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Abstract: The scope of this work is to compare Sentinel-2 and unmanned aerial vehicles (UAV)
imagery from northern Greece for use in precision agriculture by implementing statistical analysis
and 2D visualization. Surveys took place on five dates with a difference between the sensing dates for
the two techniques ranging from 1 to 4 days. Using the acquired images, we initially computed the
maps of the Normalized Difference Vegetation Index (NDVI), then the values of this index for fifteen
points and four polygons (areas). The UAV images were not resampled, aiming to compare both
techniques based on their initial standards, as they are used by the farmers. Similarities between the
two techniques are depicted on the trend of the NDVI means for both satellite and UAV techniques,
considering the points and the polygons. The differences are in the a) mean NDVI values of the
points and b) range of the NDVI values of the polygons probably because of the difference in the
spatial resolution of the two techniques. The correlation coefficient of the NDVI values, considering
both points and polygons, ranges between 83.5% and 98.26%. In conclusion, both techniques provide
important information in precision agriculture depending on the spatial extent, resolution, and cost,
as well as the requirements of the survey.

Keywords: precision agriculture; NDVI; Sentinel-2; UAV; 2D visualization

1. Introduction

Remote sensing [1–7] is the technology of gathering information for the objects on the
Earth’s surface by measuring emitted and reflected radiation at a distance. Remote sensing
data are collected by ground-based, air-based, and satellite-based platforms. Among other
applications, remote sensing is used to detect the vegetative condition of the plants. Preci-
sion agriculture, also known as precision farming, aims at increasing the productiveness of
the cultivated areas and adopting a careful management to reduce the cost of production
and to decrease the negative effects of the agrochemical products in the environment [8–19].
This can be achieved by the appropriate management of the spatial and temporal variabil-
ity of the fields. Nowadays, satellite observation [20–24] and unmanned aerial vehicles
(UAVs) [25–34] are undoubtedly critical platforms for the information-based advances in
the agricultural sector, and further the automatic detection of specific features [35–41]. As
already reported, the spatiotemporal variability of agricultural fields is undoubtedly of
high importance for farming and best fitted agricultural management practices, which
require remote sensing data of high spatial and temporal resolution. As the spatial resolu-
tion of the remote sensing data increases, the pixel area decreases, and the homogeneity of
soil/crop characteristics inside the pixel increases. Furthermore, the temporal resolution
strongly affects the evaluation of the plant and soil features in time.
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The Normalized Difference Vegetation Index (NDVI) is one of the most important
vegetative indices used to estimate the vegetation and the health of the plants [42–47]. It is
computed by the equation:

NDVI =
NIR− RED
NIR + RED

Therefore, two spectral bands were used in this research for both remote sensing
techniques. The value range of the NDVI is −1 to 1, with negative values approaching
−1 to depict the presence of water, and values ranging between−0.1 and 0.1 to characterize
barren areas, sand, or snow. Low, positive values (approximately from 0.2 to 0.4) correspond
to shrub and grassland, and high values indicate dense vegetation. Finally, NDVI’s values
close to 1 correspond to tropical and temperate rainforests [13].

It is well-known that satellite imagery has achieved notable results up to now in
precision agriculture because satellites are equipped with sophisticated sensors which pro-
vide high spatial, temporal, and radiometric solutions, along with frequent and extensive
coverage of the study areas. However, UAVs are more flexible compared to the Sentinel-2
platform to record the vegetation on the ground, providing analytic information because of
their multispectral cameras.

In this paper, we compare both Sentinel-2 and UAV multispectral data from the
prefecture of Serres in North Greece (Figure 1) to show how significant the combined use
of Sentinel-2 and UAV multispectral data are in precision agriculture.
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Figure 1. (a) Map of Greece from Google Earth showing the prefecture of Serres where (b) the survey area (white polygon)
of this work is located. The fifteen different points and the four different parts of the study area (polygons A, B, C, D) used
for the comparison of the Sentinel-2 and UAV multispectral data are also shown.

Specifically, the comparison between the two techniques highlights their advantages
and limitations when used in precision agriculture. To address the previous aim, we
first computed the NDVI maps of the study area using the QGIS application for both
Sentinel-2 and UAV techniques, and further statistically processed the data to reveal the
spatiotemporal distribution of the NDVI index. Finally, we conducted both 2D visualization
and statistical comparison of the data for both remote sensing techniques.
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2. Materials and Methods
2.1. Study Area

The survey area belongs to the prefecture of Serres in North Greece, and it is located
near the villages Dasochori and Karperi (41◦09′02.75” N, 23◦18′02.63” E), covering an
area of 510 hectares (Figure 1). The area under investigation was cultivated with arable
crops (corn, cotton, sunflower, etc.) during the time of this study. This area was selected
for the survey because of its high productivity and variability of the crops. The weather
conditions were typical for the summer in Greece, characterized by high temperatures and
low precipitation. According to the Hellenic National Meteorological Service, the mean
temperatures of June, July, August, and September of 2018 were 23.6 ◦C, 26.2 ◦C, 27.2 ◦C
and 23.1 ◦C respectively, while the highest temperatures for these months were 34.7 ◦C,
36.4 ◦C, 36.9 ◦C and 36.8 ◦C. In addition, the precipitation was 44.0 mm in June, 51.8 mm
in July, 17.8 mm in August and 1 mm in September. The maximum temperature exceeded
32 ◦C for 14 days in June, 23 days in July, 30 days in August, and 12 days in September.
Crops have been fully irrigated by a furrow system. The irrigation water comes from the
artificial lake of Kerkini, which is located 10 km away from the study area.

2.2. Material and Methods

The image acquisition took part in five different dates from June to October of 2018,
partly referred as sensing dates 1, 2, 3, 4, 5 in this study (8 June–12 June 2018, 3 July–
6 July 2018, 27 July–28 July 2018, 31 August–1 September 2018, 1 October–3 October 2018,
respectively). The period from June to October of 2018 represents a full vegetative season.
Two different remote platforms were used for the collection of the images, i.e., Sentinel-2
satellite and the UAV eBee SQ (Table 1).

Sentinel-2, implemented by Copernicus European Program for Earth observation,
provides high-resolution, multispectral images [48]. The data of Sentinel-2 range from the
visible to the shortwave infrared parts of the electromagnetic spectrum with 13 spectral
bands at 3 different spatial resolutions depending on the band (10 m, 20 m and 60 m). In
this study, the sentinel hub (https://www.sentinel-hub.com/ accessed on 25 March 2021)
was used to download the satellite data, corresponding to a spatial resolution of 10 m at
ground level since the used bands were B4 and B8 (Figure 2a–c). Also, all images were
acquired at processing level 2A. The first Sentinel-2 imagery was collected on 8 June 2018
at 09:28:04 UTC with 0.7% cloudiness, the second on 3 July 2018 at 09:22:24 UTC with 1.9%
cloudiness, the third on 28 July 2018 at 09:26:58 UTC with 9.3% cloudiness, the fourth on
1 September 2018 at 09:22:21 UTC with 1.4% cloudiness, and the fifth on 3 October 2018 at
09:26:00 UTC with 5.3% cloudiness.

The acquisition of the aerial data has been done by the UAV eBee SQ (Figure 3a,b),
equipped with the multispectral camera Parrot Sequoia Plus that corresponds to a spatial
resolution of 0.13 m at ground level (Figure 3b). The multispectral sensor consists of four
spectral cameras collecting green (530–570 nm), red (640–680 nm), red edge (730–740 nm)
and near infrared (NIR) (770–810 nm) imagery (Figure 3b). The campaigns of the UAV
were performed on 12 June 2018, on 6 July 2018, on 27 July 2018, on 31 August 2018 and on
3 October 2018. The duration of each campaign was approximately 5–6 h, and the images
were collected between 10:00 and 15:00, in clear sky conditions and without wind. The
flights were carried out at 120 m height with spatial resolution of 0.13 m (Sequoia sensor).
Mapping took part with an average overlap 75% forward and sideways, and 1800 triggers
in 4 bands were taken, thus 7,200 multispectral images were acquired. The settings of
the sensors were dynamically adjusted to the light conditions during the flights, but they
usually worked with F/2.2, 1800 speed, and ISO-100. In addition, we did not resample
the UAV images to match the spatial resolution of the satellite imagery aiming to a) keep
the initial standards for both platforms, b) show up the discrepancies between the two
techniques when applied in field conditions and c) provide an operational view with no
dependencies on simultaneous field radiometric sampling, since farmers do not operate
resampling in the imagery collected by the drone.

https://www.sentinel-hub.com/
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Table 1. The bands and their wavelengths for both Sentinel-2 [49] and Parrot Sequoia Plus camera in UAV eBee SQ.

Sensing Platform Band Number Band
Central

Wavelength (nm)
Bandwith

(nm)
Spatial

Resolution

Sentinel 2

1 Violet 443 20 60

2 Blue 490 65 10

3 Green 560 35 10

4 Red 665 30 10

5 Red Edge 705 15 20

6

Near Infrared

740 15 20

7 783 20 20

8 842 115 10

8b 865 20 20

9 945 20 60

10 1380 30 60

11 Short Wavelength
Infrared

1610 90 20

12 2190 180 20

Band Wavelengths (nm)

Sequoia

Green 500–600

Red 600–700

Red Edge 700–730

Near Infrared 700–1300Drones 2021, 5, x FOR PEER REVIEW 4 of 20 
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dates in the sentinel hub, (b) NDVI map and NDVI value calculation, (c) from left to right Sentinel-2_L2A_B04_(Raw), 
Sentinel-2_L2A_B08_(Raw) and Sentinel-2 L2A_NDVI. 
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Figure 2. Sentinel-2 images used in the present work: (a) selection of the studied area, acquisition mode (L2A) and sensing
dates in the sentinel hub, (b) NDVI map and NDVI value calculation, (c) from left to right Sentinel-2_L2A_B04_(Raw),
Sentinel-2_L2A_B08_(Raw) and Sentinel-2 L2A_NDVI.

In the context of this survey, the NDVI index was computed and further statistically
analyzed for both Sentinel-2 and UAV images (Table 2). Specifically, the values of the
NDVI index were calculated for fifteen points (location in Figure 1b) for every sensing
date aiming to find out potential similarities or differences of the index trend between
the two platforms (Table 2). The points were chosen randomly within the heterogeneous
study area aiming to depict the variability of the area, corresponding to different fields
and therefore reflectance. The tool Field Calculator of QGIS application was used for the
calculation of the point coordinates, as shown in Table A1 (Appendix A). Additionally,
four different parts of the study area (polygons A, B, C, D, location in Figure 1b)) were
randomly selected to compute the average NDVI index. The size of the areas, according to
the tool Field Calculator of QGIS application, are 1,97076 ha, 3,14675 ha, 4,02501 ha and
6,09571 ha, respectively. The tool Layer Properties of QGIS was used for the calculation of
the polygon coordinates, as shown in Table A2 (Appendix A).
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Figure 3. The eBee SQ (a) and the multispectral camera Parrot Sequoia Plus (b) used to acquire the UAV images of this work.

Table 2. NDVI values of the 15 points of the 5 sensing dates for both the Sentinel-2 and UAV multispectral data.

Sensing
Date

8 June 2018–
12 June 2018

3 July 2018–
6 July 2018

27 July 2018–
28 July 2018

31 August 2018–
1 September 2018

1 October 2018–
3 October 2018

Points Sentinel-2 Sequoia Sentinel-2 Sequoia Sentinel-2 Sequoia Sentinel-2 Sequoia Sentinel-2 Sequoia

1 0,30878 0,45173 0,77035 0,8728 0,85896 0,90208 0,79467 0,87877 0,49705 0,48634

2 0,25231 0,48002 0,64824 0,71208 0,86481 0,90465 0,82728 0,89512 0,50721 0,447

3 0,24722 0,38731 0,70826 0,82971 0,87684 0,86197 0,84717 0,88098 0,46924 0,46107

4 0,31391 0,32423 0,66333 0,83165 0,84006 0,80724 0,64111 0,83148 0,34081 0,31222

5 0,7164 0,94173 0,83557 0,90238 0,82301 0,86537 0,37613 0,43533 0,25952 0,22123

6 0,71396 0,92676 0,83349 0,91139 0,83356 0,88134 0,36238 0,38788 0,21086 0,22788

7 0,28583 0,54815 0,70521 0,80471 0,85147 0,89067 0,81502 0,8751 0,55524 0,51996

8 0,69419 0,93194 0,8237 0,89235 0,83424 0,87595 0,22414 0,25971 0,28267 0,31891

9 0,39736 0,51542 0,71945 0,85713 0,87891 0,91071 0,78413 0,87402 0,5481 0,48804

10 0,72855 0,85989 0,77669 0,81172 0,38167 0,34895 0,19581 0,19394 0,13616 0,16768

11 0,67647 0,93175 0,83293 0,91139 0,82726 0,88462 0,35944 0,41533 0,21148 0,23982

12 0,30092 0,26731 0,47523 0,61353 0,75925 0,87675 0,79089 0,8238 0,39836 0,44632

13 0,70188 0,93056 0,84293 0,89344 0,82767 0,85523 0,35015 0,36003 0,2318 0,27342

14 0,24646 0,20644 0,22868 0,33886 0,46538 0,53582 0,80488 0,8779 0,76006 0,61152

15 0,39024 0,80005 0,71392 0,89684 0,87108 0,90871 0,83271 0,86174 0,42353 0,42794

Sentinel-2 imagery acquisition from sentinel hub resulted to the creation of two tiff
format images (raw values) corresponding to B04 and B08 bands, along with another one
corresponding to the NDVI of the study area for each acquisition date (Figure 2a–c). The
two first images were imported into the QGIS application to generate the NDVI map of
each Sentinel-2 observation, using the mathematical formula of the index. These NDVI
maps were used in the QGIS application for the selection of the fifteen points and the four
polygons (A, B, C, D), as well as the calculation of the index values.

Pix4DFields software was used to carry out the processing of the aerial imagery and
the corresponding NDVI map (Figure 4a,b). The software performs a photogrammetric
matching of the images and creates reflection values per pixel of the map. The values are
calculated according to the number of appearances of each pixel, the camera angle of each
appearance and the incident radiation. The process is repeated for the four bands of the
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sensor (red, red edge, green and near infrared). The user selects the NDVI map generation,
and the software creates the corresponding map using the mathematical formula of the
index, which is extracted in a tiff format image. A depiction of the index values in color
scale can be received as well. QGIS was used to compute the NDVI values of the aerial
imagery, as exactly for the Sentinel-2 imagery.
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In addition, Minitab software was used to implement the paired-t test for the compari-
son between the NDVI values of the points. Paired-t test determines whether the means of
two dependent groups differ, and it is used to compare measurements that are made for
the same items under different conditions. Analysis of variance (ANOVA) was applied
to conduct the statistical comparison of the polygon data using Minitab software. Finally,
the comparison of the two remote sensing techniques (Sentinel-2 and UAV) for the fifteen
different points and the selected parts (polygons A, B, C, D) of the study area in relation
with the sensing dates is based on statistical analysis and graphical visualization using
charts, graphs, and maps of the mean NDVI values.
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3. Results and Discussion
3.1. Distribution of the NDVI Values of Single Points

Figure 5a,b presents the distribution of the NDVI values in time for fifteen points
(location in Figure 1b) of each sensing date for both Sentinel-2 and UAV images. The fifteen
points are randomly distributed in the study area, and this explains the differences in the
value range, meaning that each difference corresponds to different crop, thus different
plant life cycle and different field even for the same crop, implying spatial management
variability. Generally, the charts of Figure 5a,b show a quite similar trend for both tech-
niques. Each line in both graphs of Figure 5 seems to be associated with the sensing dates,
taking into consideration the vegetative stages of plant development during the season.
Specifically, the first sensing date (8 June–12 June 2018) corresponds to a period related to
the vigorous vegetative plant development or to the peak of the development resulting in
an increase or in a high-level depiction of the index values. This is clearly shown in most
of the lines of both charts. The distribution of the NDVI values presents a stabilization for
the next three dates (3 July–6 July 2018, 27 July–28 July 2018, 31 August–1 September 2018)
due to the balanced vegetative plant growth occurring from July to September. Finally,
the general trend of the NDVI distribution presents a decrease in the last sensing date
(1 October–3 October 2018), given that plants are in October at the maturity stage resulting
in lower green reflection or they have been harvested resulting in absence of vegetation on
the ground.
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Figure 6a, b presents the distribution of the NDVI values for both the Sentinel-2 and
UAV multispectral data, as well as the correlation of these remote sensing techniques for
each of the sensing dates. The general trend of the NDVI values is remarkably similar for
both techniques (Figure 6a,b). The deviation in the lines of Figure 6a, corresponding to the
first and the second sensing dates (8 June–12 June 2018, 3 July–6 July 2018), is probably
because of the difference in the plant reflection that decreases as the plant development
stage increases. In addition, the scatter charts of Figure 6b show a quite strong linear
correlation between the satellite index values and the UAV index values. The correlation
coefficient for each sensing date is 83.5%, 93.2%, 94.3%, 97.5% and 94.3%, respectively. The
relatively lower correlation coefficient of 83.5%, compared to the rest correlation coefficients
that corresponds to the first sensing date (8 June–12 June 2018), is probably related with
the early development stage of the plants.

Drones 2021, 5, x FOR PEER REVIEW 10 of 20 
 

because of the difference in the plant reflection that decreases as the plant development 
stage increases. In addition, the scatter charts of Figure 6b show a quite strong linear 
correlation between the satellite index values and the UAV index values. The correlation 
coefficient for each sensing date is 83.5%, 93.2%, 94.3%, 97.5% and 94.3%, respectively. The 
relatively lower correlation coefficient of 83.5%, compared to the rest correlation 
coefficients that corresponds to the first sensing date (8 June–12 June 2018), is probably 
related with the early development stage of the plants. 

 
(a) (b) 

Figure 6. (a) distribution of the NDVI values for both Sentinel-2 and UAV multispectral data 
(Sequoia) for each of the sensing dates, (b) correlation of the remote sensing techniques for each of 

Figure 6. (a) distribution of the NDVI values for both Sentinel-2 and UAV multispectral data (Sequoia)
for each of the sensing dates, (b) correlation of the remote sensing techniques for each of the sensing
dates. The general trend of the NDVI values is remarkably similar for both techniques, and the
correlation coefficients are generally strong.
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The statistical comparison of the average NDVI of the fifteen points (Tables A3 and A4
in Appendix A) for the two remote sensing techniques is based on the paired-t test taking
into consideration the assumption of its implementation (independence of observations,
normality of the distribution of the residuals and the equality of variances). The analysis
showed statistical significance between the averages of the index of the two remote sensing
techniques for the first 4 sensing dates (8 June–12 June 2018, 3 July–6 July 2018, 27 July–
28 July 2018, 31 August–1 September 2018) since the P values of the paired t-test are very
low (<0.05). This is not the case for the last date (1 October–3 October 2018), where the
P value of the test is higher than 0.05. The boxplots of Figure 7 confirm that the average
NDVI index of the fifteen points corresponding to the first four sensing dates is higher
for the NDVI derived by the UAV multispectral data. This is because of the higher spatial
resolution of the Sequoia camera.
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Figure 7. Boxplots of average NDVI values for the fifteen points, showing that the average NDVI index of the fifteen points
corresponding to the first four sensing dates is higher for the NDVI derived by the UAV multispectral data, probably due to
the higher spatial resolution of the Sequoia camera.

3.2. Distribution of the NDVI for the Selected Polygons (A, B, C, D)

Figure 8a,b presents the distribution of the average NDVI values within the selected
polygons (A, B, C, D, location in Figure 1b) of each sensing date for both Sentinel-2 and
UAV images. The line charts of Figure 8a demonstrate an almost identical trend in the
distribution of the average NDVI for both remote sensing techniques. The vegetative stages
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of plant development (increase, stabilization, decrease) are also observed as exactly in
Figure 5a that presents the distribution of the NDVI for the fifteen selected points. The
scatter charts of Figure 8b show a strong linear correlation between the data for both remote
sensing techniques, which is confirmed for every sensing date. The correlation coefficient
for each sensing date is 93.45%, 94.39%, 98.26% and 92.81% respectively.
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Figure 8. (a) Distribution of the NDVI values of the four selected polygons (A, B, C, D, location in Figure 1) for both the
Sentinel-2 and UAV multispectral data (Sequoia) (b) correlation of the remote sensing techniques. The general trend of the
NDVI values is remarkably similar for both techniques, and the correlation coefficients are generally strong.
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The ANOVA model (Tables A5 and A6 in Appendix A), that is used to compare the
NDVI index means of the Sentinel-2 and UAV multispectral data, indicated statistical
significance only between the NDVI mean of polygon C (P value of the ANOVA lower
than 0.05) and no statistical significance for the rest of the polygons (P values of the
ANOVA tests higher than 0.05). This is probably due to the high spatial variability of the
area corresponding to polygon C, as shown by its higher coefficient of variability (CV)
(Table A5 in Appendix A). This is also confirmed by the optical visualization of the NDVI
means for both techniques, shown in the boxplots of Figure 9. The boxplots show that
the NDVI means of the data, acquired by Sequoia camera, are higher compared to those
acquired by Sentinel-2 for polygon C and slightly higher for polygons A, B and D (even
without statistical significance). In addition, the range of the NDVI values (max, min, mean,
standard deviation, coefficient of variability) is larger for the data collected by the UAV
compared to those collected from Sentinel-2. This is due to the higher spatial resolution of
the UAV that enables the more accurate identification of the vegetative alteration (higher
index values).

Drones 2021, 5, x FOR PEER REVIEW 13 of 20 
 

remote sensing techniques. The general trend of the NDVI values is remarkably similar for both 
techniques, and the correlation coefficients are generally strong. 

The ANOVA model (Tables A5 and A6 in Appendix A), that is used to compare the 
NDVI index means of the Sentinel-2 and UAV multispectral data, indicated statistical 
significance only between the NDVI mean of polygon C (P value of the ANOVA lower 
than 0.05) and no statistical significance for the rest of the polygons (P values of the 
ANOVA tests higher than 0.05). This is probably due to the high spatial variability of the 
area corresponding to polygon C, as shown by its higher coefficient of variability (CV) 
(Table A5 in Appendix A). This is also confirmed by the optical visualization of the NDVI 
means for both techniques, shown in the boxplots of Figure 9. The boxplots show that the 
NDVI means of the data, acquired by Sequoia camera, are higher compared to those 
acquired by Sentinel-2 for polygon C and slightly higher for polygons A, B and D (even 
without statistical significance). In addition, the range of the NDVI values (max, min, 
mean, standard deviation, coefficient of variability) is larger for the data collected by the 
UAV compared to those collected from Sentinel-2. This is due to the higher spatial 
resolution of the UAV that enables the more accurate identification of the vegetative 
alteration (higher index values). 

 
Figure 9. Boxplots of the NDVI mean values for the four selected polygons (A, B, C, D, location in Figure 1). The boxplots 
show that the NDVI means of the data, acquired by Sequoia camera, are higher compared to those acquired by Sentinel-2 
for polygon C and slightly higher for polygons A, B and D. 

3.3. 2D Visualization of the Sentinel-2 and UAV Multispectral Data 
The 2D visual comparison of the two remote sensing techniques (Sentinel-2 and 

UAV) is facilitated by the false colored display of the data of the first sensing date for 
polygon B (location in Figure 1) in scale 1:1000 using QGIS software (Figure 10a,b). The 
high density of vegetation on the left side of polygon B and the gradual decrease in 
vegetation from left to right are visible in both images (Figure 10a,b). Moreover, the higher 
resolution of sequoia camera (Figure 10b) enables the detection of the lower density parts 

Figure 9. Boxplots of the NDVI mean values for the four selected polygons (A, B, C, D, location in Figure 1). The boxplots
show that the NDVI means of the data, acquired by Sequoia camera, are higher compared to those acquired by Sentinel-2
for polygon C and slightly higher for polygons A, B and D.

3.3. 2D Visualization of the Sentinel-2 and UAV Multispectral Data

The 2D visual comparison of the two remote sensing techniques (Sentinel-2 and UAV)
is facilitated by the false colored display of the data of the first sensing date for polygon B
(location in Figure 1) in scale 1:1000 using QGIS software (Figure 10a,b). The high density
of vegetation on the left side of polygon B and the gradual decrease in vegetation from left
to right are visible in both images (Figure 10a,b). Moreover, the higher resolution of sequoia
camera (Figure 10b) enables the detection of the lower density parts even on the left side
of polygon B, or the identification of barren parts on the ground. In other words, sequoia
camera visualizes more effectively how dense is the vegetation making available a more
detailed escalation of the vegetation density (Figure 10b). The ability of the multispectral
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camera of the UAV to be more analytic and effective compared to the satellite’s sensor
is evident.
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Figure 10. A 2D visualization of area B (location in Figure 1, N′ 41,148617296, S′ 41,14802918, E′ 23,282459357, W′

23,287826001) of the first observation (8 June 2018–12 June 2018) based on (a) Sentinel-2 data and (b) UAV multispectral
data in scale 1:1000 and in color scale RdYlGr. The ability of the multispectral camera of the UAV to be more analytic and
effective compared to the satellite’s sensor is evident.

3.4. The Use of Sentinel-2 and UAV Multispectral Data in Precision Agriculture

It is evident in this research, supported by similar works [50–58], that both Sentinel-2
and UAV techniques sufficiently manage to image the overall state (health, alteration) of the
existing vegetation, as well as the vegetative stages (increase, stabilization, decrease) during
the season (Figures 5–9). However, the multispectral sensor of the UAV can provide more
details about the density of the vegetation due to its higher spatial resolution (Figure 10).

The spatial extent of the study area is a very important factor associated with the
efficient use of the two techniques. For example, Sequoia camera in this research has a clear
advantage over the satellite sensor when it is used to provide information for a specific
point or a small area on the ground. Thus, this advantage gradually reduces as the spatial
extent of the study area increases (Figure 9). This is because the NDVI mean value is
affected by higher values when the spatial extent of the study area increases.

Furthermore, important parameters that can impact the decision to select one of the
two monitoring techniques are the cost, the aim of the monitoring and the requirements
of the area to be imaged. The cost of the UAV imagery includes the purchase cost of the
vehicle equipped with the multispectral camera, the purchase cost of the software for aerial
imagery processing, and the expenditures for the pilot’s license. Nevertheless, all these
costs constantly decrease over years. In addition, the physical presence of the UAV user
in the field implies extra time and cost, as well as limitations related to the extent of the
study area. However, the physical presence of the UAV user is valuable since there is access
to specific data for each site in the field, such as slopes, weeds, plant population, etc. To
the opposite, the use of Sentinel-2 data is easier and cheaper for the study of vegetation’s
general characteristics in extensive areas and without the physical presence of staff.

Considering previous works [50–58] and the present one, we report the following:

• The use of Sentinel-2 platform is proved effective to describe the vegetation and the
vigority of the plants presenting a quite similar behavior to the UAVs’ data regarding
the NDVI trend.
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• Sentinel-2 imagery does not always manage to detect localized conditions, especially
in areas showing high heterogeneity due to abiotic or biotic stress. In such cases, the
use of UAV is necessary.

In summary, we recommend the combined use of both remote sensing techniques
being the optimum solution in precision agriculture. This is because Sentinel-2 provides
the cost-effective information regarding the general characteristics of the vegetation, while
UAVs data are more analytic in case of localized operations, such as fertilization and
phytosanitary applications.

4. Conclusions

In this study, imagery of the sentinel-2 satellite is compared with imagery of an UAV
equipped with multispectral camera, aiming to evaluate both techniques based on the
NDVI index.

The statistical comparison between Sentinel-2 and UAV imagery shows that:

• The trend of the average NDVI is almost identical for both remote sensing techniques.
• There is a strong correlation of the NDVI index between the two techniques.
• Four out of five observations indicated statistical significance for the mean values of

the NDVI index for the fifteen points, with the UAV multispectral data to present the
higher ones. Considering the polygons, one polygon from the four showed statistical
significance of the NDVI mean between the techniques.

• The range of the NDVI values (max, min) is larger and the coefficient of variability
(CV) is higher for the UAV multispectral data compared to Sentinel-2 data due to the
higher spatial resolution of the UAV’s sensor.

• The multispectral camera of the UAV is recommended for localized operations because
it is more analytic and effective compared to the satellite’s sensor.

In conclusion, both UAV and Sentinel-2 platforms provide important information for
the vegetation cover of the Earth’s surface, and they are important tools for the precision
agriculture system. The choice of the most appropriate technology (UAV or satellite)
depends on the use and the aim of the data collection, as they have different spatial analysis,
cost, and requirements. Satellite imagery is a valuable tool when we need information for
areas of large extent to further select and focus on specific fields of interest, according to the
requirements of our survey. Nevertheless, UAV technique is a better choice when detailed
information for the study area is required.
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Appendix A

Table A1. Coordinates of the points used in the analysis of the present study, as calculated by the
Field Calculator tool of QGIS.

Points Latitude Longitude

1 41.16315733422939 23.284849229390677

2 41.16000865143369 23.291834238351253

3 41.15581040770609 23.28879413082437

4 41.156606626344086 23.298964014336914

5 41.148354905913976 23.287961720430104

6 41.15262553315412 23.295489605734765

7 41.153132217741934 23.305912831541217

8 41.14770345430107 23.294440044802865

9 41.14991115143369 23.30312606630824

10 41.14285375896058 23.295200071684587

11 41.14488049731183 23.302402231182793

12 41.14839109767025 23.309785349462363

13 41.138981241039424 23.29918116487455

14 41.142564224910394 23.30837387096774

15 41.141695622759855 23.317168467741933

Table A2. Coordinates of polygons used in the analysis of the present study, as calculated by the
Layer Properties tool of QGIS.

Coordinates

Polygon North South East West

A 41.158072392 41.157619996 23.293670970 23.293200477

B 41.148617296 41.148029180 23.282459357 23.287826001

C 41.145260511 41.144618107 23.298412090 23.297670159

D 41.145423374 41.144563819 23.304519449 23.303677991

Table A3. Statistical analysis of the selected 15 points of the five sensing dates for both Sentinel-2
and UAV multispectral data.

Descriptive Statisticssentinel_1; Sequoia_1; Sentinel_2; . . . _5; Sequoia_5

Variable Mean SE Mean Standard
Deviation Minimum Median Maximum

sentinel_1 0.465 0.0537 0.2079 0.2465 0.3902 0.7286

sequoia_1 0.6336 0.0716 0.2773 0.2064 0.5482 0.9417

sentinel_2 0.7052 0.0424 0.1642 0.2287 0.7195 0.8429

sequoia_2 0.8053 0.0395 0.1529 0.3389 0.8571 0.9114

sentinel_3 0.7863 0.039 0.151 0.3817 0.8342 0.8789

sequoia_3 0.8207 0.0412 0.1597 0.3489 0.8768 0.9107

sentinel_4 0.6004 0.0653 0.2531 0.1958 0.7841 0.8472

sequoia_4 0.6567 0.0704 0.2726 0.1939 0.8315 0.8951

sentinel_5 0.3888 0.044 0.1704 0.1362 0.3984 0.7601

sequoia_5 0.3766 0.0343 0.1327 0.1677 0.4279 0.6115
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Table A4. Paired-t test of average NDVI values for the fifteen points in five sensing dates.

Observation
Descriptive Statistics

Estimation for Paired Difference Test

µ_Difference: Mean of (Sentinel-2–Sequoia)

Null Hypothesis
H0: µ_Difference = 0

Alternative Hypothesis
H1: µ_Difference 6= 0

Sample N Mean StDev SE Mean Mean StDev SE Mean
95% CI for

µ_Difference T-Value p-Value

8 June 2018–12
June 2018

sentinel-2 15 0.465 0.2079 0.0537
−0.1686 0.1214 0.0314 (−0.2358; −0.1013) −5.38 0.000

sequoia 15 0.6336 0.2773 0.0716

3 July 2018–
6 July 2018

sentinel-2 15 0.7052 0.1642 0.0424
−0.1001 0.0431 0.0111 (−0.1240; −0.0763) −9 0.000

sequoia 15 0.8053 0.1529 0.0395

27 July 2018–28
July 2018

sentinel-2 15 0.7863 0.151 0.039
−0.0344 0.03843 0.00992 (−0.05567; −0.01311) −3.47 0.004

sequoia 15 0.8207 0.1597 0.0412

31 August 2018–1
September 2018

sentinel-2 15 0.6004 0.2531 0.0653
−0.0563 0.0455 0.0118 (−0.0816; −0.0311) −4.79 0.000

sequoia 15 0.6567 0.2726 0.0704

1 October 2018–3
October 2018

sentinel-2 15 0.3888 0.1704 0.044
0.0122 0.0523 0.0135 (−0.0168; 0.0411) 0.9 0.382

sequoia 15 0.3766 0.1327 0.0343

Table A5. Statistical analysis of the selected areas (polygons A, B, C, D) for satellite and aerial imagery, as computed by QGIS. STDDEV is for standard deviation and CV for coefficient
of variability.

Area Platform Sensing Date MAX MEAN MIN STDDEV CV

A

Sentinel-2 8 June 2018–12 June 2018 0.424764931 0.409668865 0.398896009 0.00590227 1.44%

Sentinel-2 3 July 2018–6 July 2018 0.842377245 0.838002589 0.83181119 0.002107325 0.25%

Sentinel-2 27 July 2018–28 July 2018 0.862135291 0.851049562 0.828952312 0.009149611 1.08%

Sentinel-2 31 August 2018–1 September 2018 0.703845322 0.690205042 0.657489479 0.009797661 1.42%

Sentinel-2 1 October 2018–3 October 2018 0.466080695 0.451860976 0.419669837 0.011385355 2.52%

Sequoia 8 June 2018–12 June 2018 0.739971459 0.386712345 0.267078608 0.039826689 10.30%
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Table A5. Cont.

Area Platform Sensing Date MAX MEAN MIN STDDEV CV

Sequoia 3 July 2018–6 July 2018 0.918028831 0.896014414 0.840995193 0.008689196 0.97%

Sequoia 27 July 2018–28 July 2018 0.920731068 0.888997866 0.685243845 0.019670044 2.21%

Sequoia 31 August 2018–1 September 2018 0.856916368 0.712623024 0.432811826 0.062304516 8.74%

Sequoia 1 October 2018–3 October 2018 0.776085019 0.579790769 0.353510261 0.065478958 11.29%

B

Sentinel-2 8 June 2018–12 June 2018 0.72285974 0.707651934 0.6915797 0.008361191 1.18%

Sentinel-2 3 July 2018–6 July 2018 0.840008736 0.833387507 0.822145224 0.00401236 0.48%

Sentinel-2 27 July 2018–28 July 2018 0.843239069 0.827542223 0.805931032 0.007401045 0.89%

Sentinel-2 31 August 2018–1 September 2018 0.426836431 0.38117364 0.349979818 0.017986821 4.72%

Sentinel-2 1 October 2018–3 October 2018 0.292903215 0.24251502 0.214875594 0.018805529 7.75%

Sequoia 8 June 2018–12 June 2018 0.957545161 0.929184155 0.725212157 0.01313116 1.41%

Sequoia 3 July 2018–6 July 2018 0.931631625 0.898681251 0.770359695 0.011027217 1.23%

Sequoia 27 July 2018–28 July 2018 0.927700162 0.882190463 0.694832087 0.017135325 1.94%

Sequoia 31 August 2018–1 September 2018 0.731545687 0.445202932 0.280894756 0.045929647 10.32%

Sequoia 1 October 2018–3 October 2018 0.607119501 0.262282414 0.174537793 0.043217779 16.48%

C

Sentinel-2 8 June 2018–12 June 2018 0.206350893 0.184016948 0.163822144 0.009934681 5.40%

Sentinel-2 3 July 2018–6 July 2018 0.579889655 0.377094243 0.176204428 0.095115443 25.22%

Sentinel-2 27 July 2018–28 July 2018 0.772020161 0.585997589 0.290901035 0.096564769 16.48%

Sentinel-2 31 August 2018–1 September 2018 0.492080986 0.41989237 0.315348059 0.049551697 11.80%

Sentinel-2 1 October 2018–3 October 2018 0.591126442 0.379471433 0.214191154 0.121058057 31.90%

Sequoia 8 June 2018–12 June 2018 0.802700639 0.185702369 0.121396981 0.056253917 30.29%

Sequoia 3 July 2018–6 July 2018 0.89239186 0.455740255 0.101822048 0.236436583 51.88%

Sequoia 27 July 2018–28 July 2018 0.902240813 0.694348733 0.130899876 0.191690991 27.61%

Sequoia 31 August 2018–1 September 2018 0.868877113 0.539666935 0.16559723 0.140022944 25.95%

Sequoia 1 October 2018–3 October 2018 0.85949403 0.472400034 0.164854422 0.180505956 38.21%
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Table A5. Cont.

Area Platform Sensing Date MAX MEAN MIN STDDEV CV

D

Sentinel-2 8 June 2018–12 June 2018 0.290092528 0.270967551 0.248297825 0.010585632 3.91%

Sentinel-2 3 July 2018–6 July 2018 0.602515101 0.515073871 0.366025954 0.065445929 12.71%

Sentinel-2 27 July 2018–28 July 2018 0.869380832 0.835450653 0.770878434 0.026236285 3.14%

Sentinel-2 31 August 2018–1 September 2018 0.856839776 0.840226661 0.822994411 0.006889503 0.82%

Sentinel-2 1 October 2018–3 October 2018 0.72909236 0.596489981 0.524814963 0.055854803 9.36%

Sequoia 8 June 2018–12 June 2018 0.73825258 0.342425083 0.18140173 0.099854429 29.16%

Sequoia 3 July 2018–6 July 2018 0.903458595 0.691964177 0.192108214 0.150160703 21.70%

Sequoia 27 July 2018–28 July 2018 0.9346416 0.890634058 0.378713846 0.042593657 4.78%

Sequoia 31 August 2018–1 September 2018 0.927322805 0.883830221 0.603708208 0.013481126 1.53%

Sequoia 1 October 2018–3 October 2018 0.81042999 0.602571672 0.282279491 0.084460655 14.02%

Table A6. ANOVA for the NDVI means of the selected areas (polygons A, B, C, D) in five sensing dates (from left to right).

ANOVA: NDVI_MEAN versus Sensing Platforms; Observations

Areas
Factor Information Analysis of Variance for NDVI_MEAN_Areas Model Summary

Factor Type Levels Values Source DF SS MS F P S R-sq R-sq(adj)

A

Sensing Platforms Fixed 2 Sentinel-2; Sequoia Sensing Platform 1 0.00499 0.00499 3.26 0.145 0.0390 0.983 0.962

Observations Fixed 5 1,2,3,4,5 Observations 4 0.35492 0.08873 58.07 0.001

Error 4 0.00611 0.00153

Total 9 0.36602

B

Sensing Platforms Fixed 2 Sentinel-2; Sequoia Sensing Platform 1 0.01809 0.01809 5.87 0.073 0.0555 0.982 0.959

Observations Fixed 5 1,2,3,4,5 Observations 4 0.66153 0.16538 53.68 0.001

Error 4 0.01232 0.00308

Total 9 0.69194
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Table A6. Cont.

ANOVA: NDVI_MEAN versus Sensing Platforms; Observations

Areas
Factor Information Analysis of Variance for NDVI_MEAN_Areas Model Summary

Factor Type Levels Values Source DF SS MS F P S R-sq R-sq(adj)

C

Sensing Platforms Fixed 2 Sentinel-2; Sequoia Sensing Platform 1 0.01611 0.01611 14.84 0.018 0.0329 0.981 0.958

Observations Fixed 5 1,2,3,4,5 Observations 4 0.21389 0.05347 49.24 0.001

Error 4 0.00434 0.00109

Total 9 0.23434

D

Sensing Platforms Fixed 2 Sentinel-2; Sequoia Sensing Platform 1 0.01248 001248 6.08 0.069 0.0453 0.981 0.958

Observations Fixed 5 1,2,3,4,5 Observations 4 0.42572 0.10643 51.83 0.001

Error 4 0.00821 0.00205

Total 9 0.44641



Drones 2021, 5, 35 20 of 22

References
1. Pinter, P.J.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.T.; Upchurch, D.R. Remote Sensing for Crop

Management. Photogramm. Eng. Remote Sens. 2003, 69, 647–664. [CrossRef]
2. Gomarasca, M.A. Basics of Geomatics, 1st ed.; Springer: Dordrecht, The Netherlands, 2009. [CrossRef]
3. Ravelo, A.C.; Abril, E.G. Remote Sensing. In Applied Agrometeorology; Stigter, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2010;

pp. 1013–1024. [CrossRef]
4. Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation Principles, Techniques, and Applications; Oxford University Press: Oxford,

UK, 2010; ISBN 9780199207794.
5. Kingra, P.K.; Majumder, D.; Singh, S.P. Application of Remote Sensing and GIS in Agriculture and Natural Resource Management

Under Changing Climatic Conditions. Agric. Res. J. 2016, 53, 295–302. [CrossRef]
6. Mani, J.K.; Varghese, A.O. Remote Sensing and GIS in Agriculture and Forest Resource Monitoring. In Geospatial Technologies

in Land Resources Mapping, Monitoring and Management, Geotechnologies and the Environment, 1st ed.; Reddy, G., Singh, S., Eds.;
Springer International Publishing: Cham, Switzerland, 2018; Volume 21, pp. 377–400. [CrossRef]

7. Shanmugapriya, P.; Rathika, S.; Ramesh, T.; Janaki, P. Applications of Remote Sensing in Agriculture—A Review. Int. J. Curr.
Microbiol. App. Sci. 2019, 8, 2270–2283. [CrossRef]

8. Strickland, R.M.; Ess, D.R.; Parsons, S.D. Precision Farming and Precision Pest Management: The Power of New Crop Production
Technologies. J. Nematol. 1998, 30, 431–435.

9. Singh, A.K. Precision Farming; I.A.R.I.: New Delhi, India, 2001.
10. Robert, P.C. Precision agriculture: A challenge for crop nutrition management. Plant Soil 2002, 247, 143–149. [CrossRef]
11. Zhang, M.; Li, M.Z.; Liu, G.; Wang, M.H. Yield Mapping in Precision Farming. In Computer and Computing Technologies in

Agriculture, Volume II. CCTA 2007. The International Federation for Information Processing; Li, D., Ed.; Springer: Boston, MA, USA,
2007; Volume 259, pp. 1407–1410. [CrossRef]

12. Goswami, S.B.; Matin, S.; Saxena, A.; Bairagi, G.D. A Review: The application of Remote Sensing, GIS and GPS in Precision
Agriculture. Int. J. Adv. Technol. Eng. Res. 2012, 2, 50–54.

13. Heege, H.J.; Thiessen, E. Sensing of Crop Properties. In Precision in Crop Farming: Site Specific Concepts and Sensing Methods:
Applications and Results; Heege, H., Ed.; Springer Science + Business Media: Dordrecht, The Nenderlands, 2013; pp. 103–141.
[CrossRef]

14. Zude-Sasse, M.; Fountas, S.; Gemtos, T.A.; Abu-Khalaf, N. Applications of precision agriculture in horticultural crops. Eur. J.
Hortic. Sci. 2016, 81, 78–90. [CrossRef]

15. Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; van der Wal, T.; Soto, I.; Gomez-Barbero, M.; Barnes, A.; Eory, V. Precision
Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics. Sustainability
2017, 9, 1339. [CrossRef]

16. Paustian, M.; Theuvsen, L. Adoption of precision agriculture technologies by German crop farmers. Precis. Agric. 2017, 18,
701–716. [CrossRef]

17. Pallottino, F.; Biocca, M.; Nardi, P.; Figorilli, S.; Menesatti, P.; Costa, C. Science mapping approach to analyse the research
evolution on precision agriculture: World, EU and Italian situation. Precis. Agric. 2018, 19, 1011–1026. [CrossRef]

18. Fulton, J.; Hawkins, E.; Taylor, R.; Franzen, A. Yield Monitoring and Mapping. In Precision Agriculture Basics; Shannon, D.K., Clay,
D.E., Kitchen, N.R., Eds.; ASA, CSSA, SSSA: Madison, WI, USA, 2018; pp. 63–77. [CrossRef]

19. Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From
Considerations to Applications. Sensors 2019, 19, 3796. [CrossRef] [PubMed]

20. Nandibewoor, A.; Hebbal, S.B.; Hegadi, R. Remote Monitoring of Maize Crop through Satellite Multispectral Imagery. Procedia
Comput. Sci. 2015, 45, 344–353. [CrossRef]

21. Escola, A.; Badia, N.; Arno, J.; Martinez-Casanovas, J.A. Using Sentinel-2 images to implement Precision Agriculture techniques
in large arable fields: First results of a case study. Adv. Anim. Biosci. 2017, 8, 377–382. [CrossRef]

22. Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping
analysis. Remote Sens. Environ. 2018, 204, 509–523. [CrossRef]

23. Ahmad, L.; Mahdi, S.S. Satellite Farming; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-030-03448-1.
[CrossRef]

24. Rapinel, S.; Mony, C.; Lecoq, L.; Clément, B.; Thomas, A.; Hubert-Moy, L. Evaluation of Sentinel-2 time-series for mapping
floodplain grassland plant communities. Remote Sens. Environ. 2019, 223, 115–129. [CrossRef]

25. Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012,
13, 693–712. [CrossRef]

26. Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11,
138–146. [CrossRef]

27. Csillik, O.; Cherbini, J.; Johnson, R.; Lyons, A.; Kelly, M. Identification of Citrus Trees from Unmanned Aerial Vehicle Imagery
Using Convolutional Neural Networks. Drones 2018, 2, 39. [CrossRef]

28. Barbedo, J.G. A Review on the Use of Unmanned Aerial Vehicles and Imaging Sensors for Monitoring and Assessing Plant
Stresses. Drones 2019, 3, 40. [CrossRef]

http://doi.org/10.14358/PERS.69.6.647
http://doi.org/10.1007/978-1-4020-9014-1
http://doi.org/10.1007/978-3-540-74698-0_119
http://doi.org/10.5958/2395-146X.2016.00058.2
http://doi.org/10.1007/978-3-319-78711-4_19
http://doi.org/10.20546/ijcmas.2019.801.238
http://doi.org/10.1023/A:1021171514148
http://doi.org/10.1007/978-0-387-77253-0_89
http://doi.org/10.1007/978-94-007-6760-7_6
http://doi.org/10.17660/eJHS.2016/81.2.2
http://doi.org/10.3390/su9081339
http://doi.org/10.1007/s11119-016-9482-5
http://doi.org/10.1007/s11119-018-9569-2
http://doi.org/10.2134/precisionagbasics.2016.0089
http://doi.org/10.3390/s19173796
http://www.ncbi.nlm.nih.gov/pubmed/31480709
http://doi.org/10.1016/j.procs.2015.03.158
http://doi.org/10.1017/S2040470017000784
http://doi.org/10.1016/j.rse.2017.10.005
http://doi.org/10.1007/978-3-030-03448-1
http://doi.org/10.1016/j.rse.2019.01.018
http://doi.org/10.1007/s11119-012-9274-5
http://doi.org/10.1890/120150
http://doi.org/10.3390/drones2040039
http://doi.org/10.3390/drones3020040


Drones 2021, 5, 35 21 of 22

29. Mesas-Carrascosa, F.J.; Notario-Garcia, M.D.; de Larriva, J.E.M.; de la Orden, M.S.; Garcia-Ferrer Porras, A. Validation of
measurements of land plot area using UAV imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 270–279. [CrossRef]

30. Rokhmana, C.A. The potential of UAV-based remote sensing for supporting precision agriculture in Indonesia. Procedia Environ.
Sci. 2015, 24, 245–253. [CrossRef]

31. Yun, G.; Mazur, M.; Pederii, Y. Role of Unmanned Aerial Vehicles in Precision Farming. Proc. Natl. Aviat. Univ. 2017, 10, 106–112.
[CrossRef]

32. Manfreda, S.; McCabe, M.E.; Miller, P.E.; Lucas, R.; Madrigal, V.P.; Mallinis, G.; Dor, E.B.; Helman, D.; Estes, L.; Ciraolo, G.; et al.
On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [CrossRef]

33. Maes, W.H.; Steppe, K. Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends Plant.
Sci. 2019, 24, 152–164. [CrossRef]

34. Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture.
Comput. Netw. 2020, 172, 107148. [CrossRef]

35. Ozdarici-Ok, A. Automatic detection and delineation of citrus trees from VHR satellite imagery. Int. J. Remote Sens. 2015, 36,
4275–4296. [CrossRef]

36. Pérez-Ortiz, M.; Peña, J.M.; Gutiérrez, P.A.; Torres-Sánchez, J.; Hervás-Martínez, C.; López-Granados, F. A semi-supervised
system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method. Appl. Soft.
Comput. 2015, 37, 533–544. [CrossRef]

37. Torres-Sánchez, J.; López-Granados, F.; Peña, J.M. An automatic object-based method for optimal thresholding in UAV images
Application for vegetation detection in herbaceous crops. Comput. Electron. Agric. 2015, 114, 43–52. [CrossRef]

38. Panagiotakis, C.; Kokinou, E. Unsupervised Detection of Topographic Highs with Arbitrary Basal Shapes Based on Volume
Evolution of Isocontours. Comput. Geosci. 2017, 102, 22–33. [CrossRef]

39. De Castro, A.I.; Torres-Sánchez, J.; Peña, J.M.; Jiménez-Brenes, F.M.; Csillik, O.; López-Granados, F. An automatic random
forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery. Remote Sens. 2018, 10, 285.
[CrossRef]

40. Georgi, C.; Spengler, D.; Itzerott, S.; Kleinschmit, B. Automatic delineation algorithm for site-specific management zones based
on satellite remote sensing data. Precis. Agric. 2018, 19, 684–707. [CrossRef]

41. Louargant, M.; Jones, G.; Faroux, R.; Paoli, J.-N.; Maillot, T.; Gée, C.; Villette, S. Unsupervised classification algorithm for early
weed detection in row-crops by combining spatial and spectral information. Remote Sens. 2018, 10, 761. [CrossRef]

42. Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrowband vegetation indices for prediction
of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [CrossRef]

43. Tarnavsky, E.; Garrigues, S.; Brown, M.E. Multiscale geostatistical analysis of AVHRR, SPOT-VGT, and MODIS global NDVI
products. Remote Sens. Environ. 2008, 112, 535–549. [CrossRef]

44. Anderson, J.H.; Weber, K.T.; Gokhale, B.; Chen, F. Intercalibration and Evaluation of ResourceSat-1 and Landsat-5 NDVI. Can. J.
Remote Sens. 2011, 37, 213–219. [CrossRef]

45. Simms, É.L.; Ward, H. Multisensor NDVI-Based Monitoring of the Tundra-Taiga Interface (Mealy Mountains, Labrador, Canada).
Remote Sens. 2013, 5, 1066–1090. [CrossRef]

46. Houborg, R.; McCabe, M.F. High-Resolution NDVI from planet’s constellation of earth observing nano-satellites: A new data
source for precision agriculture. Remote Sens. 2016, 8, 768. [CrossRef]

47. Fawcett, D.; Panigada, C.; Tagliabue, G.; Boschetti, M.; Celesti, M.; Evdokimov, A.; Biriukova, K.; Colombo, R.; Miglietta, F.;
Rascher, U.; et al. Multi-Scale Evaluation of Drone-Based Multispectral Surface Reflectance and Vegetation Indices in Operational
Conditions. Remote Sens. 2020, 12, 514. [CrossRef]

48. European Space Agency. Sentinel-2 User Handbook; European Space Agency: Paris, France, 2015; pp. 53–54.
49. Fletcher, K. Sentinel-2. ESA’s Optical High-Resolution Mission for GMES Operational Services; ESA Communications: Noordwijk, The

Netherlands, 2012; ISBN 978-92-9221-419-7.
50. Ünsalan, C.; Boyer, K.L. (Eds.) Remote Sensing Satellites and Airborne Sensors. In Multispectral Satellite Image Understanding.

Advances in Computer Vision and Pattern Recognition; Springer: London, UK, 2011; pp. 7–15. [CrossRef]
51. Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B.

Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens. 2015, 7, 2971–2990.
[CrossRef]

52. McCabe, M.F.; Houborg, R.; Lucieer, A. High-resolution sensing for precision agriculture: From Earth-observing satellites to
unmanned aerial vehicles. Remote Sens. Agric. Ecosyst. Hydrol. XVIII 2016, 9998, 999811.

53. Benincasa, P.; Antognelli, S.; Brunetti, L.; Fabbri, C.A.; Natale, A.; Sartoretti, V.; Modeo, G.; Guiducci, M.; Tei, F.; Vizzari, M.
Reliability of Ndvi Derived by High Resolution Satellite and Uav Compared To in-Field Methods for the Evaluation of Early
Crop N Status and Grain Yield in Wheat. Exp. Agric. 2017, 54, 1–19. [CrossRef]

54. Borgogno-Mondino, E.; Lessio, A.; Tarricone, L.; Novello, V.; de Palma, L. A comparison between multispectral aerial and satellite
imagery in precision viticulture. Precis. Agric. 2018, 19, 195. [CrossRef]

55. Malacarne, D.; Pappalardo, S.E.; Codato, D. Sentinel-2 Data Analysis and Comparison with UAV Multispectral Images for
Precision Viticulture. GI Forum 2018, 105–116.

http://doi.org/10.1016/j.jag.2014.06.009
http://doi.org/10.1016/j.proenv.2015.03.032
http://doi.org/10.18372/2306-1472.70.11430
http://doi.org/10.3390/rs10040641
http://doi.org/10.1016/j.tplants.2018.11.007
http://doi.org/10.1016/j.comnet.2020.107148
http://doi.org/10.1080/01431161.2015.1079663
http://doi.org/10.1016/j.asoc.2015.08.027
http://doi.org/10.1016/j.compag.2015.03.019
http://doi.org/10.1016/j.cageo.2017.02.004
http://doi.org/10.3390/rs10020285
http://doi.org/10.1007/s11119-017-9549-y
http://doi.org/10.3390/rs10050761
http://doi.org/10.1016/S0034-4257(02)00018-4
http://doi.org/10.1016/j.rse.2007.05.008
http://doi.org/10.5589/m11-032
http://doi.org/10.3390/rs5031066
http://doi.org/10.3390/rs8090768
http://doi.org/10.3390/rs12030514
http://doi.org/10.1007/978-0-85729-667-2_2
http://doi.org/10.3390/rs70302971
http://doi.org/10.1017/S0014479717000278
http://doi.org/10.1007/s11119-017-9510-0


Drones 2021, 5, 35 22 of 22

56. Khaliq, A.; Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Chiaberge, M.; Gay, P. Comparison of Satellite and UAV-Based
Multispectral Imagery for Vineyard Variability Assessment. Remote Sens. 2019, 11, 436. [CrossRef]

57. Pla, M.; Bota, G.; Duane, A.; Balagué, J.; Curcó, A.; Gutiérrez, R.; Brotons, L. Calibrating Sentinel-2 Imagery with Multispectral
UAV Derived Information to Quantify Damages in Mediterranean Rice Crops Caused by Western Swamphen (Porphyrio porphyrio).
Drones 2019, 3, 45. [CrossRef]

58. Messina, G.; Peña, J.M.; Vizzari, M.; Modica, G. A Comparison of UAV and Satellites Multispectral Imagery in Monitoring Onion
Crop. An Application in the ’Cipolla Rossa di Tropea’ (Italy). Remote Sens. 2020, 12, 3424. [CrossRef]

http://doi.org/10.3390/rs11040436
http://doi.org/10.3390/drones3020045
http://doi.org/10.3390/rs12203424

	Introduction 
	Materials and Methods 
	Study Area 
	Material and Methods 

	Results and Discussion 
	Distribution of the NDVI Values of Single Points 
	Distribution of the NDVI for the Selected Polygons (A, B, C, D) 
	2D Visualization of the Sentinel-2 and UAV Multispectral Data 
	The Use of Sentinel-2 and UAV Multispectral Data in Precision Agriculture 

	Conclusions 
	
	References

