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The above examples could both be (and have been, cf. [13] and [29,31], respectively) realized using205

UAVs (or existing hardware such as traffic cameras or, looking into the future, swarms of satellites206

[20]). What we propose is to operate UAV swarms under the control of decentralized algorithms that207

enable a collective to self-organize continuously so as to adapt to the changing environment. In the208

context of this article, the changes in the environment are changes in the resolution required for each209

individual under observation. In other words, we set aside the movement of the individual objects210

under surveillance (the argument being that the tracking of objects within a data feed is simply a211

question of computational resources) and focus on the ability to allocate increased sensing capabilities212

to individuals without sacrificing a minimum resolution for everyone under surveillance.213

In the above examples we make use of sensors, and without addressing the current state of the art214

with regard to commercially available sensors and sensing equipment, let’s just say that the sensors215

in our examples could be video cameras or infra-red cameras / sensors, respectively. The gimball216

mounted camera, shown in Figure 2 under one of TNO IAS’s AceCore NEO drones (cf. Figures 4 and217

3) is an example of the hardware that could be used in a field test for the abovementioned examples.218

Figure 4. UAVs used in TNO: (right) the TNO MSP prototypes used for in preliminary testing, feasibility
studies and algorithm trials. Like the NEC drone shown in Figure 8, this TNO devices used a pixhawk
and a Raspberry Pi. For comparison of size, the left panel shows this drone (left, top) as well as (left,
bottom) the NEO drone used for full field testing under adverse conditions, cf. pictures on page 4.

Generally speaking, the sensing capabilities of any equipment are bounded. This means that in219

order to increase the level of detail (e.g., in case of a camera or an IR-sensor: the image resolution) one220

has to reduce the area that is covered. Assuming that there is some leeway and overlap in coverage,221

then there is the opportunity for re-arranging allocations so as to find a deployment which improves222

the current performance. If continuous coverage over an entire area is a hard constraint (as it is for223

certain search and rescue missions), then this can be achieved by handing over coverage over locations224

to other devices which currently operate under lower resolution requirements.225

2.1. Problem statement226

We address the scenarios where a number of UAVs are operating as a single functional unit227

(a swarm [50]) to provide real-time data from their individual directed sensing equipment (such as228

onboard cameras or IR-sensors). In this context, individual devices provide partial coverage which,229

when combined with data from other devices, offers complete coverage of a target object or area.230

Figure 3. UAVs used in TNO: (right) the TNO MSP prototypes used for in preliminary testing,
feasibility studies and algorithm trials. Like the NEC drone shown in Figure 7, this TNO devices used
a pixhawk and a Raspberry Pi. For comparison of size, the left panel shows this drone (left, top) as
well as (left, bottom) the NEO drone used for full field testing under adverse conditions.

1.2. Relevant Application Areas

In Reference [6], we provided an overview over some of the most promising non-military
application areas and the challenges of operating UAVs and especially swarms of UAVs. The United
States Office of the Secretary of Defense (OSD) distinguishes more than twenty unique UAV mission
types [12], ranging from intelligence, surveillance [21] and reconnaissance missions [5], over locating
victims [11] to, for example, fire fighting [9]. The majority of the applications in Reference [6] are
sensing focused missions (as opposed to applications requiring actuation, that is, the manipulation of
objects in the physical environment). In the context of the article at hand we would like to emphasis
4 main application areas where UAVs are already used for various data-collection/sensing centered
missions. These areas, which are briefly introduced below and for which the algorithm proposed in
this article was mainly developed, are:

Section 1.2.1: Precision agriculture [8,10,16,22–24]
Section 1.2.2: Disaster response and relief [9–11,13,16,21,25–27]
Section 1.2.3: Smart city applications and civil protection [9,11,16,21,28]
Section 1.2.4: Land administration and wildlife protection [10,13,16,29–31]

1.2.1. Precision Agriculture

In the context of agriculture related monitoring applications one of the defining characteristics
is the need for detailed information for large areas. This is especially the case in the context of
environmental or weather monitoring missions [10]. The provided information has to be timely,
as changing conditions may affect the data collection or the measured quantity and, if, for example,
abnormal readings a reported, of high resolution and accuracy so as to identify critical issues as early
and precise as possible [22]. Agriculture has of course been around for millennia but the traditional
approach to data collection is through sampling, which is inherently unreliable, imprecise and suffering
from a large time delay between collecting the data and evaluating it. Especially in the context of pest
monitoring [22] and extreme conditions [16], it would be of added benefit to be able to deploy a swarm
of devices that can cover an even larger area while at the same time being able to dispatch one of its
members to investigate specific locations without the swarm losing sight of the entire field to do so.
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1.2.2. Disaster Response and Relief

UAVs can be deployed [23] during or after disasters to contribute to disaster management
operations by, for example, performing logistic tasks such the delivery of hardware and resources
to incident sites [9], recovering hazardous material [16], assisting with traffic monitoring and
management [10,16] or monitoring structures and inspecting terrain [13] before human operatives are
permitted access. By augment or replacing remaining sensing capability [32] in an environment [9],
UAVs can play a crucial role [23], especially when existing infrastructure is compromised,
malfunctioning or disconnected. According to Reference [10] we will see see advances in the areas of
cloud computing, wireless sensors, networked unmanned systems as well as big/open data over the
next few years, which has the potential to make drones the ideal candidate for mobile/aerial urban
sensing platforms [21]. UAVs can serve as flexible mobile platforms [10] for general monitoring [9,11]
or monitoring and surveillance [10,16] missions but also to, for example, provide situational awareness
support [13], surveil forrest and wildfires [16], detect victims or their life-signs [11] and participate in
search and rescue or aerial tracking [16].

Disasters often result in partial or total loss of communication and data-collection infrastructure
and operations during or in the wake of, a disaster are generally highly dynamic (people, victims,
resources and threats move as the situation develops, often in response to disaster response activities).
The use of multiple UAVs, operating as a single unit in formation (i.e., a swarm [21]) and acting as
mobile sensor networks [10] to monitor civil defense personal or disaster victims [11] or for tracking
and surveillance tasks in general [16] offers a number of obvious benefits. Enabling swarms capable of
autonomously assessing the quality of the collected data with the aim to continuously self-organize
into constellations that improve upon it is the domain of the presented algorithm.

1.2.3. Smart City Applications and Civil Protection

UAVs, by their mobile nature are ideal candidates for mobile/aerial urban sensing platforms [21].
Clearly there is an overlap between UAV applications in the context of natural or man-made disasters
and their use in the context of a smart city, not the least because major civil defense incidents can be
classified as disasters (and of course because natural disasters can affect a city, causing wide-spread civil
defense operations). However, even under normal operations a sensor-enhanced urban infrastructure
can benefit greatly from mobile sensing devices delivering data for a plethora of applications,
ranging from simple environment/weather monitoring [10] over resource tracking [16] and urban
surveillance [21] to package delivery [9] and traffic monitoring [16]. During large events they can be
used to provide situational awareness support [13], deliver medical supplies to congested areas [9]
and monitor first responder personal and resources [11], for example, for fire fighters [9].

Their decreasing cost, increasing ease to operate and the fact that vast varieties of sensors can
be mounted on affordable drones makes them ideal candidates for mobile/aerial urban sensing
platforms [21]. Operating a swarm of such devices [21] for, for example, aerial tracking [16] which can
autonomously decide to dispatch a swarm-member to provide a closer look (i.e., higher resolution
data or more accurate measurements) while at the same time dynamically reorganizing to continue
to cover an entire area can have many advantages over using individual devices in isolation as
stand-alone applications.

1.2.4. Land Administration and Wildlife Protection

Recently, UAVs have been successfully used for civil- [9] and cargo-supply [30],
terrain inspection [13] and various search and rescue operations [16,30]. UAVs are used for water
management and biofuel production [2] or to monitor areas [10] for wild-life protection (e.g., U.S.
animal rights groups deploying drones to monitor offenders) [1]. UAVs are being used all over the
globe to this end—for example, the World Wildlife Fund (WWF) uses fixed wing drones like the FPV
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Raptor in the Bardia National Parks (Nepal) to fight poaching and illegal wildlife trade [29,31] and in
some of Africa’s national parks UAVs are used to actually close in on the poachers to engage them [29].

Especially in the context of herd surveillance swarm operations can be of great benefit or even
crucial to the mission: when using a population of UAVs as flexible mobile platforms [10], equipped
with hardware that allows them to locate heat sources [13], the ability to maintain uninterrupted
coverage over the entire herd is critical to enable the tracking [16] of individual animals. At the
same time, preliminary analysis of IR-video footage might make it necessary for one drone to approach
a specific animal for a better reading, so as to ascertain the health status of the individual.

1.3. Optimization and Self-Organization in Nature

Collective behaviour (e.g., clustering, collaboration and signal processing) based on
self-organization [33] has been shown in group-living animals from insects to vertebrates and even at
the cell level [34]. Engineers and computer scientists have a long history of applying principles and
approaches found in nature to challenges in their respective domains. In computing science this is
often done to increase the accuracy of models and to improve algorithms (cf. Reference [35]). Indeed,
nature-inspired approaches (e.g., Reference [36]) have the potential to be extremely efficient [37].
With regard to swarming applications, especially the behaviour of social insects such as ants, termites
and bees has received a lot of attention in the past years [38]. The social insect metaphor for problem
solving emphasizes distributedness, interaction between members of a population, flexibility and
robustness [39]. The distributed nature of self-organization is one of its defining characteristics and
may be its most advantageous feature. Distributed sensing can be achieved using only rudimentary
cognition may be widespread across biological taxa, in addition to being appropriate and cost-effective
for computational agents [40]. It has been shown that global goals can be achieved by local processing
and by using only local information [41]. The growing understanding of complex collective behaviour
offers the prospect of creating artificial systems controlled by emergent collective behaviour [42].

1.4. Heuristics and Meta-Heuristics

Computer scientists have studied models from theoretical biology and applied the underlying
principles to a variety of problems, often in the form of heuristics. Heuristics (from the Greek
εuρíσκω: “to find”, “to discover”) are approaches that estimate or find (in contrast to deterministically
derive or deduce) good solutions to problems. In computing science there are many problems that
while theoretically trivial to solve (e.g., there is a winning strategy for the game of Chess) are
prohibitively complex, making the calculation of the optimal solution too computationally expensive
to be even remotely feasible. Heuristics [43] can find very good solutions in very little time (sometimes
increasing only linearly with the size of the problem) but they do so at the danger of missing the best
possible solution. Since many problems require only a certain quality of the solution, investing time
and effort to improve the solution further is a waste of resources.

If a heuristic exploits a property common to many problems then it is called a meta-heuristic
because it can be applied to an entire class of problems. It is not uncommon for meta-heuristics
to be inspired by naturally occurring phenomena, which are often taken from the fields of physics
and biology. The approaches to UAV swarming algorithms in our lab (cf. patent applications [44–47])
have shown an affinity for such nature-inspired approaches and are inspired by social insects (cf.
References [17–20]).

The field of meta-heuristics is broad and complex and the scope of this article does not allow
an overview to do it justice. For a broad overview and a useful compilation of nature-inspired
approaches (including the algorithms) we suggest Reference [48] which is also available online for free
(http://www.cleveralgorithms.com/).

http://www.cleveralgorithms.com/
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2. Swarm Based Real-Time Data Collection

There are a number of application areas where drones are already heavily used (cf. Section 1.2)
for data-collection missions. As with most real-world applications, there is a temporal element to most
of these missions, meaning that the world is changing while measurements are performed. For many
measurements this is even a crucial aspect, as we want to know how some sensor reading evolves over
time. There are, however, applications where measurements performed by a single sensor or sensing
units are negatively affected by the fact that the measured environment is dynamic. This is especially
the case when the objective of the data-collection requires measurements are various points (ideally at
the same time) and when the objects that are measured are themselves not static (e.g., moving around).

Examples

A feature that sets our work apart from other swarm-based surveillance and assessment
applications (such as the use of collectives of UAVs to locate land mines [49]) is the requirement
to maintain the entire area under surveillance while at the same time allocating increased attention to
some specific location within the area. We briefly discuss two real-world examples for our problem to
provide a framing for the approach and the results discussed in this article:

1. A child has gone missing at a massive public event, such as for example, the 4th of July parade.
Identifying properties (such as wearing a red jacket and being ≈ 125 cm in height) are known. The
task at hand is to check an entire road segment. This requires being able to zoom in for closer
investigation if a red object of the appropriate height is spotted. Since children can be extremely
mobile, maintaining area coverage is extremely important if we wish to reliably check an area.

2. A herd of animals is under aerial surveillance, be it to establish the health status of the herd or
because a predator reported among them. It is virtually impossible to perform a full close-up
evaluation of all individuals without maintaining line of sight on the entire herd. It might be
possible to identify every individual but the operational cost of re-finding individuals on the basis
of their markings is prohibitively high (and might require additional sensors).

The above examples could both be (and have been, cf. References [13,29,31]) realized using UAVs
(or existing hardware such as traffic cameras or, looking into the future, swarms of satellites [20]).
What we propose is to operate UAV swarms under the control of decentralized algorithms that
enable a collective to self-organize continuously so as to adapt to the changing environment. In the
context of this article, the changes in the environment are changes in the resolution required for each
individual under observation. In other words, we set aside the movement of the individual objects
under surveillance (the argument being that the tracking of objects within a data feed is simply a
question of computational resources) and focus on the ability to allocate increased sensing capabilities
to individuals without sacrificing a minimum resolution for everyone under surveillance.

In the above examples we make use of sensors and without addressing the current state of the art
with regard to commercially available sensors and sensing equipment, let’s just say that the sensors
in our examples could be video cameras or infra-red cameras/sensors, respectively. The gimball
mounted camera, shown in Figure 1 under one of TNO IAS’s AceCore NEO drones (cf. Figures 2 and 3)
is an example of the hardware that could be used in a field test for the above mentioned examples.

Generally speaking, the sensing capabilities of any equipment are bounded. This means that in
order to increase the level of detail (e.g., in case of a camera or an IR-sensor: the image resolution) one
has to reduce the area that is covered. Assuming that there is some leeway and overlap in coverage,
then there is the opportunity for re-arranging allocations so as to find a deployment which improves
the current performance. If continuous coverage over an entire area is a hard constraint (as it is for
certain search and rescue missions), then this can be achieved by handing over coverage over locations
to other devices which currently operate under lower resolution requirements.
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2.1. Problem Statement

We address the scenarios where a number of UAVs are operating as a single functional unit
(a swarm [50]) to provide real-time data from their individual directed sensing equipment (such as
onboard cameras or IR-sensors). In this context, individual devices provide partial coverage which,
when combined with data from other devices, offers complete coverage of a target object or area.

Our swarm delivers at least the required resolution but “operating under lower resolution
requirements” does not mean currently delivering only the required minimum resolution: whenever possible
we will deliver better than required performance (i.e., each device will deliver the best possible resolution,
given the locations it is currently allocated). Due to this, exchanging locations may negatively affect
the performance of some devices because, while still within the constraints of the minimally required
resolution, a device may have to reduce performance in order to accommodate a new location. This can
possibly result in further handovers, which in turn can cause—in the worst case—a ripple effect
propagating through the entire swarm. In short, a single change in requirements may require the entire
swarm to implement changes in order to collectively improve on the overall delivered performance.

The fundamental building blocks of the problem are the participating devices D (the set of drones:
D = {d1, . . . , dn}) and L (all the locations L = {l1, . . . , lm} which need to be covered). With regard to
the latter, each location li is defined by its x- and y-coordinates (xmin

li
, xmax

li
, ymin

li
, ymax

li
) and a resolution

requirement resli . We discretize the locations to have a width and breadth of 1 measurement unit and
simplify li = (xmin

li
, ymin

li
, resli ) since xmax

li
= (xmin

li
+ 1) and ymax

li
= (ymin

li
+ 1). As far as the individual

drones are concerned, each drone dj has a current position (given in terms of an x-coordinate and a
y-coordinate: xdj

, ydj
) as well as an altitude (adj

, that is, the z-coordinate). It furthermore has operational
constraints imposed on (a) its z-coordinate (which defines the altitudes at which the drone may operate
as the acceptable range between maximum and minimum altitude, given by max_altdj

and min_altdj
,

respectively) and on (b) the resolution of its sensors, resdi
, which is a constant. A drone dj can be

defined as dj = (xdj
, ydj

, adj
, max_altdj

, min_altdj
, resdj

) or simply (xj, yj, aj, max_altj, min_altj, resj).
Our description of the problem implies a number of simplifications which are briefly justified:

Firstly, above we have mentioned resdi
, the resolution of drone di’s sensor and said it to be fixed. Of

course, realistically, in case of a camera, the resolution will depend on both the actual resolution of the
sensor as well as the focal length (i.e., the resolution of the camera as well as its zoom level). In this
problem we ignore any zooming capability of the cameras and pretend that this value is fixed. This
simplification does, however, not affect the validity or applicability of the approach, nor does it lessen
the generality of the definition. This is due to the fact that, in our implementation, we focus exclusively
on the altitudes of individual drones and by changing its altitude, a drone can achieve the same effect
as through zooming—it can improve the resolution of the data provided for all locations covered by
the drone (at the cost of decreasing this set of locations) or increase the number of covered locations (at
the cost of decreasing the resolution provided for each individual location).

Secondly, we assume a drone’s x- and y-coordinates to be static. To justify this, we argue that a
sufficiently fast implementation will be able to calculate a new and optimized z-position for a drone
before its x- and y-coordinates changed in the real world. This effectively allows us to treat the
resolution-optimization problem as static and stand-alone. We refer to References [17,18] and patent
applications [44–46] addressing the optimizing of movement of drones in the x/y plane).

Thirdly, we treat the surface as a flat area, that is, we assume that the altitude of a drone correlates
to the resolution provided for all locations covered by that UAV, that is, we do not consider uneven
surfaces where, for example, locations on a hill are covered with a higher resolution due to being closer
to the sensor. We further simplify the definition of the covered area by assuming that for each increase
in altitude the area of coverage is extended by two location, both in the width as well as in the depth of
the covered area. Finally we fix a maximum altitude max_altdi

a drone di can reach and still provide
coverage, if this is the same for all drones we use max_alt. The minimum, min_alt, is = 0.
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2.2. Solution and Measure of Success

Recall that a drone dj is fully described by dj = (xj, yj, aj, max_altj, min_altj, resj) and that
we have simplified the problem by defining resj to be fixed and by furthermore assuming that the
optimization happens at a speed sufficiently fast to allow us to treat xj and yj to be static. Since aj is
taking a value from the range aj ∈ {min_altj, ..., max_altj} (which, to keep things simple, we said
to be identical for all drones) the problem is effectively reduced to allocation aj for all dj ∈ D.

A solution to the problem is an instance of D (given a specific L) such that (a) all locations are
covered and (b) all resolution requirements are met. With the application areas in mind, we consider
the first constraint to be hard (i.e, that all locations must be covered) and that the x/y positions of the
drones actually do allow this. We again refer to parallel work by us addressing the x/y movement
of drones and remind the reader that this article focuses on the altitude optimization given a certain
formation and position of the swarm. Regarding the allocation of locations: for any specific x/y coordinate
we distinguish Lx,y

a , the set of all locations seen at altitude a at this position (with Lx,y
a ⊆ L). From

that we get Ldi
, the set of locations seen by drone di at position xj, yj, that is, at its current x/y position

(with Ldi
= Lxj ,yj

ai ); and finally L∗di
, the set of locations actually allocated to drone di, (with L∗di

⊆ Ldi
).

The second constraint, (b), on the other hand can be violated but such solution are considered
unsatisfactory. To quantify this we have to define a measure of success for solutions.

2.2.1. Coverage and Resolution

Ldi
, the set of locations seen by drone di depends on di’s altitude adi

and x- and y-coordinates (xdi
,

ydi
) is defined as ∀j, k ∈ {1, . . . , adi

} : (xdi
, ydi

), (xdi
− j, ydi

), (xdi
, ydi
− k), (xdi

− j, ydi
− k) ∈ Ldi

.
The number of locations seen from an altitude a is given by:

|La| = (a× 2)2 (1)

Therefore, |Ldi
|, the number of locations that can potentially be covered by a drone di, is determined

by the UAV’s altitude adi
:

|Ldi
| = |Ladi

| = (adi
× 2)2 (2)

The resolution rdi
provided di changes with the altitude and the intrinsic camera values. Normally we

would express the resolution of an area in pixels per area and account for parameters like the focal length
(zoom level) and say that the higher the value the better the performance. Our actual implementation
includes camera resolution, a fixed focal length and the drone’s altitude but our mathematical model
considers only the camera’s resolution.

rdi
=
|Ldi
|

resdi

(3)

We express the current resolution in terms of how much area is contained in a pixel. Minimizing this
value across the entire area means to improve the number of pixels per square distance unit.

2.2.2. Drone versus Swarm Performance

To compare the quality of solutions we define an objective performance measure for the aggregated
resolution provided for L∗di

(the locations allocated to drone di) by a drone di
as agg_resdi

, calculated:

agg_resdi
= rdi

× |L∗di
| (4)

The resolution of swarm D∗ (i.e., the swarm D under allocation L∗di
⊆ Ldi

for all its drones di) is:

resolutionD∗ = ∑
di∈D∗

agg_resdi
(5)

Obviously, the lower resolutionD∗ , the better the collective performance of the swarm.
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2.2.3. Resolution Requirements/Performance Measure

We want to ensure that the resolution requirements are met, that is, that for all locations lk
allocated to a drone di the resolution rdi

provided by that drone di is equal or higher than resli :
∀lk : lk ∈ L∗di

→ rdi
≥ reslk . If allocation L∗di

violates any resolution requirements we define a
performance penalty. The maximum resolution requirement for drone i is:

max_res(L∗di
) = maxlj∈L∗di

(reslj
)

If max_res(L∗di
) can be used to calculate the maximum altitude max_alt(L∗di

) then the set of locations
covered at this altitude is Lmax_alt(L∗di

). The set of locations which can not be covered at this altitude

(L-
max_alt(L∗di

)) is then:

L-
max_alt(L∗di

) = L∗di
\Lmax_alt(L∗di

)

2.2.4. Drone versus Swarm Penalty/performance Evaluation

We define penaltydi
, the number of incremental altitude changes required for drone di to meet the

resolution requirements L∗di
for all its the locations as follows:

penaltydi
= L-

max_alt(L∗di
) × (k× rdi

) (6)

with k a constant used as a tuning parameter to adjust the impact of the penalty value on the behaviour
of the swarm. The rationale behind our penalty value is that we would like to hand over all locations
in L-

max_alt(L∗di
) to some other UAV. As the size of this st decreases, so should the penalty.

The penalty penaltyD∗ of swarm D∗ can be calculated as the sum of the penalties of its members:

penaltyD∗ = ∑
di∈D∗

penaltydi
(7)

We calculate the performance performanceD∗ of a swarm D∗ using Equations (5) and (7):

performanceD∗ = resolutionD∗ + penaltyD∗

2.3. A Nature-Inspired Re-Allocation Algorithm

Our work is inspired by the mathematical model for how termites construct their nests. Depending
on the species and the environment, such nests can cover vast areas and appear on aerial photographs
as very evenly spaced pillars. In order to achieve this in the absence of a master-plan or without direct
communication with each other, it suffices to operate under two simple rules:

1. a worker currently not carrying materials will take materials from its current environment, and
will do so with a probability inverse proportional to the amount of materials already present.

2. a worker carrying materials will consider dropping it (i.e., placing it at the worker’s current
location), and will do so with a probability proportional to the amount already present.

The underlying approach is very simple and can be described as follows: without direct
inter-agent communication, the members of a colony allow their decision making to be guided
by their environment. If their decisions are affecting the environment (as they clearly do when workers
are transporting or placing building resources) then this constitutes indirect communication through
their shared environment. Collectively, the termites enforce a tall gets taller approach to the pillars.

In addition, the second principle at work here is the fact that resources are limited and therefore,
the individual pillars can be seen as in competition with each other (in a way, competing for the favor
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of the nest building termites). These two simple facts lead to the emergence of beautifully constructed
termite nests which exhibit regularities and patterns that rival modern human cities.

We successfully used these simple principles to for example, aggregate mobile terminals in
wireless access networks [39,51], to allocate tasks to populations of service agents [17,18] and to
dynamically re-allocate surveillance tasks between drones in a UAV-swarm [19] and satellites [20] in
orbit. This approach has also been investigated as a means to operate collectives of heterogeneous
robots in very large distances to the control center (i.e., on other planets) [52].

2.3.1. Local Optimization

In our approach, individual agents continuously interact with their immediate neighbours and
optimize their performance locally. This is happening continuously and in a decentralized manner: as
shown in Figure 4, agents periodically become active and interact with their neighbours. Whenever a
drone is not active, it is in a passive state and can be contacted by another, active drone (cf. Figure 5).
The interactions are intended to happen hundreds or thousands of times before the swarm can converge
from a random allocation to a good/near optimal allocation. To offset the resulting communication
overhead these interactions can be implemented to be processed in bulk, processed by a local leader
responsible for a part of the swarm or, as in the case of our implementation and the simulations,
be handled by a central server which only updates drones when they have to change their altitude.
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Figure 5. The flow diagrams for both states a drone can be in: active (right) and passive (left).
The approach relies on neighbouring drones continuously attempting to find improvements to their
collective performance by exchanging responsibilities for locations. Decisions are taken stochastically,
that is, with a probability that is calculated on the basis of the expected gain (cf. Equation 8).
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347

denote the current allocation of locations and L∗∆′di
and L∗∆′dj

denote the new allocation, resulting from348

performing ∆. Exchanges of locations happen always between exactly two drones, di and dj and on the349

basis of an estimate of the overall situation before and after a (potential) exchange of locations. Such350

an estimate will consider the resolution provided by both drones together as well as a penalty for all351

locations for which the required resolution is not met. We require that (L∗∆di
∪ L∗∆dj

) = (L∗∆′di
∪ L∗∆′dj

)352

holds, i.e., the set of locations covered by both drones together does not change.353

Figure 4. The flow diagrams for both states a drone can be in: active (right) and passive (left).
The approach relies on neighbouring drones continuously attempting to find improvements to their
collective performance by exchanging responsibilities for locations. Decisions are taken stochastically,
that is, with a probability that is calculated on the basis of the expected gain (cf. Equation (8)).

Version August 28, 2019 submitted to MDPI 12 of 25

2.3.3. Optimizing resolution354

Using Equation 4 we can calculate the aggregated resolution provided for L∗di
(the locations

allocated to drone di). Using this, we can also calculate agg_res{di ,dj}, the aggregated resolution
provided by any two drones i, j with L∗di

and L∗dj
, respectively. We define resolution_before(∆) and

resolution_after(∆) based on L∗∆di
,L∗∆dj

and L∗∆′di
,L∗∆′dj

, respectively:

resolution_before(∆) = agg_res{di ,dj}

resolution_after(∆) = agg_res{di ,dj}

2.3.4. Penalty355

Similarly, using an amended version of Equation 6 (where the a penalty value for a single drone
di is calculated), we define penalty_be f ore(∆) and penalty_a f ter(∆) based on L∗∆di

,L∗∆dj
and L∗∆′di

,L∗∆′dj
:

penalty_before(∆) = penalty{di ,dj}

penalty_after(∆) = penalty{di ,dj}

2.3.5. Stochastic decision356

The probability P∆ of performing re-allocation ∆ is calculated as follows:357

P∆ =
before(∆)α

(before(∆)α + after(∆)α)
(8)

with a tuning parameter α and

before(∆) = (resolution_before(∆) + penalty_before(∆))

after(∆) = (resolution_after(∆) + penalty_after(∆))

Figure 6. The two main protocols: (left) the negotiation protocol, initiated by the active UAV, to
request information and potentially initiate the hand-over (right) depending on the stochastic decision
governed by Equation 8. The hand-over procedure is mainly to ensure that the receiving UAV first
ensures the new requirements are met before the actual hand-over takes place.

358

Figure 5. The two main protocols: (left) the negotiation protocol, initiated by the active UAV, to
request information and potentially initiate the hand-over (right) depending on the stochastic decision
governed by Equation (8). The hand-over procedure is mainly to ensure that the receiving UAV first
ensures the new requirements are met before the actual hand-over takes place.
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The decision whether or not to re-allocate a location lk from drone di (the current owner) to
neighbouring drone dj is stochastic, with the probability of a re-allocation being calculated using an
evaluation of the current state as well as the potential state (i.e., the state after a re-allocation).

2.3.2. Re-Allocation

For a re-allocation ∆ of locations from one drone (di) to another (dj) we say that L∗∆di
and L∗∆dj

denote the current allocation of locations and L∗∆′di
and L∗∆′dj

denote the new allocation, resulting
from performing ∆. Exchanges of locations happen always between exactly two drones, di and dj
and on the basis of an estimate of the overall situation before and after a (potential) exchange of
locations. Such an estimate will consider the resolution provided by both drones together as well as a
penalty for all locations for which the required resolution is not met. We require that (L∗∆di

∪ L∗∆dj
) =

(L∗∆′di
∪ L∗∆′dj

) holds: the set of locations covered by both drones together does not change.

2.3.3. Optimizing Resolution

Using Equation (4) we can calculate the aggregated resolution provided for L∗di
(the locations

allocated to drone di). Using this, we can also calculate agg_res{di ,dj}, the aggregated resolution
provided by any two drones i, j with L∗di

and L∗dj
, respectively. We define resolution_before(∆) and

resolution_after(∆) based on L∗∆di
,L∗∆dj

and L∗∆′di
,L∗∆′dj

, respectively:

resolution_before(∆) = agg_res{di ,dj}

resolution_after(∆) = agg_res{di ,dj}

2.3.4. Penalty

Similarly, using an amended version of Equation (6) (where the a penalty value for a single drone
di is calculated), we define penalty_be f ore(∆) and penalty_a f ter(∆) based on L∗∆di

,L∗∆dj
and L∗∆′di

,L∗∆′dj
:

penalty_before(∆) = penalty{di ,dj}

penalty_after(∆) = penalty{di ,dj}

2.3.5. Stochastic Decision

The probability P∆ of performing re-allocation ∆ is calculated as follows:

P∆ =
before(∆)α

(before(∆)α + after(∆)α)
(8)

with a tuning parameter α and

before(∆) = (resolution_before(∆) + penalty_before(∆))

after(∆) = (resolution_after(∆) + penalty_after(∆))

3. Hardware and Simulation Framework

Drones are still somewhat of a revolutionary technology in that their use and availability is
spreading considerably faster than awareness about potential concerns or legislative frameworks
to address these concerns [16]. We built our own UAVs (cf. Figures 6 and 7) to test the proposed
approach (and to be able to easily showcase the use of a swarm of drones) but the operation of large
UAV-swarms is still prohibitively expensive due to the legal requirements (in this case, in Germany,
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where a human pilot was required for each individual drone, which also required an individual flight
permission and insurance). The 25 UAV drone swarm used to test the approach was a hybrid swarm,
consisting of real as well as simulated drones. To ensure realistic results, the implementation was such
that the individual drones (realized and operating on a Raspberry Pi each) were identical no matter
whether they were in fact onboard a UAV or connected to a flight simulator. To showcase multi-device
solutions/collaboration between devices we developed a demonstration platform.
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Figure 8. (left, top) The pixhawk flight module / autopilot, (left, bottom) the Raspberry Pi 2 and (right)
one of the NEC MSP prototypes used for in our application and algorithm trials.
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physical devices (possibly in a number of different locations), (3) simulated devices and finally (4) a417

visualization module showing the scenario. We designed the platform to be able to handle a number418

Figure 7. (left, top) The pixhawk flight module/autopilot, (left, bottom) the Raspberry Pi 2 and (right)
one of the NEC MSP prototypes used for in our application and algorithm trials.

3.1. Drone Prototype Design

Our drones are quadcopters with a maximum power demand of 500 W (≈70 W when hovering),
on board battery (11,1 v 3000 mAh), weight of ≈600 g (additional load capacity ≈300 g). The projected
flight time for use in demos (outside and subjected to environmental conditions but without additional
load) is 15 min. The dimensions are 177 mm × 177 mm × 192 mm (cf. Figure 7).

3.1.1. Control Module (CM)

As is not uncommon in the literature [10,53,54], the onboard computing platform (running the
control module (CM), the simulated mobile platform as well as the optional simulated sensor platform
is a Raspberry Pi 2 (see Figure 7) with the following specifications: a 900 MHz quad-core ARM
Cortex-A7 CPU, 1GB RAM, 4 USB ports, 40 GPIO pins, Full HDMI port, Ethernet port, combined
3.5 mm audio jack and composite video, camera interface (CSI), display interface (DSI), Micro SD card
slot, VideoCore IV 3D graphics core. It is running Linux (Raspbian) as operating system and ROS (BSD
or LGPLv3 or GPLv3 License) over VPN to connect to other modules.

We used MAVROS to publish the autopilot’s/SITL’s mavlink data to the network, relay it to
GCS (Ground Control Software) and relay the CM’s instructions to the autopilot. The Ardupilot SITL
(SW in the loop, GPLv3 License, cf., for example, References [55–59]) autopilot software facilitates
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the simulation of flight operations and enables us to use additional Raspberry Pis to simulate larger
swarms.

3.1.2. Flight Module (FM)

The flight module (the hardware realizing all the flight operations, also used in, for example,
References [10,54,55]) is a Pixhawk (see Figure 7) featuring a 168Mhz 32-Bit STM32F427 Cortex M4,
256KB RAM, 2MB Flash, 14 PWM/servo outputs as well as connectivity options for additional
peripherals (UART, I2C, CAN) and redundant power supply inputs as well as an automatic failover.
Regarding peripheral sensors we are currently using only GPS, Airspeed sensor, Sonar, LiDar
and Optical Flow but the Pixhawk is not restricted to these and additional sensors can be added.
The pixhawk is licensed under the Creative Commons License (Open-Source HW). We used APM
Flight Stack (GPLv3 License). This connects to the navigation sensors (e.g., GPS) and controls all basic
flight/navigation dynamics.

3.2. Simulation/Testing Environment

The process of designing and implementing distributed algorithms for the control of swarms poses
the challenge of evaluating and testing them in the real world, that is, using actual hardware and letting
it operate in a physical environment. UAV use and availability is spreading faster than awareness
of—or legislative frameworks to address—related concerns [16]. Their rapid adoption outpaces legal,
policy and social ability to cope with issues regarding privacy and interference with well-established
commercial air space [60]. Regulations differ between countries [13] and have to address a number of
technical and societal concerns and challenges [14]. Reference [61] surveys the main security, privacy
and safety aspects associated with the use of civilian drones in the national airspace.

By their nature (distributed and intended for swarms), the proposed algorithms require a
substantial number of devices in order to show the intended benefit. The device type itself poses the
problem of being subjected to a variety of different legal requirements depending on where (location)
and under which circumstances (commercial, non-commercial, etc.) they are operated.

The demonstration platform currently under development will address these issues by (a)
facilitating the use of large numbers of simulated devices to augment a small swarm of physical devices;
and (b) enabling the co-location of physical devices that are factually not in the same place. While the
latter makes it possible to share resources between different labs, it is primarily aimed at enabling us
to perform demonstrations in areas where the legal restrictions for the operation of physical drones
would otherwise prevent the demonstration (or make it exceedingly expensive).

Figure 8 shows the 4 components of the platform: (1) a control interface to run the simulation,
(2) physical devices (possibly in a number of different locations), (3) simulated devices and finally (4) a
visualization module showing the scenario.
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Figure 8. (left, top) The pixhawk flight module / autopilot, (left, bottom) the Raspberry Pi 2 and (right)
one of the NEC MSP prototypes used for in our application and algorithm trials.
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facilitating the use of large numbers of simulated devices to augment a small swarm of physical411
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Figure 9. The 4 main elements: control unit, physical / simulated devices and a visualization module.

Figure 9 shows the 4 components of the platform: (1) a control interface to run the simulation, (2)416

physical devices (possibly in a number of different locations), (3) simulated devices and finally (4) a417

visualization module showing the scenario. We designed the platform to be able to handle a number418

Figure 8. The 4 main elements: control unit, physical/simulated devices and a visualization module.

We designed the platform to be able to handle a number of different devices, that is, it is not
restricted to our quadcopters or, for that matter, to drones in general. Specifically the use with
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fixed-wing drones as well as rovers (unmanned ground vehicles) is possible and simulations could use
all of these device types together.

The current project only considers one type of drone but planning for this functionality already
sets the stage for future projects that focus on inter-swarm collaboration and enables us to evaluate the
performance of our algorithms in a broader context. The control unit as well as the visualization tool
are realized in a control station (a PC or a laptop), which communicates through a wireless network
with the members of the swarm (cf. Figure 9). We do not distinguish between virtual and physical
devices or even the device type (though in the foreseeable future we will only be using quadcopters)
and call all of them mobile sensing platforms (MSPs) as in Figure 9. Within each MSP (of which there can
be many) we distinguish between (a) the computing platform where the NEC proprietary algorithms
are used (this is called command module (CM) and with the exception of the flight module, all elements
shown are part of the CM), (b) a sensor array (real or simulated), (c) the flight module (the hardware
controlling the drone) and (d) the mobile hardware platform (i.e., the drone). The demonstration
platform uses the ROS network as it provides all functionalities required for staging the demonstrations.
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Figure 9. A conceptual overview over the mobile sensing platform (shown in Figure 7).

3.3. Implementation

The implementations required code for two physically separate parts of the demonstration
platform: the control station (containing the Dispatch module) and UAV. For either algorithm
implementation, the Dispatch module was the only module on the control station side for which
code needed to be written (for the implementation of the algorithm; there was additional code written
for the implementation of the System Control to handle, for example, UAV registry). On the UAV side,
the only module that was concerned was the Computing Platform part of the MSP.

The control station is a laptop (running instances of Dispatch, Environment and System
Control) while, as discussed, the Computing Platform on our UAVs was a Raspberry Pi 2.

3.3.1. Control Station Side (Dispatch Module)

On the control station side (in our case the laptop used to supervise the operations) only the
Dispatch module is involved because this is where all altitude control relevant interaction between
UAVs and the control station is happening. That is, any communication between the UAVs and the
control station which is related to an ongoing swarm surveillance operation happens exclusively
through the Dispatch, be it for general day-to-day or for dedicated and task specific operations.

For the altitude control algorithm we assume that the high level task of controlling the swarm
is handled by a compartmentalized sub-system. Therefore, the implemented system allows UAVs to
sign on as participating members (having been instructed to do so by another module sub-system of
Dispatch) and constitutes the interface between the application side and the UAV swarm.

In a fully developed and deployed system Dispatch would also handle the data streams generated
by the UAVs (e.g., video streams, coming from different UAVs and, together, covering all locations in
the target area). Dispatch would combine these and pass them through to either the software analyzing
the data or to the output device specified by the human operator.
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3.3.2. UAV/Drone Side (MSP Control Module)

The UAV implementation can be implemented either in a centralized or a decentralized manner.
Since the algorithm is inherently intended to be decentralized the choice is an operational and
practical consideration: in the implementation of the simulation and demonstration platform (using
ROS as communication framework) we found that the communication overhead was large because
coordinating asynchronous communications between many different devices required a lot of time.

We implemented a centralized version of the approach where the code running on the laptop
is coordinating the swarm: It performs all the calculations and periodically updates the swarm
accordingly. However, this centralized version can also be implemented to run on one of the UAVs
which then performs all the calculations and once a decision to re-allocate a location is made this
“master drone” simply updates the swarm accordingly.

In the de-centralized approach, all UAVs compete for locations and interactions between UAVs
are always between two UAVs that can both cover a specific location. Our decision to implement the
algorithm in a centralized form was due to the inherent TCP/IP and wireless latency. A message round
trip will take approx 20 ms which would mean that demonstrations would work slower than preferred.
This is an issue that can be addressed by better or different communication architectures. We do not
foresee any major obstacles when implementing the algorithm for a fleet of real UAVs. At the moment,
the centralized implementation allows us to evaluate the approach without loss of generality.

3.3.3. Communication Protocols

The Dispatch module handles all issues related to communication with the swarm. UAVs sign on
to a surveillance swarm and Dispatch supplies them with current and updated resolution requirements.
The individual UAVs in return supply the Dispatch with a series of video streams (as well as an
indication which areas these relate to).

4. Performance Evaluation

As pointed out above, the operation of a swarm of UAVs is subject to legal and operational
constraints. The results reported in this section were created from operating a hybrid swarm,
consisting of real as well as simulated drones (cf. Figure 8). As shown in Figure 9, all of our mobile
sensing platforms (be it real physical devices or simulated drones) consists of a computing platform as
well as (1) the mobile platform, (2) the sensor array and (3) the autopilot hardware. The computing
platform is a Raspberry Pi 2 while the autopilot is a Pixhawk (both shown in Figure 7). With the
simulation capability of the Pixhawk (and since we did not actually use the sensor array in our
evaluation of the algorithm) a simulated drone was, as far as the its subjective reality is concerned,
indistinguishable from a real (physical) member of the swarm. This is because all instances of drones
are realized within the Raspberry Pi, and therefore cannot distinguish between being connected to a
Pixhawk-simulated devices and being onboard a real UAV (like the one shown in Figure 7).

4.1. Setup

We operated a hybrid swarm of 25 devices (|D| = 25) tasked with surveillance of an area
consisting of 20 × 20 locations (|L| = 400). The setup is shown in Figure 10.

The altitudes of the drones were discretized, with the 11 altitudes ranging from zero (ground level)
to 200 m, resulting in 10 altitudes that actually resulted in area coverage. The drones were operating at
their maximum altitude (200 m) at the start of the simulation and locations were allocated randomly
(in equal numbers) to the members of the swarm. The simulated devices were realize with at least 4
separate instances operating on a single Raspberry Pi (as opposed to the UAVs which operated on
their own onboard Raspberry Pi). With regard to the (simulated) data generation, the swarm ignored
zooming of cameras altogether and operated exclusively through changes in altitude. In addition,
the swarm did not move in the x- or y-axis, effectively hovering over their assigned locations.
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For real-world deployment, we would assume the swarm to be in static positions and task another
algorithm with the optimization of the x- and y-coordinates for each drone. Practically, the actual
operation is assumed to use the zooming capability of the cameras to facilitate a quick change in
resolution, which is then followed by a gradual change in the drones altitude.
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Figure 11. Performance evaluation: (left) the area (20 × 20 locations) under surveillance with the 25
drones homogeneously distributed, each placed at the intersection of 4 locations. (right) the imposed
requirements (in red): the simulation starts without requirements (a) for iterations 0-1999, after which
two requirements are imposed twice (2000-3999, (b) and 4000-5999, (c)). A single requirement is
imposed during iterations 6000-7999 (d) and removed (a) thereafter (from iteration 8000 onwards).

479

Figure 10. Performance evaluation: (left) the area (20 × 20 locations) under surveillance with the
25 drones homogeneously distributed, each placed at the intersection of 4 locations. (right) the imposed
requirements (in red): the simulation starts without requirements (a) for iterations 0–1999, after which
two requirements are imposed twice (2000–3999, (b) and 4000–5999, (c)). A single requirement is
imposed during iterations 6000–7999 (d) and removed (a) thereafter (from iteration 8000 onwards).

The camera values used in the simulations are from a Sony NEX 5R camera with a 25 mm lens:
pixels_h = 4592 (number of pixels in the Y axis of the sensor), pixels_v = 3056 (number of pixels in
the X axis of the sensor), sensor_h = 23.4 (sensor size in the y axis), sensor_v = 15.6 (sensor size in the
x axis). Therefore, as the horizontal resolution is marginally better than the vertical resolution we used
the vertical ones to ensure we can deliver at least the reported quality. Along these lines, we simplified
the area to be a square (not, as it really is, a rectangle) and ignored the additional area coverage.

4.2. Baseline Performance

We first establish a baseline performance for the algorithm by using it to optimize the altitude of a
swarm of UAVs in the absence of resolution requirements. Due to the homogenous distribution of the
UAVs we know that the best possible solution is when all UAVs have descended to the altitude when
they can cover two fields in any direction (i.e., an area of 4 × 4 locations). Given that the distribution
of the UAVs allows for a unique best possible solution, we can test the convergence property of
the algorithm. And indeed, the graphs in Figure 11 show that the swarm converges quickly towards
this solution within the first 2000 iterations. Due to the stochastic nature of the approach the swarm
will only converge on very good solutions: even if the perfect allocation is found, it is not maintained
as the drones continuously explore new allocations so as to further improve their performance.
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Figure 12. The benchmark: 25 UAVs in the formation shown in Figure 11, initially operating at an
altitude (plotted on x− axis) of 200 meters and with the locations randomly allocated. The altitudes
of the drones, which initially increase as drones position themselves to exchange locations, but then
quickly drop as the entire swarm optimizes through exchanging responsibilities between drones.

Figure 11. The benchmark: 25 UAVs in the formation shown in Figure 10, initially operating at an
altitude (plotted on x-axis) of 200 m and with the locations randomly allocated. The altitudes of
the drones, which initially increase as drones position themselves to exchange locations but then
quickly drop as the entire swarm optimizes through exchanging responsibilities between drones.

As we reported in Reference [19], in this specific evaluation scenario the swarm kept improving
on its formation until shortly after iteration 6000, after which it basically maintained the optimal
solution with the exception of brief deviations. One measure omitted in the results here is the standard
deviation of the drones altitudes, which effectively dropped to zero after iteration 6000.

We argue that the results in Figures 11 and 12 already show the merits of the approach, as the
devices are finding the (obvious) best solution entirely through local optimization and without
complete knowledge of the size and location of the swarm. In the following sections we will take a
closer look at the performance of the algorithm when resolution requirements are added and removed,
that is, for cases when the optimal solution is not as straight forward to find as in the baseline case.
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Figure 13. The benchmark: In the absence of special resolution requirements the swarm’s altitudes
converge (cf. Figure 12) on providing equally high resolution (plotted on x− axis) for all locations
(Note: as stated with Equation 5, the smaller the value for the resolution, the better).
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closer look at the performance of the algorithm when resolution requirements are added and removed,530

i.e., for cases when the optimal solution is not as straight forward to find as in the baseline case.531

Figure 12. The benchmark: In the absence of special resolution requirements the swarm’s altitudes
converge (cf. Figure 11) on providing equally high resolution (plotted on x-axis) for all locations (Note:
as stated with Equation (5), the smaller the value for the resolution, the better).
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4.3. Performance under Dynamic Requirement Changes

To test the performance of the algorithm when the resolution requirements are not uniformly
distributed/the same everywhere we added specific resolution requirements during the simulation.
The setup of the simulated surveillance task is shown and described in Figure 10. In the baseline
scenario above, all drones converged on the same altitude and into a stable formation (cf. Figure 11).
Under changing resolution requirements the optimal solution(s) are less stable and the occasional
space exploration occur much more frequently (cf. Figure 13).
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Figure 14. The altitudes (x− axis) of the swarm operating with resolution requirements, cf. Figure
11. The swarm converges towards stable and good solutions but individual drones keep exchanging
locations, as evidenced by the fluctuating max. / min. altitude (measured over the entire swarm).

Figure 15 shows the performance of the swarm. Shown are the aggregated outcomes of 15 separate539

simulations of the scenario described in Figure 11. To indicate the consistent performance of the swarm540

we plot best, average and worst performance and point out that these differ marginally (which is to be541

expected considering that (a) the optimization process is stochastic and (b) that the approach has not542

been fine tuned to the specific problem specifications such as altitude and field of vision).

Figure 15. Swarm performance: shown are the results from running the simulation (25 drones, 400
locations, resolution requirements, as detailed in Figure 11) 15 times. Reported are best / worst case
performances as well as the average (referring to the resolution delivered for the entire area). In
addition, we plot the goodness value which represents the internal evaluation of the current allocation, as
well as indicate when there is a service violation (i.e., when some resolution requirements are violated).
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Figure 13. The altitudes (x-axis) of the swarm operating with resolution requirements, cf. Figure 10.
The swarm converges towards stable and good solutions but individual drones keep exchanging
locations, as evidenced by the fluctuating max./min. altitude (measured over the entire swarm).

Figure 14 shows the performance of the swarm. Shown are the aggregated outcomes of 15 separate
simulations of the scenario described in Figure 10. To indicate the consistent performance of the swarm
we plot best, average and worst performance and point out that these differ marginally (which is to be
expected considering that (a) the optimization process is stochastic and (b) that the approach has not
been fine tuned to the specific problem specifications such as altitude and field of vision).
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Figure 14. Swarm performance: shown are the results from running the simulation (25 drones,
400 locations, resolution requirements, as detailed in Figure 10) 15 times. Reported are best/worst case
performances as well as the average (referring to the resolution delivered for the entire area). In addition,
we plot the goodness value which represents the internal evaluation of the current allocation, as well as
indicate when there is a service violation (i.e., when some resolution requirements are violated).
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Notably, the swarm keeps improving on its performance despite requirements being added
and changed. Specifically, the resolution requirements added at iteration 2000 and 6000 are identical,
however the performance of the swarm is significantly better at 6000 iterations, when the continuing
optimization has positioned the swarm better to react quickly and with less incurred penalty.

We do acknowledge the fact that the swarm fails to meet the requirements imposed at
iteration 2000, however we point out that the solutions does consistently improve (as evidenced
by the dropping goodness value). The performance of the approach is directly related to the number
of iterations, which in turn is linear in the incurred computational cost. Improving performance can
be achieved through allocating more computational resources to enable the drones to cycle through
more optimization attempts. In addition, the approach is not tuned to the specific parameters of the
drones: tailoring the mathematical model to account for the allocation of neighbouring drones and the
calculation of the penalty values (which directly influence the probability for exchanging locations, cf.
Equation (8)) will likely affect the convergence speed of the algorithm.

4.4. Simulating Massive Swarms

We close this section with a brief report on insights gained from simulating a massive swarm
(400 devices). Throughout the paper we make the claim that one of the advantages of the approach is its
scalability. The argument is that with communication and thus interaction limited to local interactions
the communication incurred by any one devices is fixed (or at least dependent on the number of
visible neighbours). Since devices are considered static in the x- and y-axis, their initial arrangement
determines the neighbouring devices they can, individually, communicate and interact with.

There are many contributions in the literature that address the movement/flocking of
devices [49,62,63] and we argue that our approach can be seen as an extension of these approaches.

As long device interaction is limited by the devices’ ranges, then any additional devices added to
the swarm that are added outside the range of a device will not affect the communication overhead
incurred by that specific drone. Paraphrasing this, we could say that while the swarm size affects the
communication cost of the approach linearly, the swarm density can do so exponentially (with the
upper bound of the density being centralized communication, resulting in exponential increase of
communication bandwidth [62] and software complexity [64]).

To verify these assumptions and claims, we ran simulations on large swarms, consisting again
of perfect lattice arrangements for 100, 144, 225, 324 and 400 drones (thus 10× 10, 122, 152, 182 and,
as for the results shown in Figure 15, 202 devices). In our simulation, a device communicates with only
8 neighbouring drones and the time to settle into the known best configuration we comparable to the
time recorded for much smaller swarms, as was the evolution of the altitudes (shown in Figure 11).

Further investigations into larger swarms are omitted because results from simulations are of
limited academic use: given the setting of our simulation, the performance of larger swarms can now
be inferred from the our results. Performance evaluation becomes increasingly difficult as the swarm
is either subjected to an increasing number of not related tasks or left with a majority of the devices
converging on the optimal configuration (cf. Figure 15). With the current work and results in place,
TNO is preparing to operate small swarms of 3 to 6 devices in real world settings and under outside
weather conditions, using the hardware shown in Figure 2.

We expect large swarms exceeding a dozen devices to be outside our practical reach for years
to come and frankly, most applications currently considered are unlikely to be realized with larger
numbers than that, due to legal and practical reasons and simply because it will be more efficient to
trade time to solution versus cost of operating and maintaining (and transporting) the hardware.
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Notably, the swarm keeps improving on its performance despite requirements being added and544

changed. Specifically, the resolution requirements added at iteration 2000 and 6000 are identical,545

however the performance of the swarm is significantly better at 6000 iterations, when the continuing546

optimization has positioned the swarm better to react quickly and with less incurred penalty.547

We do acknowledge the fact that the swarm fails to meet the requirements imposed at iteration548

2000, however we point out that the solutions does consistently improve (as evidenced by the dropping549

goodness value). The performance of the approach is directly related to the number of iterations, which550

in turn is linear in the incurred computational cost. Improving performance can be achieved through551

allocating more computational resources to enable the drones to cycle through more optimization552

attempts. In addition, the approach is not tuned to the specific parameters of the drones: tailoring the553

mathematical model to account for the allocation of neighbouring drones and the calculation of the554

penalty values (which directly influence the probability for exchanging locations, cf. Equation 8) will555

likely affect the convergence speed of the algorithm.556

4.4. Simulating massive swarms557

We close this section with a brief report on insights gained from simulating a massive swarm (400558

devices). Throughout the paper we make the claim that one of the advantages of the approach is its559

scalability. The argument is that with communication and thus interaction limited to local interactions560

the communication incurred by any one devices is fixed (or at least dependant on the number of561

visible neighbours). Since devices are considered static in the x− and y−axis, their initial arrangement562

determines the neighbouring devices they can, individually, communicate and interact with.

Figure 16. We show the observed behaviour of a massive (400 individual devices, arranged in a perfect
grid of 20× 20 devices) swarm of simulated UAVs. This evaluation was conducted entirely within a
simulation, no hardware was flown. Shown above is the frequency distribution of the drones altitudes,
with the z-axis showing the percentage of the swarm operating at a specific altitude (y-axis) evolving
over time (x-axis). Released at high altitudes and in the absence of any surveillance requirements, the
swarm settles into the known optimal configuration very close to the ground. This was achieved with
communication restricted exclusively to the 8 neighbouring drones. When comparing simulations with
100 (arranged in a 10× 10 formation), 144 (= 122), 225 (= 152) and 324 (= 182) UAVS we found that the
number of communication connections to be a function, linear with the number of drones.

563

Figure 15. We show the observed behaviour of a massive (400 individual devices, arranged in a perfect
grid of 20× 20 devices) swarm of simulated UAVs. This evaluation was conducted entirely within a
simulation, no hardware was flown. Shown above is the frequency distribution of the drones altitudes,
with the z-axis showing the percentage of the swarm operating at a specific altitude (y-axis) evolving
over time (x-axis). Released at high altitudes and in the absence of any surveillance requirements,
the swarm settles into the known optimal configuration very close to the ground. This was achieved
with communication restricted exclusively to the 8 neighbouring drones. When comparing simulations
with 100 (arranged in a 10× 10 formation), 144 (=122), 225 (=152) and 324 (=182) UAVS we found that
the number of communication connections to be a function, linear with the number of drones.

5. The Road Ahead

Drones, albeit their almost pervasive presence (it is increasingly difficult to find someone who
has not seen a drone operating in the wild), are still somewhat of a revolutionary technology in that
their use and availability is spreading considerably faster than awareness about potential concerns or
legislative frameworks to address these concerns [16]. For the foreseeable future different countries
will continue to impose different regulations regarding the use of UAVs [13] and those regulations may
be subject to frequent change and amendment. We expect that these growing pains will be overcome in
the years to come. Once there are solid regulations in place, the use of UAVs can become a regular
and wide-spread practice. We believe that once that is the case, the benefits of operating swarms of
devices will quickly become evident. This will lead to wide-spread use of swarming applications for
autonomously operating devices.

The presented approach enables a swarm of devices to collaboratively cover an area and provide
continuous data quality for, for example, video coverage, even if the resolution requirements for
individual locations are subject to change. The approach is scalable and the swarm used for the
evaluation is already large enough to deliver good results; performance will only increase with
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larger swarms. The success of the algorithm in real-world problems will depend critically on a good
definition of device capabilities, task-properties and -synergies and these seem to be completely
problem-dependent. Due to the mentioned legal and practical considerations the discussed evaluation
is—in fact—merely a proof of concept. In the current legal climate the ongoing projects are mainly
aiming at, for example, disaster response systems and other real world scenarios where normal
regulations and norms are often suspended.
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