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Abstract: Soil erosion monitoring is a pivotal exercise at macro through micro landscape levels, which
directly informs environmental management at diverse spatial and temporal scales. The monitoring
of soil erosion can be an arduous task when completed through ground-based surveys and there are
uncertainties associated with the use of large-scale medium resolution image-based digital elevation
models for estimating erosion rates. LiDAR derived elevation models have proven effective in
modeling erosion, but such data proves costly to obtain, process, and analyze. The proliferation of
images and other geospatial datasets generated by unmanned aerial systems (UAS) is increasingly
able to reveal additional nuances that traditional geospatial datasets were not able to obtain due to
the former’s higher spatial resolution. This study evaluated the efficacy of a UAS derived digital
terrain model (DTM) to estimate surface flow and sediment loading in a fluvial aggregate excavation
operation in Waukesha County, Wisconsin. A nested scale distributed hydrologic flow and sediment
loading model was constructed for the UAS point cloud derived DTM. To evaluate the effectiveness
of flow and sediment loading generated by the UAS point cloud derived DTM, a LiDAR derived
DTM was used for comparison in consonance with several statistical measures of model efficiency.
Results demonstrate that the UAS derived DTM can be used in modeling flow and sediment erosion
estimation across space in the absence of a LiDAR-based derived DTM.

Keywords: streamflow; sediment loading; unmanned aerial systems; drones; digital terrain model

1. Introduction

Unmanned aerial systems, hereafter referred to as UAS, are now widely recognized
in the remote sensing community as a valid geospatial data collection tool. Their utility
extends into a wide variety of applications, including but not limited to general mapping,
precision agriculture, forestry, wetlands, mining, excavation, and hydrology [1–4]. While
UAS platforms can be equipped with a wide array of sensor types, i.e., meteorological, gas,
and particle sensors, the majority of current UAS platforms are equipped with imaging
sensors [5,6]. UAS are a useful platform to gather imagery over small to moderately sized
areas due to their relatively low cost and for their overall versatility when compared to tra-
ditional satellite and manned aircraft remote sensing platforms. Manfreda [7], detailed how
traditional manned aircraft and satellites were limited in their ability to gather remotely
sensed data based on their altitude constraints and their inability to gather information over
certain areas within a given set of time constraints and temporal frequency needs. Further-
more, both satellite and fixed-wing aircraft cannot achieve the centimeter to sub-centimeter
spatial resolution that UAS delivers.

The versatility of a UAS platform is best described as being able to fly ‘low and slow’,
which means that a UAS platform equipped with a small format camera sensor can fly
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at a low altitude over a pre-defined area to gather remotely sensed images at resolutions
unattainable with traditional platforms, and at a temporal frequency deemed necessary.
When UAS imagery is gathered by the platform sensor at a constant altitude, and with
enough overlap, the imagery can be processed using structure-from-motion with multi-
view stereo (hereafter referred to as SfM) methods to generate a three-dimensional point
cloud model [8–10]. This point cloud can then be used to generate a digital surface or
terrain model (DSM/DTM). A DSM contains all above ground surface features, such as
vegetation and buildings, while a DTM only contains the bare ground.

Software companies, such as Pix4D, Agisoft, and Socet Set, have revolutionized the
field of photogrammetry by transforming the laborious and time-consuming conventional
photogrammetric method into more efficient and optimized workflows such as the scale
invariant feature transform [11] and its associated SfM algorithm [12–14] including the BAE
Systems Socet Set [15]. This new development is timely and welcome in the processing of
UAS imagery and extraction of derivatives and is slowly being adopted into the mainstream
of many different fields that rely on geospatial data. While the increased use of UAS data is
indeed a boon to the geospatial community, the ease of creating SfM derived data products
such as a point cloud, DSM, DTM, and orthomosaic means that both the limitations and
potential of such data need to be realized.

Despite airborne and terrestrial LiDAR’s accuracy in generating surface and terrain
models for use in diverse applications, it is expensive to collect and process, and therefore
has limits to its widespread use [7,16,17]. Furthermore, because of the altitude of the
platform used, airborne Lidar data is often not available at the 1−2 cm spatial resolution
that one can obtain using UAS derived SfM methods [9,18]. While progress has been made
toward equipping UAS platforms with LiDAR sensors, the technology remains both cost
prohibitive and unreachable for most researchers and UAS users [7,17]. Scientific investi-
gations in the emerging frontier of UAS SfM approaches are needed to better understand
the potentially concealed functionalities of photogrammetrically derived UAS data, which
might be beneficial in certain research and market niches.

Extraction and excavation-based activities associated with vegetation removal, such
as open pit mines, construction sites, barren farm-fields, and post-hazard events (e.g., slope
failure) are well-suited for UAS derived DSM and/or DTM analysis [19–21]. The lack of
vegetation cover associated with surface disturbance on excavated surfaces makes them
ideal for modeling both drainage and erosion potential. In an applied sense, the erosion
associated with surface drainage at sites devoid of vegetation cover can impact day to
day operations at the site. Excessive erosion at construction and mining sites also can
mean being subjected to fines and citations from regulatory bodies. Most mining and
construction operations are aware of erosion modeling techniques available with LiDAR
data, but understand the financial and temporal limitations in place to be able to use such
datasets and are seeking means to model surface drainage with technology that is more
attainable, such as UAS derived DTM from SfM models.

While LiDAR derived terrain models in hydrologic applications have their place
as an essential data source [18], traditional photogrammetrically derived products like
digital elevation models (DEMs) are still an important source of topographic information
that informs hydrologic applications [22,23]. Historically, such DEM products have been
retrieved from medium resolution optical and microwave images [7,24,25]. Quite recently,
photogrammetrically derived DSM and DTM from high resolution UAS imagery has been
emerging in the hydrologic literature [18,26–28]. Photogrammetrically derived UAS data
has been used to model surface flow within and outside urban areas [17,29,30], spatial
and temporal variability of riverbed hydraulic conductivity [31], channel morphology [32],
streambank topography [33], streambank erosion [27], and gully erosion in agricultural and
urban watersheds [34,35]. Stocker [34] demonstrated that the photogrammetrically derived
data from UAS can measure gully erosion in farmland in a way that LiDAR technology
could not due to the increased spatial and temporal resolution that UAS models provide.
Gudino-Elizondo et al. [35] reported that UAS derived DSM was effective in estimating
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gully erosion rates in an urban catchment. While the use of UAS derived dataset to estimate
specific types of erosion rates in different catchment characteristics is welcome, we currently
know very little on the use and effectiveness of this relatively new dataset to estimate
runoff and erosion rates on diverse land cover types [35]. Moreover, an investigation of this
phenomenon within the lens of a nested scale distributed hydrologic modeling framework
has great potential to unlock the efficacy of UAS derived DTM for the monitoring of runoff
and erosion rates across space.

Nested-scale hydrologic modeling framework has proven effective in predicting
stream flow and water pollutants when model input data are not available at the same
scale [36–38]. Didszun and Uhlenbrook [38] applied a nested-scale approach to investigate
hydrologic responses at scales < 1 km2 and ≥ 40 km2; they reported slight variation in
hydrologic responses at the smallest scale attributed to varying topography. Van der
Velde [36] concluded that hydrologic models configured within a nested-scale framework
improves prediction of stream discharge and nitrate loads. In a related vein, Zeiger and
Hubbart [37] echoed the efficacy of a nested-scale experimental hydrologic modeling design
to predict suspended sediment loads. The overarching objective of this study is to assess
the potential of a UAS photogrammetrically derived DTM for modeling surface runoff
and sediment loading in an open pit fluvial aggregate mining operation experiencing
high amounts of erosion. Specifically, this study addresses the following objectives: (1) to
develop a downscaling calibration and validation framework for a large-scale hydrologic
water quality model and extend to a smaller UAS dataset areal extent; (2) to evaluate the
suitability of UAS derived DTM for surface runoff and erosion modeling within an open
pit fluvial aggregate mining operation.

2. Materials and Methods
2.1. Study Area

This study was conducted in an open pit fluvial aggregate excavation operation in
Waukesha county, near the village of Delafield, Wisconsin, USA. (Figure 1). The operation
uses extracted aggregate materials from the open pit for its activities in paving and con-
struction. The data acquisition area covers 10 ha with elevation values ranging between
314 m and 287 m above mean sea level. Due to the erosion issues that the site was expe-
riencing, a request was made to have the area flown with a UAS to potentially identify
areas where significant erosion was occurring. The steep slopes and loosely consolidated
material made a ground-based survey both impractical and dangerous (Figure 2). The
study area is sparsely vegetated (<15%) due to excavation and extraction activities at the
site. Average annual precipitation at the site is 87.9 mm. The nearest climatic records
from Waukesha, WI show average temperatures in January range from –11.8 to –2.3 ◦C.
Average July temperatures fall within the 27.7 to 15.4 ◦C range. Soils in the study area are
designated as an open gravel pit soil unit and classified as Psammic Fluvent [39].

2.2. UAS Data Collection and Processing

All data was gathered in June 2015 by MenetAero LLC, a UAS service provider who
specializes in UAS data acquisition. The Platform used to collect imagery was a DJI Matrice
600 Pro with D-RTK, allowing for reliable flight paths and altitude consistency during flight.
Image collection was facilitated by a gimbal based Zenmuse X5 RGB camera equipped
with a 15 mm lens (Table 1).
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Flight altitude at image capture was 80 m with 80% frontal and lateral overlap. The
images were saved onto a 32 GB Generation V SanDisk SD card in Jpeg format. Image
geolocation was stored to the image exif file using the WGS 84 geographic coordinate
system. This coordinate system is what most UAS platforms utilize to record data related
to their GPS log and is the default setting for the DJI platform. It should be noted here
that the Matrice 600 Platform, although equipped with D-RTK GPS, did not communicate
with the Pix4D Capture application to geolocate the imagery with RTK precision. Spatial
accuracy was achieved by the placement and survey of ground control markers prior to the
flight. A Trimble R2 GNSS integrated system was used to acquire coordinate locations at
six ground control points (GCPs) distributed accordingly across the flight area. To ensure
survey quality, redundant check shots were also recorded at each GCP with a variance
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tolerance of 0.01 m horizontally and 0.02 m vertically. GCPs were recorded using the
projected Universal Transverse Mercator coordinate system with a WGS 84 datum. This
was chosen to match the desired processed data output projection and coordinate system
for further use in a Geographic Information System with other forms of geospatial data.

Table 1. Survey data collection parameters and equipment specifications.

Data Collection Date 6 June 2015

UAS platform DJI Matrice 600 Pro w/RTK

UAS mission planning application Pix4D Capture

Flight path overlap 80% lateral and frontal

Area covered 12.23 hectares

Number of images acquired 125

Sensor/platform altitude 80 m

Ground sampling distance 2.07 cm

Camera model Zenmuse X5

Camera focal length 15 mm

Camera resolution 16 megapixels

Image coordinate system WGS84 (egm96)

GNSS integrated survey system Trimble R2

Ground control point (GCP) coordinate system WGS84/UTMzone 16N (egm96)

Number of GCPs 6

Number of check shots per GCP 6

Check points/shot tolerance 0.01 m horizontal/0.02 m vertical

Pix4D Structure from Motion Multi-View Stereo (SfM MVS) software (version 3.1.23)
was used to generate a point cloud, digital surface model, orthomosaic image, and sub-
sequent derivative data products that allowed for further analysis within LP360, ESRI
ArcMap Desktop (version 10.7) software, and image processing utilities. Calibration, val-
idation, subsequent processing, and error reporting details associated with SfM model
creation utilized in this study are summarized in Table 2 and adhere as best as possible
to guidelines put for by James [40]. Following the initial processing phase, where the
geolocated images are used to generate a low-density point cloud, the dataset was adjusted
for both horizontal and vertical accuracy using the GCP markers. The dataset was then
reoptimized and used to generate a high-density point cloud (las format) with 0.058 m
RMS error.

Utilizing a hybrid approach, the UAS photogrammetrically derived point cloud was
classified into ground and above ground points with the aid of LP360 software (GeoCue
Group, Madison, AL, USA). The small fraction of above ground points was a result of
shrubs and trees in dispersed throughout study area (Figures 1a and 2a). In the first stage of
point cloud classification, we employed the adaptive triangulated irregular network (TIN)
ground filter to separate ground points from non-ground points [41,42]. The adaptive
TIN-based ground filter generates tiles over the point cloud dataset and identifies the
lowest point in each tile as a potential candidate ground point [41]. Next a triangulated
irregular network (TIN) is generated from the earmarked lowest points. The algorithm
then utilizes thresholds that encapsulates elevation difference and angle closest to a TIN
face to iteratively remove non-ground points. Detailed description of the adaptive TIN-
based ground filter can be found in Axelsson [41]. In stage two, a two-dimensional profile
window that is equipped with vertical manual classification tools was utilized to improve
on stage one automated classification. Following the successful classification of ground
points, a 3.6 cm DTM was derived by interpolating ground points using a triangulation
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algorithm. The output spatial resolution of the DTM was set at 3.6 cm to be consistent
with the nominal point spacing (NPS) of the classified ground points. A 14.3 cm LiDAR
DTM was derived from an already classified LiDAR ground points for Waukesha County
collected late spring 2015 [43]. The LiDAR derived DTM spatial resolution was determined
by the NPS of LiDAR ground points (~7 points per m2). We used triangulation interpolation
method to generate a LiDAR derived DTM to be consistent with that of the UAS derived
DTM mentioned above. The final processing of the UAS and LiDAR derived DTMs was
the generation of a hillshade for visualization purposes.

Table 2. Calibration, processing, and error reporting detail summary table.

SfM Processing Software Pix4D (Version 3.1.23)

Number of calibrated images 125/125 (100%)

Median keypoints per image 35,170

Matches per calibrated image 13,384

GCP mean RMS error X(m) 0.002254 Y(m) − 0.013442 Z(m) 0.064130

Overall GCP mean RMS error 0.058

Absolute camera position uncertainties Mean X(m) 0.028 Mean Y(m) 0.024

Number of 2D keypoint observations for
bundle block adjustment 1,600,420

Number of 3D keypoint observations for
bundle block adjustment 575,499

Mean reprojection error (pixels) 0.162

Point cloud density Optimal

In hydrologic modeling, land use/land cover (LULC) are needed to establish parame-
ters related to erosion potential. LULC data was derived from the orthomosaic image of the
study area collected during the UAS flight mission. We employed a two-stage hybrid clas-
sification framework to generate land cover information for the study area. Object-based
image analysis (OBIA) followed by the implementation of a random forest classifier was
utilized in stage one image processing [44,45]. The determination of spectral and spatial
segmentation parameters was informed by local variance of heterogeneity; following this,
image objects were generated by a multiresolution segmentation algorithm [46,47]. Equa-
tion (1) illustrates a simplified example of the major segmentation parameters employed
in OBIA.

Fs = Cw ∗ rc + (1 − Cw) ∗ rs

and 0 ≤ Cw ≤ 1 (1)

where Fs is segmentation function; Cw is weight given to color; rc illustrates color criterion;
and rs denotes spatial criterion. The random forest classifier was trained to classify image
objects in conjunction with textural and contextual information [47]. In stage two, output of
random forest classification was integrated in an expert system ruleset classifier [48] with
the use of ancillary data to improve on the result of stage 1 classification. Ancillary data
was obtained by creating patches to fix misclassification encountered during stage 1. Image
classification accuracy was conducted by collecting 300 ground reference points via stratified
random sampling from a high-resolution National Agriculture Imagery Program (NAIP)
imagery collected at the same temporal scale as the orthomosaic imagery [39,49]. Overall
image classification accuracy is 89%. At the end of image processing, five classes were
produced: Trees, shrub, marshland, loose sediment, and compacted sediment (Figure 2a).
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2.3. Flow and Sediment Model Construction

The Soil and Water Assessment Tool (SWAT) was employed to model flow and sedi-
ment loading in the study area. SWAT is a fully distributed model that aids in the evaluation
of land management practices on flow and water quality in river basins over time [50,51].
For a SWAT model to be successfully implemented, it requires LULC, soil, elevation, and cli-
mate variables. Soil data was obtained from the soil survey geographic (SSURGO) data [52]
while climate data was acquired from SWAT database. For a SWAT model to produce
results that are close to reality, it must be calibrated and validated. We constructed two
SWAT models for the UAS derived DTM and the LiDAR derived DTM, respectively. Due
to the unavailability of observed streamflow data within the UAS image acquisition area,
a nested downscaling approach was developed and applied in operationalizing model
calibration and validation. We reconstructed the hydrologically active area covered by
the closest USGS streamflow gauging station (4 km upstream) to the UAS study extent.
The larger watershed (199 km2) encapsulated the UAS study area and accounted for the
hydrologically active area of the observed streamflow data (Figure 3). An ungauged SWAT
model with a warmup period of 15 years (2000−2014) was initially operationalized for this
larger calibration study area. Following this, the model was calibrated and validated to
obtain the appropriate coefficients for 17 key SWAT parameters (Table 3) that were found to
be highly sensitive at this large spatial scale and extendible to the smaller UAS spatial scale.Drones 2021, 5, x FOR PEER REVIEW 9 of 19 
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Table 3. Fitted SWAT model calibration parameters and their coefficients.

Parameter Description Minimum
Value

Maximum
Value

Fitted
Value

CN2 Curve number for soil moisture 2 34.0 98.0 69.30

ALPHA_BF Baseflow alpha factor (1/days) 0 0.1 0.62

GW_DELAY Ground water delay time (days) 20.0 450 153.70

GWQMN Threshold dept of water in shallow
aquifer (mm H2O) 0.0 300.0 153.90

ESCO Soil evaporation compensation
factor 0.0 1.0 0.91

SURLAG Surface runoff lag coefficient 1.0 24.0 11.60

CH_K2 Effective hydraulic conductivity in
main channel 6.0 25.0 18.56

CH_N2 Manning’s “n” value for the main
channel −0.01 0.3 0.02

SHALLST Initial depth of water in the
shallow aquifer (mm H2O) 0.0 1000 239

GWHT Initial groundwater height (m) 0.0 25.0 21.7

RCHRG_DP Deep aquifer percolation fraction 0.0 1.0 0.29

TIMP Snowpack temperature lag factor 0.0 1.0 0.09

SMFMX Maximum melt rate for snow
during year (mm H2O/◦C-day) 0.0 10.0 0.53

SMFMN Minimum melt rate for snow
during year (mm H2O/◦C-day) 0.0 10.0 7.7

SMTMP Snowmelt base temperature (◦C) −5.5 5.0 −3.75

SOL_AWC Available water capacity for the
soil layer (mm H2O/mm soil) 0.0 1.0 0.27

PRF Sediment routing factor in main
channel 0.0 2.0 1.80

We employed Sequential Uncertainty Fitting version 2(SUFI-2) program embedded
in SWAT-CUP 2012 to calibrate and validate the models [53,54]. SUFI2 fits SWAT output
simulated data to observed data and in the process adjust the coefficients of SWAT model
parameters during model calibration [55]. In evaluating how well a model is calibrated,
SUFI-2 utilizes two major criteria. The P-factor which provides a measure of SUFI-2’s
ability to capture uncertainty while the R-factor gauges the quality of model calibration [56].
Equation (2) depicts the R-factor.

R =

1
p ∑

p
i=1(Bs,97.5% − Bs,2.5%)i

σobs
(2)

where p is the number of parameters fitted, Bs,97.5% and Bs,2.5% represents the upper and
lower bounds of the 95PPU (95% prediction uncertainty) for a simulated variable Bs,
σobs is the standard deviation of the observed data. Values for R-factor range between
0 and infinity. An R-factor of zero demonstrates a perfect fit between simulated and
measured data. Figure 3 illustrates a simplified SWAT model used in calibration at the
larger spatial extent.

Due to the paucity of monitoring stations in the watershed, a temporal split sampling
was used in the calibration and validation for flow [57]. The model was calibrated for
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flow between August−2015 and August−2016 while validation was implemented between
August−2017 and August−2018. To obtain the appropriate calibrated coefficients for the
parameters outlined in Table 3, we executed 10,000 iterations. The best simulation that
produced the appropriate coefficients for the parameters was achieved at iteration 9457.
Following the successful model calibration and validation for flow at the larger spatial
extent, the simulated flow value at the subbasin that mostly coincides with the UAS study
area location was used as an observed data to calibrate and validate the UAS DTM and
LiDAR derived DTM models for flow, respectively. To evaluate the efficacies of model
calibration and validation for (i) the large extent SWAT model, and (ii) the UAS DTM and
LiDAR derived DTM models for flow, three additional statistical measures besides that
outlined in Equation (2) were employed.

The first additional statistical measure used to evaluate model effectiveness for cali-
bration and validation is the Nash–Sutcliffe (NS) coefficient [58]. Equation (3) illustrates
the Nash–Sutcliffe coefficient:

E = 1 − ∑n
i=1 (Oi − Si)

2

∑n
i=1 (Oi − O)

2 (3)

where E is the Nash–Sutcliffe coefficient of model efficiency, Oi is observed data; Ō is the
mean of observed data; Si is simulated value, while n is the total number of observations.
Possible values of NS range between −∞ and 1.0. A Nash–Sutcliffe statistic of 1.0 suggest
a perfect fit between simulated and observed data, NS values between zero and 1 are
generally regarded as tolerable levels of model performance, while NS values less than
zero illustrates that the mean of observed data is a preferred predictor compared to the
simulated values. Another model efficiency criterion that we employed is the index of
agreement (d) which is calculated according to the following equation [59]:

d = 1 − ∑n
i=1(Oi − Si)

2

∑n
i=1
(∣∣Si − O

∣∣+ ∣∣Oi − O
∣∣)2 0 ≤ d ≥ 1 (4)

where d is the index of agreement, Oi is observed signal, Ō is the mean of observed signal,
Si is simulated value, while n is the number of observations. An index of agreement value
of 1 suggest perfect fit between simulated and observed while zero depicts no association.
We further employed the root mean square error (RMSE) in evaluating model predictive
power [60]. The RMSE statistics quantifies the predicted error (residuals) vis à vis the units
of the simulated value into a single measure of model efficiency. The RMSE is calculated
according to the following equation:

RMSE =

√
∑n

i=1 (Oi − Si)
2

n
(5)

where Oi and Si represent observed and simulated values of a sample size n. Values for
RSME range between 0 and ∞, where RMSE of zero suggest perfect fit between observed
and simulated information.

Calibration of suspended sediments was not performed due to the unavailability of
suspended sediment observed data covering the accepted period of model calibration and
validation, outside SWAT warm up period (2000–2014). Notwithstanding, one pivotal
sediment related SWAT parameter (PRF) that is tied to flow parameters was calibrated thus
providing an indirect calibration for suspended sediment (Table 3).

Figure 4 shows a simplified SWAT model constructed for the UAS spatial extent using
a LiDAR derived DTM (Figure 4a) and a photogrammetrically derived point cloud DTM
(Figure 4b). In each of the models, the watershed was automatically delineated into 60
sub-basins with very similar characteristics of monitoring points, stream network, and
sub-basin sizes and morphology.
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period for the SWAT models was consistent with that assigned to the large spatial extent
illustrated in Figure 3.

3. Results and Discussion
3.1. Model Calibration and Validation at the Larger Spatial Extent

The SWAT model was calibrated for flow between August 2015 through August 2016
at a monthly timestep. In Figure 5, the statistical measures of model efficiency clearly
demonstrate that the simulated flow is within acceptable threshold of the USGS measured
data. Moreover, all the measures of model efficiency demonstrated that the 17 SWAT
parameters outlined in Table 3 did a decent job in fitting the simulated data to the USGS
observed streamflow data. The extent of model uncertainty captured by the 95PPU (>76%)
further attest to the effectiveness of the model calibration. The R-factor (R), Nash–Sutcliffe
(E), and index of agreement (d) shows strong association between simulated and observed
data. Despite the relatively low RMSE, the overwhelmingly excellent efficiency of the other
criteria suggests that the model calibration is robust.

Note: R is R-factor, E is Nash–Sutcliffe coefficient of simulation efficiency, d is index of
agreement, and RMSE is root mean square error.

The SWAT model was validated for flow between August 2017 and August 2018 at a
monthly time interval. The model evaluation criteria of R, E, and d (Figure 6) are not that
different from those demonstrated for model calibration and suggest a strong validation of
the model, though one can conclude the model was slightly better calibrated compared to
its validation. Notwithstanding, all the statistical criteria strongly suggest that the model
was constructed in a manner that closely matches surface fluvial hydrologic characteristics.
Figure 6 also shows that a large fraction (>80%) of model uncertainty was captured by the
95PPU. The widely used model efficiency values generated by Nash–Sutcliffe, index of
agreement, and the RMSE are within acceptable levels reported in other studies [61–63].



Drones 2021, 5, 20 11 of 17
Drones 2021, 5, x FOR PEER REVIEW 12 of 19 
 

 
Figure 5. SWAT large extent model calibration subbasin 18 (8/2015–8/2016). 

Note: R is R-factor, E is Nash–Sutcliffe coefficient of simulation efficiency, d is index 
of agreement, and RMSE is root mean square error.  

The SWAT model was validated for flow between August 2017 and August 2018 at 
a monthly time interval. The model evaluation criteria of R, E, and d (Figure 6) are not 
that different from those demonstrated for model calibration and suggest a strong valida-
tion of the model, though one can conclude the model was slightly better calibrated com-
pared to its validation. Notwithstanding, all the statistical criteria strongly suggest that 
the model was constructed in a manner that closely matches surface fluvial hydrologic 
characteristics. Figure 6 also shows that a large fraction (>80%) of model uncertainty was 
captured by the 95PPU. The widely used model efficiency values generated by Nash–Sut-
cliffe, index of agreement, and the RMSE are within acceptable levels reported in other 
studies [61–63].  

Figure 5. SWAT large extent model calibration subbasin 18 (8/2015–8/2016).

Drones 2021, 5, x FOR PEER REVIEW 13 of 19 
 

 
Figure 6. SWAT large extent model validation subbasin 18 (8/2017–8/2018). 

Note: R is R-factor, E is Nash–Sutcliffe coefficient of simulation efficiency, d is index 
of agreement, and RMSE is root mean square error. 

3.2. Model Calibration and Validation at the UAS Spatial Scale 
Following the successful calibration of the large spatial extent SWAT model, the fit-

ted parameter coefficients were transferred to the nested UAS spatial scale models. More-
over, the predicted streamflow at the sub-basin closest to the UAS spatial extent water-
shed was used for calibrating and validating the models. It has been shown that model 
parameters and their coefficients are regionally transferrable within a watershed if the 
efficiency value statistics are reproducible at a different sub-basin [64]. Calibration results 
for the UAS derived DTM and Lidar derived DTM demonstrated that both models fall 
within an acceptable threshold of model calibration efficiency despite the LiDAR derived 
DTM having a relatively higher R-factor, Nash–Sutcliffe, and index of agreement (Figure 
7). Notwithstanding, both models had identical RMSE which turned out to be higher than 
that obtained at the larger spatial extent scale of calibration. The models generated by the 
LiDAR DTM and the UAS DTM, respectively also illustrated that a high fraction (>70%) 
of model uncertainty was captured during calibration as can be seen by the 95PPU. As a 
result of the model calibration, it can be subsequently concluded that a photogrammetri-
cally derived DTM from a UAS point cloud is effective in modeling flow. Jeziorska et al., 
[30] reported that a UAS derived terrain model is more effective in accounting for flow 
morphology and patterns over a lidar derived DTM in areas not covered by vegetation 
because of its increased spatial resolution. We attribute the slightly lower values of R, E, 
and d in the UAS derived terrain model to the uncertainty in interpolated terrain beneath 
the few areas within the watershed that are covered by trees and shrub and also to the 
single flow (D-8) algorithm used by SWAT. Studies have shown that a multiple flow al-
gorithm better estimates flow compared to single flow algorithm [65,66]. Figure 8 shows 
the validation results for the LiDAR derived DTM and UAS derived DTM. Both models 

Figure 6. SWAT large extent model validation subbasin 18 (8/2017–8/2018).

Note: R is R-factor, E is Nash–Sutcliffe coefficient of simulation efficiency, d is index of
agreement, and RMSE is root mean square error.

3.2. Model Calibration and Validation at the UAS Spatial Scale

Following the successful calibration of the large spatial extent SWAT model, the fitted
parameter coefficients were transferred to the nested UAS spatial scale models. Moreover,
the predicted streamflow at the sub-basin closest to the UAS spatial extent watershed was
used for calibrating and validating the models. It has been shown that model parameters
and their coefficients are regionally transferrable within a watershed if the efficiency
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value statistics are reproducible at a different sub-basin [64]. Calibration results for the
UAS derived DTM and Lidar derived DTM demonstrated that both models fall within
an acceptable threshold of model calibration efficiency despite the LiDAR derived DTM
having a relatively higher R-factor, Nash–Sutcliffe, and index of agreement (Figure 7).
Notwithstanding, both models had identical RMSE which turned out to be higher than that
obtained at the larger spatial extent scale of calibration. The models generated by the LiDAR
DTM and the UAS DTM, respectively also illustrated that a high fraction (>70%) of model
uncertainty was captured during calibration as can be seen by the 95PPU. As a result of the
model calibration, it can be subsequently concluded that a photogrammetrically derived
DTM from a UAS point cloud is effective in modeling flow. Jeziorska et al., [30] reported
that a UAS derived terrain model is more effective in accounting for flow morphology
and patterns over a lidar derived DTM in areas not covered by vegetation because of
its increased spatial resolution. We attribute the slightly lower values of R, E, and d in
the UAS derived terrain model to the uncertainty in interpolated terrain beneath the few
areas within the watershed that are covered by trees and shrub and also to the single flow
(D-8) algorithm used by SWAT. Studies have shown that a multiple flow algorithm better
estimates flow compared to single flow algorithm [65,66]. Figure 8 shows the validation
results for the LiDAR derived DTM and UAS derived DTM. Both models are within the
acceptable threshold of validation based on their simulation efficiency despite the Lidar
based DTM scoring slightly higher values compared to the UAS derived DTM in three of
the four model efficiency criteria used (Figure 8).
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Validation results for the two models display close similarities when compared to
the results generated by calibration. This suggest that a UAS-derived DTM can serve as
an alternative dataset to model streamflow in the absence of lidar DTM provided that
the study area has minimal to no vegetation cover. When vegetation cover dominates a
study area, ground/terrain models generated by UAS-derived point cloud contains higher
errors [67,68] and may not be suitable for modeling streamflow. Since surface runoff is
mostly controlled by terrain, we recommend that a UAS derived DTM used for estimating
flow and eventual sediment erosion be collected over areas with minimum high vegetation
cover, such as trees (<10%). Moreover, as demonstrated by Jensen and Mathews [69], the
point cloud should be classified into ground points using a robust algorithm such as the
adaptive TIN ground filter employed in this study followed by a manual classification of
the automated classified ground points to further eliminate above ground features. The
resulting DTM generated from the hybrid classified ground points can be used in modeling
flow across space in the absence of a LiDAR derived DTM. This refined UAS derived DTM
has great potential to extend the applications of UAS data.

3.3. Assessment of Sediment Erosion at the UAS Spatial Scale

The calibrated and validated SWAT models for the LiDAR point cloud DTM and
photogrammetrically derived point cloud DTM were used to model the amount of sediment
being eroded and washed from the watershed at the sub-basin level. Figure 9 compares
the sediment loads generated by the two models. The photogrammetrically derived point
cloud DTM accounted for a slightly higher sediment loading from the watershed compared
to that obtained from the LiDAR derived DTM (Figure 9). In sub-basins covered with loose
sediment and gentle slopes, the amount of sediment eroded is identical between the LiDAR
derived DTM and the UAS-derived point cloud DTM. However, this is not the case in sub-
basins that have rugged terrain where the UAS derived DTM generated greater sediment
loads compared to the LiDAR derived DTM. We speculate that this difference might be
ascribed to the higher spatial resolution of the UAS derived DTM (3.6 cm) compared to the
relatively lower spatial resolution of the LiDAR derived DTM (14.3 cm). Digital terrain
models derived from UAS point cloud have been shown to be more effective in accounting
for streambank erosion [27,33] and measuring gully erosion rates [34] compared to LiDAR
-derived DTMs. This effectiveness demonstrates how photogrammetrically derived SfM
terrain when used in scenarios with little to no vegetative ground cover, can serve as a
low-cost viable alternative to more costly methods that rely on LiDAR data.

Drones 2021, 5, x FOR PEER REVIEW 15 of 19 
 

3.3. Assessment of Sediment Erosion at the UAS Spatial Scale  
The calibrated and validated SWAT models for the LiDAR point cloud DTM and 

photogrammetrically derived point cloud DTM were used to model the amount of sedi-
ment being eroded and washed from the watershed at the sub-basin level. Figure 9 com-
pares the sediment loads generated by the two models. The photogrammetrically derived 
point cloud DTM accounted for a slightly higher sediment loading from the watershed 
compared to that obtained from the LiDAR derived DTM (Figure 9). In sub-basins covered 
with loose sediment and gentle slopes, the amount of sediment eroded is identical be-
tween the LiDAR derived DTM and the UAS-derived point cloud DTM. However, this is 
not the case in sub-basins that have rugged terrain where the UAS derived DTM gener-
ated greater sediment loads compared to the LiDAR derived DTM. We speculate that this 
difference might be ascribed to the higher spatial resolution of the UAS derived DTM (3.6 
cm) compared to the relatively lower spatial resolution of the LiDAR derived DTM (14.3 
cm). Digital terrain models derived from UAS point cloud have been shown to be more 
effective in accounting for streambank erosion [27,33] and measuring gully erosion rates 
[34] compared to LiDAR -derived DTMs. This effectiveness demonstrates how photo-
grammetrically derived SfM terrain when used in scenarios with little to no vegetative 
ground cover, can serve as a low-cost viable alternative to more costly methods that rely 
on LiDAR data.  

 
Figure 9. Comparison of sediment erosion generated by (a) LiDAR point cloud DTM and (b) Photogrammetrically derived 
point cloud DTM. 

Additional research is needed to better compare UAS and LiDAR derived DTMs col-
lected at identical spatial and temporal resolution over non-vegetated terrain to compre-
hensively evaluate the efficacy of the UAS derived DTM in estimating flow and erosion 
of sediment. Moreover, the key difference unearthed in this study where both DTMs per-
formed identically in gentle slopes and loose sediments but differently in rugged terrain 
needs further testing in similar site setting. As the cost of lighter payload LiDAR sensors 
developed for drone platforms becomes cheaper [70], hydrologic modeling of flow and 
nonpoint source pollutants which have been historically conducted at moderate to large 
scales will become more practical at the smaller UAS spatial scale thus providing a more 
effective tool for monitoring of erosion at mining sites. 

Figure 9. Comparison of sediment erosion generated by (a) LiDAR point cloud DTM and (b) Photogrammetrically derived
point cloud DTM.



Drones 2021, 5, 20 14 of 17

Additional research is needed to better compare UAS and LiDAR derived DTMs
collected at identical spatial and temporal resolution over non-vegetated terrain to compre-
hensively evaluate the efficacy of the UAS derived DTM in estimating flow and erosion
of sediment. Moreover, the key difference unearthed in this study where both DTMs
performed identically in gentle slopes and loose sediments but differently in rugged terrain
needs further testing in similar site setting. As the cost of lighter payload LiDAR sensors
developed for drone platforms becomes cheaper [70], hydrologic modeling of flow and
nonpoint source pollutants which have been historically conducted at moderate to large
scales will become more practical at the smaller UAS spatial scale thus providing a more
effective tool for monitoring of erosion at mining sites.

4. Conclusions

Unmanned Aerial Systems have been long recognized for their ability to acquire
imagery over areas of interest with spatial resolutions that can provide incredible amounts
of detail, both temporally and spatially. Coupled with their ability to be quickly deployed
over small areas on a frequent basis, UAS have rapidly demonstrated themselves as a
valid data collection tool in many geomorphic and geologic applications. While UAS
derived data products, such as DSM and DTM have been used in many forms of fluvial
research, the integration of UAS derived DTM in a nested scale distributed hydrologic
modeling that this study investigated is a unique domain in UAS application. In this
research we assessed the feasibility and efficacy of a photogrammetrically derived DTM in
modeling sediment erosion across space. The nested scale hydrologic modeling framework
successfully downscaled streamflow data from a larger spatial extent and applied to a
smaller UAS spatial scale. In this study, we have demonstrated that it is possible to
extend the use of UAS derived DTM from river and other narrow transects to the entire
image area in modeling erosion potentials. We built on the literature which mostly agrees
that the higher spatial resolution obtained from UAS derived products facilitates the
modeling of erosion at the transect level. The study also demonstrates that with the
tools of model calibration and validation, it is possible to utilize UAS derived DTM to
model flow and sediment load estimation in the absence of measured data at the UAS
spatial scale. Notwithstanding, we caution that if LiDAR data is available at a higher
temporal and spatial frequency, such as the recent lighter payload lidar sensors that can
be mounted on UAS platforms, it should be used to monitor flow and sediment loading
rather than a photogrammetrically derived DTM especially if the study area is covered
with significant vegetation. The nested scale methodology developed and utilized in this
study can be extended to similar fluvial aggregate excavation operations. The hydrologic
modeling framework serves as an excellent example of how UAS data can serve as a
low-cost alternative to LiDAR in terms of decision making and lowering overhead costs in
a variety of extraction-based industries. Future research should evaluate the quality and
accuracy of models over areas with diverse amounts of vegetation cover and provide a
direct comparison of DTM models gathered via LiDAR and UAS imagery, respectively.
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