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Abstract: In the past decades, unmanned aerial vehicles (UAVs) have emerged in a wide range of
applications. Owing to the advances in UAV technologies related to sensing, computing, power,
etc., it has become possible to carry out missions autonomously. A key component to achieving
this goal is the development of safe navigation methods, which is the main focus of this work.
A hybrid navigation approach is proposed to allow safe autonomous operations in three-dimensional
(8D) partially unknown and dynamic environments. This method combines a global path planning
algorithm, namely RRT-Connect, with a reactive control law based on sliding mode control to provide
quick reflex-like reactions to newly detected obstacles. The performance of the suggested approach is
validated using simulations.

Keywords: UAVs; aerial drones; autonomous navigation; path planning; reactive control; obstacle
avoidance; sense-and-avoid; hybrid navigation method; dynamic environments

1. Introduction

Unmanned aerial vehicles (UAVs), also known as aerial drones, have emerged in
many applications where it is required that some repetitive tasks are performed in a certain
environment. Autonomous operation is highly desirable in these applications, which adds
more requirements on the vehicle to achieve safe navigation towards areas of interest.
Navigation methods can be generally classified as global path planning (deliberative),
local path planning (sensor-based), and hybrid. A subset of sensor-based methods include
reactive approaches [1].

Global path planning requires an overall knowledge about the environment to produce
optimal and efficient paths which can be tracked by the vehicle’s control system. There
exist many different techniques to address global planning problems, including roadmap
methods [2,3], cell decomposition [4], potential field [5,6], probabilistic roadmap (PRM) [7],
rapidly exploring random tree (RRT) [8], and optimization-based techniques [9-12]. Some
of these techniques become computationally challenging when dealing with unknown and
dynamic environments since a complete updated map is required a priori. As a workaround
to handle such environments, extensions to some of these approaches were proposed by
adding an additional layer to continuously refine the initial path locally around detected
obstacles. This still may be less efficient in highly complex and dynamic environments.

On the other hand, sensor-based methods generate local paths or motion commands in
real-time based on a locally observed fraction of the environment interpreted directly from
sensors measurements. Search-based methods, such as those used for global planning, and
optimization-based methods can be used with a local map to generate paths locally where
computational complexity depends on the selected map size. On the contrary, reactive
methods offer better computational solutions by directly coupling sensors observations
into control inputs providing quick reactions to perceived obstacles. Hence, they can be
more suitable in unknown and dynamic environments. Examples of classical reactive
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methods used in unknown environments are dynamic window [13] and curvature veloc-
ity [14]. Other classical examples of reactive methods dealing with dynamic obstacles
include collision cones [15] and velocity obstacles [16]. A class of reactive approaches
adopt a boundary following paradigm to circumvent obstructing obstacles; for examples,
see [17-23]. The low computational cost of such methods comes at the expense of being
prone to trapping situations. Some researchers suggested a combination of a randomized
behavior with the boundary following approach to escape such situations [24]. However,
this may sometimes produce very unpredictable motions and even inefficient ones [25]
without utilizing previous sensors observation acquired through the motion.

Hybrid strategies tend to address the afromentioned drawbacks by combining both
deliberative and reactive approaches for a more efficient navigation behavior in unknown
and dynamic environments. There exists a body of literature on hybrid approaches; for
examples, see [25-31] and references therein. A hybrid approach was suggested in [25]
for navigation in dynamic environments which combined a potential field-based local
planner with the A* algorithm as a global planner based on a topological map. Similarly,
the work [26] adopted the A* algorithm with binary grid maps while using a variant of
the Bug algorithm as a reactive component to address navigation in partially unknown
environments. The authors of [27] suggested another hybrid approach for micro aerial
vehicles that uses A* for both deliberative and local planning components where the
global path gets refined locally around obstacles through replanning processes. The hybrid
approach presented in [28] adopted a fuzzy logic-based boundary following technique
to implement the reactive layer while an optimal reciprocal collision avoidance (ORCA)
algorithm was used in [29]. Sampling-based search methods were also used in some
approaches such as [30], where a global planner based on the dynamic rapidly exploring
random tree (DRRT) was suggested. Real-time obstacle avoidance was then dealt with by
choosing a best candidate trajectory from a sampled set. In [31], the parallel elliptic limit-
cycle approach was adopted to implement both global and local planning components.

Many of the existing three-dimensional (3D) hybrid navigation methods consider
search-based methods to implement the local planning component. Among those that
adopt reactive-based approaches, many have just considered two-dimensional methods
by constraining UAV movement to a fixed altitude which does not utilize the full capa-
bilities of UAVs. Therefore, the main contribution of this work is to propose a hybrid 3D
navigation strategy for UAVs to allow efficient navigation in partially unknown/dynamic
environments. The suggested strategy combines a global path planning layer with a reac-
tive obstacle avoidance control law developed based on a general 3D kinematic model. The
global path planning layer, based on RRT-Connect, can produce efficient paths based on
the available knowledge about the environment. The sliding mode technique is adopted
to implement a boundary following behavior in the reactive layer. This choice provides
quick reactions to obstacles with a cheap computational cost compared to search-based
and optimization-based local planners. To develop a proper hybrid navigation strategy,
implementation of a switching mechanism is presented to handle the transition between
the two control laws. Overall, the proposed method can overcome the shortcomings of
relying purely on a deliberative or reactive approaches.

This paper is organized as follows. Section 2 provides a formulation of the tackled
navigation problem. The suggested hybrid strategy is then presented in Section 3. The
performance of this approach is confirmed through different simulation scenarios, which is
shown in Section 4. Finally, concluding remarks are made in Section 5.

2. Problem Statement

A general 3D navigation problem is considered here, where a UAV is required to
navigate safely in a partially known environment & C R3. The environment £ contains
a set of n obstacles O = {01, 0y, -+ ,0,} C &. These obstacles can either be static and
known OF or unknown static/dynamic O* such that O = OF U O*. The main objective
is to safely guide the UAV to reach some goal position pg,, € £\{O} represented in a
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world coordinate frame Y with obstacle avoidance capability. The UAV starts with an
initial map of the environment containing only information about O based on previous
knowledge. Unknown environments can also be considered where the UAV can start
building a map as it traverses the environment. In this case, O = @ initially. In addition,
let p(t) = [x(t),y(t),z(t)]" be the UAV Cartesian coordinates expressed in WW. Note that
we represent vector quantities as column vectors; however, they can be written as the
transpose of row vectors [-]T to simplify writing. A safety requirement for the UAV is
defined as keeping a safe distance dy,r, > 0 from all obstacles according to the following:

d(t) ;== mi B —p' (t)|| = dsgpe Vt 1
(8):= min [lp(t) = POl 2 deae )
where d(t) is the distance to the closest obstacle, and || - || is the standard Euclidean norm

of a vector in R3.

We consider a general 3D nonholonomic kinematic model which is applicable to
different types of UAVs and autonomous underwater vehicles. A description of this model
is given as follows:

p(t) = V(Hr(t) @)
i(t) = u(t) 3)
r(t)-u(t) = 0 4)

where V(t) € RY is the linear speed, and u(t) € R? is a 2 degree-of-freedom (DOF) control
input related to angular velocity. The motion direction at any given time instant ¢ (i.e.,
orientation) is characterized by a unit vector r(¢). The condition (4) indicates that the input
u(t) is always perpendicular to r(f) which generates a steering-like behavior in 3D. The
UAV velocities V(t) and u(t) are regarded as control inputs with some upper bounds
(denoted by Viuax, Umax > 0) due to physical limitation. These constraints can be expressed
as follows:
0 < V(t) < Vinax

()] < ttmax
Notice that we consider only forward motions by not allowing negative values for V(t).

For constant-speed applications, V(t) is kept constant at some value V > 0. Additionally,
the following assumptions are made.

©)

Assumption 1. The UAV senses a fraction of the surroundings by onboard sensors, and it can
determine the distance to closest obstacle as part of its perception system. An abstract sensing
model is considered where obstacles within a distance of dsensing > 0 from the UAV can be detected,
and bounding geometric primitive can be used to represent the sensed fraction of the object (ex. box,
sphere, cylinder, and/or ellipsoid).

Assumption 2. Estimates of the UAV'’s position p(t) and orientation vector r(t) are available.
The following statement summarizes the considered problem in this work.

Problem 1. Consider a UAV whose motion can be described by the model (2)—(4). Under assump-

tions 1 and 2, design control laws for V (t) and u(t) to ensure a collision-free navigation through an

unknown or partially known environment & to reach a goal position peoq by satisfying the safety
requirement in (1) and the constraints in (5).

Remark 1. The model (2)—(4) can be applicable to fixed-wing UAVs, multi-rotor UAVs, and
autonomous underwater vehicles.
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3. Proposed Hybrid Navigation Strategy

Generally, the design of autonomous navigation methods adopts modular structures.
The suggested structure in this work for the overall system from a software perspective
includes subsystems for perception, high-level navigation, and low-level control. The per-
ception subsystem is responsible for processing onboard sensor measurements to provide
meaningful information about the environment. Thus, it can generate an updated global
map representation of the environment as well as providing distance and direction to the
closest obstacle as required by our reactive control law.

The design of the high-level navigation subsystem is the main contribution of this
work, and the proposed design combines a few main components, namely global path
planning, motion supervisor, path following control, reactive control, and a switching mechanism.
The architecture of the overall hybrid navigation strategy showing these components is
presented in Figure 1.

dated global
Map Buildding P e >{ Global Path Planning

sensors
measurements

replan
commands global
path

Motion Supervisor

sensors
measurements

sensors
measurements

Reactive Control Pure Pursuit Path
Following Control

Switching Rules

attitude
commands

Low-Level Control

Figure 1. Architecture of the proposed navigation strategy.

The global path planning component is responsible for generating feasible and safe
geometric paths based on the currently available global map. It is triggered to generate
new paths by the motion supervisor whenever a new goal position is assigned or whenever a
trapping situation (i.e., the UAV gets stuck) is detected as new portions of the environment
are discovered. Initially, the map can be empty in unknown environments or partially
filled in the case of partially known environments. As the vehicle navigates through the
environment, the perception system updates the map based on sensors measurements.
To execute the planned global paths, a path following control is adopted based on the pure
pursuit guidance laws.

In unknown and dynamic environments, the vehicle may find that the planned
global paths are unsafe due to the detection of new obstacles. In order to provide quick
responses, a reactive control component is used to generate locally safe motions around
unknown/dynamic obstacles by directly coupling command velocities into current sensors
observations. The quick reactions to obstacles provided by reactive control is due to
its low computational cost compared to replanning new paths. A mechanism is then



Drones 2021, 5, 57

50f 14

used to switch between both path following and reactive navigation modes based on
sensors measurements.

A detailed description of these components is given in the following subsections.

Note that the high-level navigation can normally be implemented on an onboard
mission computer. The mission computer is normally connected to a Flight control unit
(FCU) which is directly connected to all motors. A low-level control subsystem is then
used to generate actuators/motors commands to execute the high-level velocity commands
generated by the high-level navigation subsystem.

3.1. Global Path Planning

A global path planning algorithm requires a map representation of the environment.
There exist many algorithms in the literature where the choice of appropriate method
can vary according to the UAV sensing and computing capabilities. Optimality of the
planned paths and the computational complexity of the overall algorithm could be key
factors in determining which method to consider for a specific application. Note that it
is also possible to adopt more than one path planning algorithm where each planner is
used under certain conditions. A typical example for this case is the use of optimization-
based algorithms to initially generate optimal paths while implementing a computationally
efficient algorithm to modify the initial path when replanning is needed.

Our proposed hybrid navigation strategy is not restricted to a specific path planning
algorithm. However, this work considers a sampling-based approach as a backbone for im-
plementing the global planner which scales very well when planning in three-dimensional
spaces. Namely, a variant of the rapidly exploring random tree (RRT) algorithm is used,
which is called RRT-Connect [32]. This choice is due to the algorithm’s popularity and low
computational cost which is favorable since online replanning might be needed during
the motion whenever trapping scenarios are detected. Moreover, we follow an optimistic
approach in our implementation of the RRT-Connect algorithm where unknown space is
considered to be unoccupied (i.e., obstacle-free). Based on this assumption, the reactive
controller will be responsible for handling obstacle avoidance whenever an unknown space
is found to be occupied.

RRT algorithms are randomized sampling-based path planning methods which can
find collision-free paths if exist with a probability that will reach one as the runtime
increases (i.e., probabilistically complete). In practice, these algorithms can provide quick
solutions. The basic concept of an RRT planner can be summarized as follows. Let G be
a search tree (a graph) initialized with an initial configuration (defined later). An iterative
approach is used to extend the search tree through the configuration space until a feasible
solution is found. At each iteration, a configuration is sampled either randomly or using
some heuristics which can help biasing the growth of the search tree. Biasing the sampling
process to select the goal configuration with some probability (0 < pbgo, < 1) was found
to enhance RRT growth. The algorithm then tries to extend the search tree G to the sampled
configuration by connecting it to the nearest one within the tree. Different methods could
be used to connect configurations within the configuration space especially when trying to
satisfy some constraints. However, a common approach is to use straight lines to connect
two configurations especially when dealing with Euclidean spaces which is considered
here. A collision checker is then used to check the feasibility of each extension based on the
available environment map where each feasible extension results in growing the search
tree by adding the new configuration. The sampling process gets repeated iteratively until
a feasible path between the initial and goal configurations is found or until a stopping
criteria is met (for example, exceeding a predefined planning time limit).

RRT-Connect follows the same idea; however, it maintains two trees originating from
both initial and goal configurations. At each iteration, the planner attempts to extend one of
the trees followed by an attempt to find a collision-free connection to one of the vertices in
the other tree. This can provide rapid convergence to a solution in complex environments
compared to the standard RRT algorithm.
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Due to the sampling nature of RRT algorithms, the generated paths are non-optimal
in terms of the overall length. Furthermore, these paths do not satisfy nonholonomic
constraints if straight lines were considered when extending the search tree. Therefore,
we follow a common practice by refining the obtained paths through two post-processing
stages, namely pruning and smoothing, as was done in [33,34].

For the pruning stage, redundant waypoints are removed from the planned path
to improve the overall path quality. Let W = {wq,wy,--- ,wi} be a set of waypoints
representing a path generated by RRT-Connect, and let W), be the pruned path obtained
after this stage. Redundant waypoints can then be removed using Algorithm 1 based
on [33].

Algorithm 1 RRT Path Prunning

Input: W = {ZU],ZUz,' 3 ,wk}
Output: W,
: Wp — {} D> W, is initialized as an empty list
ik
: insert w; into W,
repeat
j<0
repeat
jej+1
until collisionFree(wi ’ w]) or ] =i—1 D> Stop when a collision-free segment is found
insert w; into W,
147
cuntili=1

O XN TRy

—_ =
= e

A smoothing algorithm is applied next to the pruned path to ensure that the final path
satisfies the vehicle’s nonholonomic constraints (minimum radius of curvature). To that
end, parametric Bezier curves were used to generate continuous-curvature smooth paths
following the approach suggested in [34].

3.2. Pure Pursuit Path Following Control

A path following control design is needed to ensure that the UAV can accurately track
the planned path. The proposed design adopts the pure pursuit tracking (PP) algorithm
which is known for its stability and simplicity [35]. Assuming that a geometric path T C R?
is available, the PP algorithm steers the vehicle to follow a virtual target p, = (X0, Yo, 20) € T
moving along the path. This target is usually selected to be at some lookahead distance
L away from the closest path point p. € 7 to the vehicle’s current position. For more
stability, a modified version of the PP algorithm is considered in this work based on [36]
which suggested using an adaptive lookahead distance instead of a fixed value. This
PP variant provides more stability when the vehicle is further from the planned path
which is needed here since the vehicle can sometimes deviate from the planned path when
avoiding obstacles with the reactive control component. The following control law is used
for path following;:

Vop(t) = Viuaxtanh (7llpo(t) = p(8)1]) ©)
uyp(t) = u P(r(t) M) %)
PP " lpo(t) = p(O)

where 7 > 0. The mapping function F(w1,w,) : R® x R3 — R3 acts as a steering function
which produces a vector that is perpendicular to w; in the direction of wy, and it is defined

as follows: £ )
F(wy, w,) :{ T | (@1w2)] 70

®)
031, || f(wq, w2)|| =0
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where
flwy, wr) = wy — (wy - wo)wy

3.3. Reactive Control Law

Navigation in unknown and dynamic environments requires more safety measures as
the planned path from the global planner can become unsafe whenever new obstacles are
detected, especially if they are dynamic. Hence, a reactive control law is used to generate
reflex-like reactions to detected obstacles by navigating around them until it is safe to
continue following the previously planned path.

In our implementation, we adopt a reactive control law utilizing a sliding mode
control technique based on [37]. The distance to closest obstacle d(t) is the only information
needed to implement this controller and can be obtained from onboard sensors. This
reactive control is based on a boundary following paradigm, and it is given as follows:

be(t) = Vmax (9)
up(t) = rumxsgn(d(t)+x(d(t)—do))in(t) (10)
in(t) = ia(ty) x r(t) (11)

where a constant forward speed is considered, dy > dy,r, > 01is a desired distance, I' = +1
determines the avoidance maneuver direction (i.e., clockwise or counter clockwise with
respect to the axis of rotation), and sgn(«) is the signum function. In addition, x(B) is a
saturation function which is defined as:

_ B if Bl <é
x(p) = { Oy sgn(B) otherwise ’ 7,0>0 (12)

for some design parameters 7,6 > 0. In addition, i,(t,) represents an avoidance plane
normal associated with a certain obstacle as explained in [37]. This normal can be different
for each obstacle, and it can be determined at the time instant f, when a new obstacle
is detected.

The reactive navigation law (9)-(11) ensures that the vehicle will maintain a fixed
distance dy while navigating around the nearest obstacle under some assumptions as was
mathematically proven in [20].

3.4. Switching Rules

A switching mechanism is important for hybrid navigation methods. It is responsible
for deciding whether it is safe to follow the planned path or to reactively avoid a newly
detected obstacle. In general, two navigation modes will be used, and a switching mecha-
nism is adopted to switch between those two modes. The two modes are path following
mode M (control law (6) and (7)) and obstacle avoidance/reactive mode M, (control
law (9)—(11)).

Assuming that the vehicle initially starts in mode M, we consider the following
switching rules:

R1: switch to the reactive mode M, when the distance to the closest obstacle O; drops
below some threshold distance C (i.e., d(t) = C and d(t) < 0).

R2: switch to the path following mode M from M; when |d(t) — dy| < €g Vi for some
small value ¢y > 0 and the vehicle’s heading is targeted towards the virtual target p, on
the planned path which can be determined according to the following condition:

1 (1 (po—p)
Ccos (m—p”)‘ < €1 (13)

where €1 > 0.
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3.5. Motion Supervisor

The motion supervisor is responsible for detecting trapping situations whenever the
vehicle gets stuck in a local minimum due to a newly discovered fraction of the environment.
An example of such scenario can be seen when navigating in maze-like environments,
concave obstacles, and/or long blocking walls [38]. The proposed approach to tackle this
problem is by issuing a replanning command to the global path planner to acquire a new
path based on the updated knowledge about the environment.

4. Simulation Results and Discussion

The developed hybrid navigation approach was tested using simulations considering
two different cases, namely static and dynamic environments. Some knowledge about
these environments were assumed to be known, a priori, to show the role of the global
planner; however, the developed approach can work well even when no such knowledge is
available. The RRT-Connect algorithm was implemented based on [32] to plan global paths.

The simulations were carried out using the MATLAB software running on a 2.6 GHz
Intel Core i7 CPU. We considered a maximum linear speed of V = 0.75 m/s and a maximum
angular velocity of 1, = 1.75 and 2.5 rad/s for the first and second cases, respectively.
The design parameters were also selected as follows: L = 0.5, = 0.5,y =1,dyp =1, and
C = 2. An arbitrary choice was made for i,(t.) used in (11) which vary for each obstacle.
In addition, the update rate of the control was set to be 0.01 s. A description and the results
of these simulations are presented next.

4.1. Case I: Unknown Static Obstacles

In the first simulation case, we consider an environment in which the UAV performs
some repetitive tasks. Hence, some knowledge about the environment is known a priori,
such as wall locations. However, new static obstacles which are not known to the vehicle
can be added to the environment at different times. A real-life example of this scenario
is when operating in a warehouse or inside a building. The warehouse/building layout
can be known in advance or from an initial mapping process while objects can be moved
around all the time.

Figure 2 shows the considered environment for this simulation case. The initial
map available to the vehicle includes only information about the two walls (shown in
gray/black). There are also 4 unknown cylindrical shaped obstacles with different sizes. A
bounding shape can usually be estimated in practice by the vehicle’s perception system
to represent nearby obstacles where very close obstacles can be represented by a single
bounding object to satisfy the control assumptions.

It can clearly be seen from Figure 2 that the proposed hybrid navigation strategy
can safely guide the vehicle starting from some initial position (green circular marker) to
reach the goal location (blue star marker). This figure shows both the path generated by
the global planner based on the initial knowledge about the environment as well as the
actual executed path by the vehicle. The vehicle can successfully track the planned path
whenever it has good clearance from obstacles. Once an obstacle is detected by the vehicle’s
sensors, the vehicle switches to the reactive mode M, to move around the obstacle. Then,
it goes back to the path following mode M; whenever it is clear to do so according to
the switching rule R2 as described earlier. The distance to the closest obstacle during the
motion is given in Figure 3, which clearly shows that the vehicle can satisfy the safety
requirement by maintaining a proper clearance from all obstacles. In addition, the linear
speed of the vehicle is shown in Figure 4. Overall, these results confirm that the proposed
method can guide the vehicle safely among unknown static obstacles.
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Figure 2. Simulation Case I: Initially planned path and executed motion (static environment).
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Figure 4. Simulation Case I: Linear speed of the UAV during the motion.

4.2. Case 1I: Unknown Dynamic Obstacles

The second simulation scenario considers the case where there are several unknown
moving obstacles, which makes the environment dynamic. Similar to the previous case,
some initial knowledge about the environment layout is assumed to be known, which is
shown in gray /black in Figure 5. Moreover, there are multiple unknown dynamic spherical
obstacles with random sizes between 0.2 and 1 m in radius and arbitrary linear speeds
of 0.1, 0.2, and 0.25 m/s (less than 0.75 m/s). Note that for simplicity, collisions between
different obstacles are not considered in this case.
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Based on the initial map, the global planner finds a safe path using RRT-Connect,
which is shown as a dashed red line in Figure 5. The vehicle then starts moving in mode
M to track the planned (reference) path. However, due to the highly dynamic nature of
the environment, this path becomes unsafe whenever there are obstacles approaching the
vehicle, as shown in Figure 6, at different time instants during the motion. Each time a
threatening obstacle is detected, the vehicle switches to navigation in the reactive mode
M according to the switching rule R1. This can be seen in Figures 5 and 6, which show
that the vehicle’s actual executed path deviates from the planned path at some locations to
avoid the dynamic obstacles. This is verified in Figure 7, where the distance to the closest
obstacle remain above the safety threshold. In addition, the UAV’s linear speed is shown
in Figure 8. It is evident from these results that the proposed strategy also works well in
dynamic environments. It should be mentioned that the UAV’s maximum velocity must be
larger than obstacles’ velocities to guarantee safety. However, the reactive control law can
still handle some cases where the obstacles are moving faster than the vehicle but with no
safety guarantees in some aggressive scenarios.

- ———planned path
executed trajectory

30

Figure 5. Simulation Case II: Initial planned path and executed motion (dynamic environment).
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Figure 6. Simulation Case II: Different instances during motion at which switching to reactive mode was triggered.
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Figure 7. Simulation Case II: Distance from the UAV to obstacles.
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Figure 8. Simulation Case II: Linear speed of the UAV during the motion.

5. Conclusions

A hybrid three-dimensional (3D) navigation strategy for unmanned aerial vehicles
(UAVs) was presented in this paper. The problem formulation considered a general 3D non-
holonomic kinematic model which is applicable to different UAV types and autonomous
underwater vehicles. A global planner based on the RRT-Connect algorithm was used
which works well in three-dimensional spaces. A reactive control law based on sliding
mode control was used to avoid unknown and dynamic obstacles. Simulation results
confirm that the proposed hybrid navigation method works well in 3D environments with
unknown static and dynamic obstacles.
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