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Abstract: Multirotor UAVs have become ubiquitous in commercial and public use. As they become
more affordable and more available, the associated security risks further increase, especially in
relation to airspace breaches and the danger of drone-to-aircraft collisions. Thus, robust systems must
be set in place to detect and deal with hostile drones. This paper investigates the use of deep learning
methods to detect UAVs using acoustic signals. Deep neural network models are trained with mel-
spectrograms as inputs. In this case, Convolutional Neural Networks (CNNs) are shown to be the
better performing network, compared with Recurrent Neural Networks (RNNs) and Convolutional
Recurrent Neural Networks (CRNNs). Furthermore, late fusion methods have been evaluated using
an ensemble of deep neural networks, where the weighted soft voting mechanism has achieved the
highest average accuracy of 94.7%, which has outperformed the solo models. In future work, the
developed late fusion technique could be utilized with radar and visual methods to further improve
the UAV detection performance.

Keywords: acoustic detection; Unmanned Aerial Vehicle; Convolutional Neural Network; late fusion

1. Introduction

Multirotor Unmanned Aerial Vehicles (UAVs) are a type of UAV propelled by more
than one rotor. In this paper, the terms UAV and drone will be used interchangeably to refer
to multirotor UAVs. While UAVs’ initial use was limited to the military sector [1], private
owners and companies are presently utilizing them in a growing number of applications
such as art, cinematography, documentary productions and deliveries. Additionally,
governments are increasing drone use for public health and safety purposes, such as
supporting firefighters, ambulance services and search-and-rescue operations [2]. The lists
continue to expand as UAV technology advances, improving their performance while
reducing their price. However, this widespread use of drones has drawn significant
attention to the security risks, especially those associated with airspace breaches and
drone-to-aircraft collisions.

In 2018, researchers at the University of Dayton Research Institute studied the effect
of a drone striking a plane’s wing during flight. They discovered that the UAV could
fully penetrate the wing’s leading edge and could cause catastrophic damage at higher
speeds [3]. Germany has warned of a recent increase in drone interference, after reporting
92 drone-related incidents in their airspace during 2020, with one third of the cases resulting
in air traffic being severely disrupted [4]. Even with reduced air traffic due to the pandemic,
drone related disruptions continue to rise. Unwelcome UAV activity has proven to be
severely costly and dangerous, and methods for their identification must be implemented
and improved.

Hostile drone intrusions need to be detected as early as possible to ensure that coun-
termeasures can be taken to neutralize them. The four detection methods currently in use
are visual-, radar-, radio- and acoustic-based. With UAVs getting smaller and camouflag-
ing more with the surrounding environment (for example: DJI Mini 2 [5]), cameras can
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sometimes fail to identify their presence [6]. Radars also struggle to reflect signals from
small targets, and autonomous drones can bypass radio detection [7]. Thus, this project
focuses on the acoustic detection of multirotor UAVs, through the use of deep learning
methods, which can then be used together with the other detection techniques to improve
the rate of success in UAV identification.

Standard classification models through supervised learning have been established by
published research studying audio signals [6,8–12]. In this paper, the supervised learning
methodology focuses on the binary classification of UAV and background. Any mix of
sounds comprising drones is labelled as UAV, while all the other sounds are labelled
as background.

Most published research on acoustic drone identification has used raw audio formatted
in mono-channel, with a 16-bit resolution and a sampling frequency of 44.1 kHz [1,13,14].
There are a multitude of different pre-processing and feature extraction parameters to
choose from, such as which time-frequency features to extract, what audio clip length to
use, or if there should be overlap between clips [15–17]. Hence, a sensitivity study is needed
to obtain the optimum pre-processing and feature extraction parameters for acoustic UAV
detection. Additionally, there is a lack of publicly available datasets of drones in different
real-world environments. To counteract this, some studies have artificially augmented the
collected drone audio clips with other environmental sounds [1,15,16].

Features from the raw audio are extracted for model training with the aim to reduce
the dimensionality of the data, disregarding redundant information and simplifying the
training task [12]. For traditional machine learning, an extensive list of features must be
manually extracted and optimized to fine-tune the algorithm. If such features are not
optimal for the classification objective (e.g., drone detection), the performance of the model
will be limited. Hence, extracting features becomes an additional challenge, as there is no
guarantee that they are optimized for the classification objective [18]. Feature extraction
is less of a problem when working with deep learning models, which perform best with
features closer to the original audio signals, such as mel-spectrograms [19]. The neural
network layers can then extract important information from the more general features,
training themselves for the objective [20].

The state-of-the-art deep learning architectures used in audio classification models
include Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and
Convolutional Recurrent Neural Networks (CRNNs) [14–16,21]. CRNNs are an early fusion
of the two networks, where the RNN processes the output of the CNN [19]. Eklund [12]
states that the classification task and the type of data fed to the model may drive the
decision on which model architectures to use. In general, RNNs perform better in natural
language processing applications, whereas CNNs are best suited for image processing tasks.
This is because RNNs contain the memory elements for context on the previous inputs
of the time series [22], while CNNs possess the filtering property of the visual system for
processing images [23]. Since the features extracted from raw audios are stored in a graphic
format, CNNs should outperform RNNs, as confirmed by Al-Emadi et al. [15]. Despite
Jeon et al. [16] concluding the opposite, possibly due to a difference in the construction
of the models and their layers, both papers have confirmed the validity of utilizing deep
learning for acoustic drone detection.

This report aims to investigate which model architecture (CNN, CRNN or RNN) shows
the highest performance for the acoustic identification of UAVs, and then to introduce a
form of late fusion of a network ensemble for acoustically detecting drones. Inspired by the
conventional ensemble methods, such as random forest and AdaBoost [24], it is believed
that an ensemble of classification models would perform better than the solo models. To the
best of the authors knowledge, hard voting and weighted soft voting methods have not
been tested for the acoustic identification of drones, although similar forms of late fusion
networks have given promising results for other audio classification problems [21,25].
Therefore, the main contributions of this paper are as follows:
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• Reinforce the viability of utilizing deep neural networks for the detection of multirotor
UAVs with acoustic signals;

• Investigate which model architecture (CNN, CRNN, or RNN) performs the best for
acoustic UAV identification;

• Evaluate the performance of late fusion networks compared with solo models and
determine the most suitable voting mechanism in this study.

The remainder of this article is structured as follows: Section 2 discusses the method-
ology used for this project, detailing the data preparation, model training setup and model
constructions. Section 3 provides and discusses the experimental results, comparing the
performance of all the created models and detailing how the findings compare to previous
research. Section 4 summarizes the conclusions and recommends future work.

2. Methodology

The workflow diagram, as shown in Figure 1, illustrates the structure and methodol-
ogy used in this study.
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Figure 1. Workflow diagram from data preparation to model training and evaluation.

Python 3.8 was the programming language used for this project, and the packages
utilized include scikit-learn 0.23.2 [26], TensorFlow 2.4.1 [27] and librosa 0.8.0 [28]. Scikit-
learn was used for the preparation of the training data for model training, splitting the
dataset into training and validation subsets. TensorFlow was used to build and train
the deep neural networks. Librosa was used for the feature extraction from raw audio
to mel-spectrograms.

2.1. Data Preparation

All collected audio files were reformatted to mono-channel, with a 16-bit resolution
and a sampling frequency of 44.1 kHz. Table 1 provides a complete breakdown of the
composition and size of each dataset used in this study. Information for recreating these
acoustic datasets can be found in the Data Availability Statement.
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Table 1. Breakdown of the different datasets used and their sizes (in seconds). Background audios consist of planes,
helicopters, traffic, thunderstorms, wind and quiet settings.

Dataset Class Audio Time (s) Total Time (s)

Training
UAV

Multirotor UAV-1 3410

39,940
Multirotor UAV-1 + Background-1 16,560

No UAV
Background-1 16,560

Extra Background-2 3410

Unseen Augmented Testing
UAV

DJI Mini 2 drone + Background-3 12,810

51,240
RED5 drone + Background-3 12,810

No UAV
Background-3 12,810

Extra Background-4 12,810

Unseen Real-World Testing
UAV

DJI Mini 2 drone with a helicopter flying over 60

546DJI Mini 2 drone near a road 213

No UAV Same road 273

2.1.1. Training Audio Dataset

The training dataset used for this project was composed of different multirotor UAVs
and background audios taken from online sources. The drones used to generate the UAV
dataset are DJI Inspire 1, Mavic Air 2, Phantom 2, 3 and 4 Pro, the Parrot Bebop and Mambo,
plus a range of other custom-built multirotor UAV sounds. These different drone audios
were chosen because they can help the deep neural networks to train on the more general
features of UAVs. The aim was to prevent the model from overfitting to more specific
features (such as the specific frequency of a blade spinning in one particular drone model)
and, hence, struggle to detect the drones it has not been trained on.

The positive training dataset contains drone audio artificially mixed with background
audio, by adding the two signals together, enabling the model to deal with drones in
real-world environments.

The sounds of a hypothetical airport environment were used to create the background
training audios, because this is where the proposed model would operate. The most
dangerous zones for drone strikes are beyond airport limits, in the take-off and landing
zones. The location imagined for this project was an airport located near to a beach and
some roads, in a tropical environment, to train and test the models on a variety of different
sounds. The background sounds (Background-1, 2, 3 and 4) include planes, helicopters,
traffic, thunderstorms, wind and quiet settings. Background-3 also includes 330 s of
helicopter audio collected outside with an iPhone 12 Mini.

2.1.2. Unseen Audio Testing Datasets

To adequately evaluate the performance and generalization of a model, it is necessary
to use a dataset that contains audio that the model has never been trained on. In this study
this dataset is referred to as an unseen augmented testing dataset, and it is made up of a
positive set (UAV) and a negative set (no UAV, or background). The positive dataset was
composed of the audio from two drones (DJI Mini 2 and RED5 Eagle), recorded in a quiet
room that was not included in the training dataset. These audios were augmented with new
background sounds taken from online sources. To mimic the drone at differing distances
from the microphone, compared to the background audios, three levels of difficulty were
used in the testing dataset, where the decibel levels of the mixed audios were increased
or reduced accordingly. Follow the link in the Data Availability Statement for more
information on the testing data.

The negative unseen dataset is composed of the same background audios used for
the positive dataset, in addition to extra audio from each background scene to equalize the
number of positive and negative testing data (see Table 1). The audios were split up into
1 s lengths, with each second used as a test sample.
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A small real world testing set was also created to verify that the model is functional
in real environments (corresponding to Section 3.4). For the positive testing set, 213 s of
audio from a DJI Mini 2 hovering near a road were collected (Figure 2), plus 60 s with a
helicopter flying above. The negative testing set contains 273 s of the sounds near the same
road, without the drone.
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Figure 2. Real world testing data collection setup. Audio was recorded using an iPhone 11 Pro,
placed on the orange mat after the take-off of the DJI Mini 2 drone.

2.1.3. Audio Pre-Processing and Feature Extraction

Although the sampling rate of the raw audio is 44.1 kHz, the code for extracting the
features was set at 22.05 kHz to reduce the required data storage by half and avoid the
model training becoming significantly and unnecessarily more computationally demanding.
Preliminary tests showed no noticeable benefit in using a higher sampling rate, which
was to be expected, since the typical frequency range of a UAV lies under 1.5 kHz [29].
Additionally, Al-Emadi et al. [15] achieved high performance scores using a lower sampling
rate (16 kHz).

Through a sensitivity study, the optimal pre-processing parameters and features to
extract (for model training of acoustic UAV detection) were determined empirically as 1 s
segments of mel-spectrogram features, with 90 mel-frequency bins and no overlapping
segments. The number of FFT for the mel-spectrogram extractions is 2048. Figure 3 shows
the features extracted from the raw audio and fed to the deep learning models using these
optimal extraction parameters, illustrating the differences between the mel-spectrograms of
a UAV (Figure 3a), the background (Figure 3b) and the artificial mixing of the two (Figure 3c).

2.2. Model Training

The training dataset needed to be split into three subsets (training, validation 1 and
validation 2), before model training could commence. The split used for this project was
55% training, 20% validation 1 and 25% validation 2 (Figure 1), which is similar to that
which Sigtia et al. used [30].

For training, a learning rate of 0.0001 was used [31] with the TensorFlow Keras
optimizer, Adam. A small batch size of 16 was applied, because of previous published
work showing that small batch sizes of 32 or less can achieve the best training stability and
generalization performance [32]. This was also confirmed by preliminary experiments for
this project, where different batch sizes were tested, and the best results were obtained with
16. The cross-entropy loss (also referred to as loss here) is calculated using TensorFlow [33].
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An increase in loss would indicate a divergence in the predicted probability from the
actual label.
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Figure 3. Mel-spectrograms, used in the training dataset, of (a) 10 s Parrot Mambo drone audio;
(b) 10 s plane background audio; (c) 10 s Parrot Mambo drone (from (a)) artificially mixed with 10 s
plane background audio (from (b)).

Early stopping and model checkpoints were utilized to save the best model during
training, and to limit the chance of the model overfitting to the training dataset. The val-
idation 1 cross-entropy loss was used to adjust network weights and to monitor model
training (Figure 1).

Training aimed to minimize the loss by adjusting the model weights at the end of each
epoch, and the epoch model with the lowest validation 1 loss score was saved. If there was
no further reduction in the cross-entropy loss value after 10 consecutive epochs, training
stopped [15,16]. This is demonstrated by Figure 4, which shows the cross-entropy loss
during the training history of the CNN model reported in Table 2.

Table 2. Optimized CNN architecture.

Layer Type Kernels Kernel Size Kernel Stride Size # of Neurons Rate Activation

2D Convolutional 8 5 × 5 - - - ReLU
2D Max Pooling - 5 × 5 2 - - -

Batch Normalization - - - - - -
2D Convolutional 32 5 × 5 - - - ReLU
2D Max Pooling - 5 × 5 2 - - -

Batch Normalization - - - - - -
Flatten - - - - - -
Dense - - - 32 - ReLU

Dropout - - - - 0.3 -
Dense (Output) - - - 2 - Softmax
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In Figure 4, the minimum validation 1 loss occurred at epoch 9; training stopped
at epoch 19 and the validation 2 subset was tested on the epoch 9 model. The benefit
of implementing model checkpoints is shown by the increasing divergence between the
validation 1 loss and the training loss curves after epoch 9 (Figure 4). With the validation
1 loss no longer improving, the model started to overfit to the training data, as shown
by the continuously decreasing training loss curve. The low loss results obtained from
the validation 2 subset gives substantial premise that the model has not overfit; however,
it is not enough to ensure that the classification model would perform as intended with
new audios.

Figure 5 illustrates what reorganization the training dataset undergoes through model
training for deep learning, by using t-SNE graphs. With t-SNE, the high-dimensional
features shown in Figure 4 can be visualized more simply on a two-dimensional map.
Figure 5a is a t-SNE visualization of the training dataset input, while Figure 5b is a visual-
ization of the training output when the trained model optimizes the location of the training
data’s features to improve classification performance. Figure 5b shows significantly more
defined separation between UAV and background datapoints, compared to Figure 5a, with
some small errors indicated by the proximity of some blue and red points.
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2.3. Optimised Solo Models

Tables 2–4 summarize the different model architectures used and their hyperparam-
eters. When constructing the CNN and CRNN models, a similar number of parameters
was aimed for to ensure that the parameter size would not be the reason for a difference
in performance between the two models. CNNs have convolutional layers to perform the
filtering operation, while RNNs have Long-Short Term Memory (LSTM) layers to take into
consideration the memory elements of previous observations.

Table 3. Optimized CRNN architecture.

Layer Type Kernels Kernel Size Kernel
Stride Size

Memory
Units # of Neurons Rate Activation

2D Convolutional 16 5 × 5 - - - - ReLU
2D Max Pooling - 5 × 5 2 - - - -

Batch Normalization - - - - - - -
Reshape for LSTM - - - - - - -

LSTM - - - 32 - - -
Flatten - - - - - - -
Dense - - - - 32 ReLU

Dropout - - - - - 0.4 -
Dense (Output) - - - - 2 - Softmax

Table 4. Adapted RNN architecture from Jeon et al. [16].

Layer Type Memory Units # of Neurons Rate Activation

Bidirectional LSTM 100 - - -
Bidirectional LSTM 100 - - -
Bidirectional LSTM 100 - - -

Dense - 100 - ReLU
Dropout - - 0.5 -

Dense (Output) - 2 - Softmax

The RNN top performing model presented by Jeon et al. [16] was recreated, and its
performance compared with the models created for this study (Tables 2 and 3). Table 4
shows the architecture of the RNN model, with some adaptation to complete the model
architecture, as highlighted in grey. The dropout rate was 0.5, the learning rate was set to
0.0005 using the Adam optimizer, the batch size to 64 and the model training was stopped
if the validation 1 loss did not reduce over 3 epochs of training [16] (only for the RNN
model). These parameters differ from the CNN and CRNN models’ because the RNN
model is entirely based on Jeon et al. [16], which includes using the same early stopping
and batch sizes, whereas the parameters used for the CNN and CRNN models were found
empirically and from the findings of past papers [32]. The recreated RNN model was then
trained on the same training dataset as all the other models.

2.4. Late Fusion Networks

To the best of the authors knowledge, a late fusion of networks had not been tested
to see if model performance can further improve for acoustic UAV identification. In this
study, a standard hard voting and a weighted soft voting system were integrated, and their
results compared.

The tested voting ensemble were made up of ten models (either all CNNs or CRNNs)
with marginally differing hyperparameters. The ideal benefit of the late fusion networks
tested is that less hyperparameter optimization work should be necessary, since ten dif-
ferent models would be working collectively. To conclude if this assumption is true, the
hyperparameters used in the late fusion networks were set arbitrarily. Therefore, if the
performance of the late fusion network is better than the optimized solo models, it shows
that less effort will be required for the specific classification problem.
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2.4.1. Hard Voting Setup

In the hard voting setup, the ten trained models vote either 1 for UAV or 0 for
background, and their values are summed. If the overall value is 0–4, the hard voting model
outputs a 0 (background) and, if the value is 5–10, it outputs a 1 (UAV). The decision of
including 5 as a UAV prediction is because it is better to have more false positives than false
negative results, since the purpose of this classification model is to detect hostile drones.

2.4.2. Weighted Soft Voting Setup

The weighted soft voting model goes one step further, considering the more ambigu-
ous results. Instead of outputting a 0 or a 1, each of the ten solo models outputs a certainty
value between 0 and 1 (known as a soft value). The closer the value is to 1, the more certain
the model is that the audio contains a UAV. When the value is close to 0.5, the model is
uncertain about any prediction it outputs. The soft voting system allows models with
higher probability values to have more weight in the final result. For example, if one model
has a probability value of 0.40, another of 0.45 and a third of 0.99, the respective hard
voting output would be 0, 0 and 1. The hard voting model would therefore output 0 as its
prediction. However, the soft voting model would give a higher weight to the probability
value of 0.99, resulting in an output of 1.

The soft voting model also has a weighted component that considers how well each
solo model had performed against the validation 2 subset at the end of training, by using the
validation 2 accuracy results. The individual model’s accuracy is subtracted by the average
value of all models, resi. The weight of the soft voting of this model is then wi = resi + 1/n,
where n is the number of models. In this way, it satisfies that the summation of the weights
equals 1.

2.5. Model Evaluation

Once the solo models and late fusion networks were constructed, training and perfor-
mance evaluations were conducted to find the top performing models. Each model was
trained on the training dataset and then tested on the unseen augmented audio dataset ten
times to account for the effect of the random training components, enable the evaluation of
the model stability and allow a fair comparison among the models. The performance of the
models is evaluated using the metrics, accuracy and F-score, described by the following
Equations (1) and (2), where TP represents the true positives, TN the true negatives, FP the
false positives and FN the false negatives:

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Fscore =
2TP

2TP + FP + FN
(2)

3. Results

All the results are illustrated on box and whisker plots that include ten independent
runs for each model. For the calculation of the interquartile range, the exclusive method
has been used.

3.1. Solo Model Performance Evaluation on the Unseen Augmented Dataset

The solo models’ evaluation scores are shown in Figure 6. The CRNN and CNN mod-
els were found to be the best suited for the acoustic identification of UAVs, in agreement
with previous findings [15], and with the fact that CNN models are the best performers
with image processing tasks, since the features extracted from the raw audio are stored in a
graphic format [12]. The recreated RNN model performed significantly worse, which was
to be expected from a theoretical standpoint, since RNNs are more successful in natural
language processing rather than image processing applications [12].
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Figure 6. Solo RNN, CRNN and CNN model performance evaluation for ten training and testing
runs, with box plots and × indicating the mean value.

The performance difference between the CNN and the CRNN models is negligible,
with both models achieving similar mean and median scores for accuracy and F-score, with
slightly higher top performance scores for CNN, as illustrated by the larger interquartile
range (Figure 6). This means that there is no significant benefit in using the CRNN or
RNN models for acoustic UAV identification. The only potential benefit with the CRNN
model would be that it has a more stable performance [15], as shown by the smaller
interquartile range in Figure 6. For this project, late fusion was utilized on both the CRNN
and CNN models to verify if the voting of models improves classification performance and
to determine which model performs best in a voting ensemble.

3.2. Late Fusion Networks’ Performance Evaluation on the Unseen Augmented Dataset

The late fusion models were trained and tested ten times and their results are compared
in the box and whisker plot of Figure 7. The results conclude that the CNN voting ensemble
outperforms the CRNN one. Additionally, the weighted soft voting CNN model shows a
moderately higher overall performance compared to the hard voting CNNs, and this is
also the case for the CRNN voting models. Therefore, it can be concluded that weighted
soft voting outperforms hard voting, and that the weighted soft voting CNN model is the
best performer of the four ensemble models. This confirms that CNNs are the best suited
models for this feature processing task [12] and CRNN models have no added benefit for
acoustic UAV identification in this case.
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3.3. All Models Performance Comparison

Figure 8 recaps the performance results of all models (solo and late fusion), allowing
for a simple visualization of the top performing models. The corresponding performance
scores are listed in Table 5, where the averaged values over 10 runs are recorded.
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Table 5. All models’ testing performance results from unseen augmented dataset.

Score (%) Recreated
RNN

Optimised
CRNN

Optimised
CNN

Hard Voting
CRNN

Soft Voting
CRNN

Hard Voting
CNN

Soft Voting
CNN

Accuracy 87.147 92.847 92.957 93.947 94.118 94.654 94.725

F-score 87.723 92.962 93.089 94.142 94.274 94.773 94.815

The late fusion models noticeably improve the classification performance in all aspects,
with the soft voting CNN achieving a mean average accuracy of 94.7%, compared to the
top performing solo model CNN’s average of 93.0%. Additionally, the interquartile range
is significantly smaller with late fusion, showing that late fusion networks have more
stable performance results compared to solo models. In conclusion, late fusion improves
performance and reduces the instability of training, with the added benefit of not having
to fully optimize solo model hyperparameters. The only downside with late fusion is the
extra training time required to train all the voting models. However, this study does not
take training time into consideration since this is dependent on the computational power
available. The most important aspect is that all the models can make quick predictions.
The prediction time for late fusion models is comparable with the solo models.

3.4. Top Performing Models on Real-World Unseen Dataset

All models discussed in this study have been tested on the unseen augmented dataset
simulating a UAV hovering over an airport, because it was not possible to record a real
UAV flying within an airport’s perimeter. However, for a proof of concept, real-world
audios, as described in Section 2.1.2, were also used to verify that the model would work
in real settings. Figure 9 shows the CNN late fusion network achieving a reasonably good
performance against the unseen real-world testing dataset, with high accuracy and F-scores.
The corresponding averaged performance scores are listed in Table 6.
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Table 6. Testing performance results from real-world unseen dataset.

Score (%) Hard Voting CNN Soft Voting CNN

Accuracy 89.835 91.044

F-score 90.741 91.747

4. Conclusions

This project has demonstrated the effectiveness of ensemble deep learning models
for the acoustic identification of multirotor UAVs, which achieved classification accuracies
as high as 94.7 and 91.0% from the unseen augmented and real-world testing datasets,
respectively. The investigation conducted on the optimized solo model architectures
resulted in the CNN and CRNN models outperforming the recreated top performing
model from [16], an RNN model. In this study, the acoustic signals were transformed into
mel-spectrograms, and CNNs have been shown to be the best suited for image processing
tasks. The solo CNN model performs slightly better than the CRNN, but it has more
instability in its results. Furthermore, when late fusion was used, the CNN voting ensemble
significantly outperformed the CRNN ensemble, and the CRNNs stability advantage was
lost. Hence, both the reported advantages of the CRNN models [15] were not found in
late fusion, and the CNN model was shown to be the best suited for this acoustic UAV
detection application.

This study has also shown that late fusion networks do not require optimal hyperpa-
rameters to work well, as arbitrary hyperparameters were used, yet their performance was
higher compared to the solo models with optimized hyperparameters. In addition, the
instability of the performance results was significantly reduced with late fusion. The only
drawback of using late fusion networks is that they take significantly more time to train,
since they have more than one model requiring training (ten in this case). However, time
matters more when the models are making predictions. Once all the models are trained,
the prediction time remains negligible.

The distance between a drone and a microphone is a limiting factor that affects
detection performance. Hence, for future work, it would be useful to study at what
distances the drone would no longer be detected, and how to optimize the arrangement
of microphones around an airport’s perimeter to ensure that the drones can always be
detected within a certain radius. This would also lead to acoustically localizing the UAV for
taking countermeasures. Flight conditions, such as hovering, low-speed and high-speed
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flight, are another useful factor to analyze when evaluating detection performance. Future
work could evaluate model performance against different flight conditions.

While the developed framework could be applicable to other sound classification
problems, such as air and road vehicles, engines and rotating machinery, the networks
constructed and optimized here were specific for UAV detection, as they were trained using
mel-spectrograms as inputs, representing key acoustic features of the drone/background
sounds. The proposed late fusion technique could also be utilized for further work with
other detection methods. It could be applied to create a voting ensemble of acoustic, radar
and visual models, which would then improve the overall detection performance.

Author Contributions: Conceptualization, Y.Z. and P.C.; methodology, Y.Z. and P.C.; formal analysis,
P.C.; writing—original draft preparation, P.C.; writing—review and editing, Y.Z.; supervision, Y.Z.
Both authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data and Python program used in this study can be found from GitHub
repository: https://github.com/pcasabianca/Acoustic-UAV-Identification, accessed on 22 June 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vemula, H.C. Multiple Drone Detection and Acoustic Scene Classification with Deep Learning. Master’s Thesis, Wright State

University, Dayton, OH, USA, 2018.
2. Choi-Fitzpatrick, A. Drones for Good: Technological Innovations, Social Movements, and the State. J. Int. Aff. 2014, 68, 19.
3. Whelan, I. What Happens When a Drone Hits an Airplane Wing? Aviation International News, 3 October 2018.
4. Geelvink, N. Drones Still a Problem Even with Little Traffic. DFS Deutsche Flugsicherung GmbH, 18 January 2021.
5. DJI Mini 2. DJI. Available online: https://www.dji.com/uk/mini-2?from=store-product-page (accessed on 29 December 2020).
6. Mandal, S.; Chen, L.; Alaparthy, V.; Cummings, M. Acoustic Detection of Drones through Real-Time Audio Attribute Prediction.

In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; pp. 1–13. [CrossRef]
7. Baron, V.; Bouley, S.; Muschinowski, M.; Mars, J.; Nicolas, B. Drone Localization and Identification Using an Acoustic Array and

Supervised Learning. Int. Soc. Opt. Photonics 2019, 2019, 13. [CrossRef]
8. Bernardini, A.; Mangiatordi, F.; Pallotti, E.; Capodiferro, L. Drone Detection by Acoustic Signature Identification. Electron. Imaging

2017, 2017, 60–64. [CrossRef]
9. Anwar, M.Z.; Kaleem, Z.; Jamalipour, A. Machine Learning Inspired Sound-Based Amateur Drone Detection for Public Safety

Applications. IEEE Trans. Veh. Technol. 2019, 68, 2526–2534. [CrossRef]
10. Rabaoui, A.; Kadri, H.; Lachiri, Z.; Ellouze, N. One-Class SVMs Challenges in Audio Detection and Classification Applications.

Eurasip J. Adv. Signal Process. 2008, 2008, 1–22. [CrossRef]
11. Zahid, S.; Hussain, F.; Rashid, M.; Yousaf, M.H.; Habib, H.A. Optimized Audio Classification and Segmentation Algorithm by

Using Ensemble Methods. Math. Probl. Eng. 2015, 2015, 209814. [CrossRef]
12. Eklund, V. Data Augmentation Techniques for Robust Audio Analysis. Master’s Thesis, Tampere University, Tampere, Finland,

2019.
13. Mezei, J.; Molnar, A. Drone Sound Detection by Correlation. In Proceedings of the SACI 2016—11th IEEE International Symposium

on Applied Computational Intelligence and Informatics, Timisoara, Romania, 12–14 May; pp. 509–518. [CrossRef]
14. Han, Y.; Park, J.; Lee, K. Convolutional Neural Networks with Binaural Representations and Background Subtraction for Acoustic

Scene Classification. In Proceedings of the DCASE 2017-Workshop on Detection and Classification of Acoustic Scenes and Events,
Munich, Germany, 16–17 November 2017; Volume 2.

15. Al-Emadi, S.; Al-Ali, A.; Mohammad, A.; Al-Ali, A. Audio Based Drone Detection and Identification Using Deep Learning. In
Proceedings of the 2019 15th International Wireless Communications and Mobile Computing Conference, IWCMC 2019, Tangier,
Morocco, 24–28 June 2019; pp. 459–464. [CrossRef]

16. Jeon, S.; Shin, J.W.; Lee, Y.J.; Kim, W.H.; Kwon, Y.H.; Yang, H.Y. Empirical Study of Drone Sound Detection in Real-Life
Environment with Deep Neural Networks. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO),
Kos, Greece, 28 August–2 September 2017; pp. 1858–1862.

17. Nordby, J. Audio Classification Using Machine Learning. In Proceedings of the EuroPython Conference, Basel, Switzerland, 8–14
July 2019. [CrossRef]

18. Zhang, Y.; Martinez-Garcia, M.; Latimer, A. Selecting Optimal Features for Cross-Fleet Analysis and Fault Diagnosis of Industrial
Gas Turbines. In Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo,
Norway, 11–15 June 2018. [CrossRef]

19. Purwins, H.; Li, B.; Virtanen, T.; Schlüter, J.; Chang, S.Y.; Sainath, T. Deep Learning for Audio Signal Processing. IEEE J. Sel. Top.
Signal Process. 2019, 13, 206–219. [CrossRef]

https://github.com/pcasabianca/Acoustic-UAV-Identification
https://www.dji.com/uk/mini-2?from=store-product-page
http://doi.org/10.2514/6.2020-0491
http://doi.org/10.1117/12.2533039
http://doi.org/10.2352/ISSN.2470-1173.2017.10.IMAWM-168
http://doi.org/10.1109/TVT.2019.2893615
http://doi.org/10.1155/2008/834973
http://doi.org/10.1155/2015/209814
http://doi.org/10.1109/SACI.2016.7507430
http://doi.org/10.1109/IWCMC.2019.8766732
http://doi.org/10.5446/44845
http://doi.org/10.1115/GT2018-75286
http://doi.org/10.1109/JSTSP.2019.2908700


Drones 2021, 5, 54 14 of 14

20. Choi, K.; Fazekas, G.; Sandler, M.; Cho, K. A Comparison of Audio Signal Preprocessing Methods for Deep Neural Networks on
Music Tagging. In Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September
2018; pp. 1870–1874. [CrossRef]

21. Li, J.; Dai, W.; Metze, F.; Qu, S.; Das, S. A Comparison of Deep Learning Methods for Environmental Sound Detection. In
Proceedings of the 2017 IEEE International conference on acoustics, speech and signal processing (ICASSP), New Orleans, LA,
USA, 5–9 March 2017.

22. Martinez-Garcia, M.; Zhang, Y.-D.; Suzuki, K.; Zhang, Y.-D. Deep Recurrent Entropy Adaptive Model for System Reliability
Monitoring. IEEE Trans. Ind. Inform. 2021, 17, 839–848. [CrossRef]

23. Shao, H.; Xia, M.; Han, G.; Zhang, Y.; Wan, J. Intelligent Fault Diagnosis of Rotor-Bearing System Under Varying Working
Conditions with Modified Transfer Convolutional Neural Network and Thermal Images. IEEE Trans. Ind. Inform. 2021, 17,
3488–3496. [CrossRef]

24. Bergstra, J.; Casagrande, N.; Erhan, D.; Eck, D.; Kégl, B. Aggregate Features and ADABOOST for Music Classification. Mach.
Learn. 2006, 65, 473–484. [CrossRef]

25. Xie, J.; Zhu, M. Handcrafted Features and Late Fusion with Deep Learning for Bird Sound Classification. Ecol. Inform. 2019, 52,
74–81. [CrossRef]

26. Du Boisberranger, J.; van den Bossche, J.; Estève, L.; Fan, T.J.; Gramfort, A.; Grisel, O.; Halchenko, Y.; Hug, N.; Jalali, A.; Lemaitre,
G.; et al. Scikit-Learn. Available online: https://scikit-learn.org/stable/about.html (accessed on 17 June 2021).

27. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A
System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16) 2016, Savannah, GA, USA, 2–4 November 2016.

28. McFee, B.; Raffel, C.; Liang, D.; Ellis, D.; McVicar, M.; Battenberg, E.; Nieto, O. Librosa: Audio and Music Signal Analysis in
Python. In Proceedings of the 14th python in science conference 2015, Austin, TX, USA, 6–12 July 2015; pp. 18–24. [CrossRef]

29. Svanstrm, F.; Englund, C.; Alonso-Fernandez, F. Real-Time Drone Detection and Tracking with Visible, Thermal and Acoustic
Sensors. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2020.

30. Sigtia, S.; Dixon, S. Improved Music Feature Learning with Deep Neural Networks. In Proceedings of the 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014.

31. Rahul, R.K.; Anjali, T.; Menon, V.K.; Soman, K.P. Deep Learning for Network Flow Analysis and Malware Classification. In
Proceedings of the International Symposium on Security in Computing and Communication, Manipal, India, 13–16 September
2017; pp. 226–235. [CrossRef]

32. Masters, D.; Luschi, C. Revisiting Small Batch Training for Deep Neural Networks. arXiv 2018, arXiv:1804.07612.
33. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: London, UK, 2016.

http://doi.org/10.23919/EUSIPCO.2018.8553106
http://doi.org/10.1109/TII.2020.3007152
http://doi.org/10.1109/TII.2020.3005965
http://doi.org/10.1007/s10994-006-9019-7
http://doi.org/10.1016/j.ecoinf.2019.05.007
https://scikit-learn.org/stable/about.html
http://doi.org/10.25080/majora-7b98e3ed-003
http://doi.org/10.1007/978-981-10-6898-0_19

	Introduction 
	Methodology 
	Data Preparation 
	Training Audio Dataset 
	Unseen Audio Testing Datasets 
	Audio Pre-Processing and Feature Extraction 

	Model Training 
	Optimised Solo Models 
	Late Fusion Networks 
	Hard Voting Setup 
	Weighted Soft Voting Setup 

	Model Evaluation 

	Results 
	Solo Model Performance Evaluation on the Unseen Augmented Dataset 
	Late Fusion Networks’ Performance Evaluation on the Unseen Augmented Dataset 
	All Models Performance Comparison 
	Top Performing Models on Real-World Unseen Dataset 

	Conclusions 
	References

