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Abstract: Crop yield prediction and estimation play essential roles in the precision crop management
system. The Simple Algorithm for Yield Estimation (SAFY) has been applied to Unmanned Aerial
Vehicle (UAV)-based data to provide high spatial yield prediction and estimation for winter wheat.
However, this crop model relies on the relationship between crop leaf weight and biomass, which only
considers the contribution of leaves on the final biomass and yield calculation. This study developed
the modified SAFY-height model by incorporating an allometric relationship between ground-based
measured crop height and biomass. A piecewise linear regression model is used to establish the
relationship between crop height and biomass. The parameters of the modified SAFY-height model
are calibrated using ground measurements. Then, the calibrated modified SAFY-height model is
applied on the UAV-based photogrammetric point cloud derived crop height and effective leaf area
index (LAIe) maps to predict winter wheat yield. The growing accumulated temperature turning
points of an allometric relationship between crop height and biomass is 712 ◦C. The modified SAFY-
height model, relative to traditional SAFY, provided more accurate yield estimation for areas with
LAI higher than 1.01 m2/m2. The RMSE and RRMSE are improved by 3.3% and 0.5%, respectively.

Keywords: crop biomass; crop height; leaf area index; remote sensing; photogrammetric point cloud;
Unmanned Aerial Vehicle; Simple Algorithm for Yield Estimation

1. Introduction

Crop biomass is an important parameter for crop yield potential prediction. Environ-
mental conditions such as solar energy, temperature, soil nutrients, water, pests, disease,
weeds, and other stresses can affect dry aboveground biomass (DAM) and potential yield
of a crop [1]. As a crop management system, precision farming emphasizes monitoring and
analysis to help farmers achieve optimal profit [2]. Hence, precision farming focused on tar-
geted and cost-effective inputs to enhance efficiency and sustainability outputs. Therefore,
mapping field-scale crop DAM play an essential role in precision farming. Conventional
crop yield estimation methods are labor intensive and have limited sampling numbers due
to the accessibility of fieldwork. These methods provide rough estimations and advising
in farming activities. Remote sensing technology allows monitoring of variability for
large-scale fields without a large amount of ground data. For example, satellite remote
sensing has been used for regional crop monitoring. However, satellite imagery is ham-
pered by long revisit times and cloud presence. Additionally, the cost of high temporal and
spatial resolution satellite imagery limits its use. Unmanned Aerial Vehicle (UAV) collected
high spatial and temporal imagery can monitor within-field DAM and yield variability in
real-time. However, a practical and accurate approach is required to achieve within-field
crop biomass monitoring and estimation using UAV-based data.

Two approaches have been adopted using remote sensing technology to estimate crop
biomass. The first category is the statistical model, which uses the relationship between

Drones 2021, 5, 78. https://doi.org/10.3390/drones5030078 https://www.mdpi.com/journal/drones

https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-5229-1781
https://orcid.org/0000-0002-8404-0530
https://doi.org/10.3390/drones5030078
https://doi.org/10.3390/drones5030078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/drones5030078
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones5030078?type=check_update&version=3


Drones 2021, 5, 78 2 of 16

remote sensing vegetation indices and in-situ crop biomass measurements to estimate crop
biomass [3–5]. The UAV-based high spatial resolution remote sensing data can indicate the
crop biomass variation within the field using the vegetation indices. However, this method
is applicable only for specific crop growth stages and geographic location, and variations
in environmental conditions and location will affect the accuracy [6]. The second category
is the crop growth model, which uses crop and environment parameters to simulate the
development of crop growth and estimate crop biomass. Currently, crop growth models
such as AquaCrop [7], CERES [6,8], STICS [9], CropSyst [10], and WOFOST [11] have
been well developed in crop production estimation. However, these models require a
comprehensive set of parameters to simulate crop growth status, which is difficult to collect
and use for within-field DAM and yield estimation. WOFOST is a labor and time-intensive
model which requires about 40 parameters, and may not be an affordable approach for
UAV-based imagery in estimating within-field crop yield.

An allometric method is an alternative approach for estimating plant biomass from
other crop parameters. Plants absorb solar energy and transfer this energy to biomass
during the growing season. The allocation pattern of the biomass distribution between
stem, leaves, fruit, and roots follows a special allocation principle for specific species. This
pattern of energy allocation plays an essential role in the plant’s reproduction, which affects
the final yield in cereal crops [12]. The plant’s allocation principle was defined as the
allometric relationship in the plant, which is a part of the plant that has a similar variation
rate compared with other parts of the plant or whole plant [13,14]. The information derived
from the crop allometric relationships can also help farmers to monitor, analyze, and deter-
mine crop growth situations. Many remote sensing studies have proved that the allometric
method can be applied to different crop species to determine the crop parameters [15–18].
The allometric method initially requires extensive destructive samplings to build an allo-
metric model. The model could then be used as a non-destructive method to estimate crop
biomass. Bakhshandeh et al., (2012) [14] addressed the allometric relationship between
winter wheat plant height and biomass based on a ground-based study. However, limited
ground sampling points presents a challenge for applying the allometric relationship to the
entire field and displaying the within-field biomass variability.

Since intensive crop height data is either difficult or expensive to obtain from the
conventional remote sensing methods such as satellite or airborne optical data directly, not
many studies estimate crop biomass from plant height using remote sensing technology at
a subfield scale. The recent development of the UAV system and computer vision have
made possible dense 3D reconstructions to produce orthomosaic aerial image, DEM, and
3D photogrammetric point clouds using the Structure from Motion (SfM) method from
UAV data. SfM is a computer vision technique that incorporates multi-view stereo images
to match features, derive 3D structure, and estimate camera position and orientation. The
SfM approach has been proven to be able to estimate of crop structural information such as,
canopy size, height, and leave shape [19–22]. For example, Bendig (2014) [21] used a crop
surface model to estimate the height of barley, highly correlated with the dry aboveground
biomass. Thus, the allometric relationship between crop height and biomass could be
meaningful information in estimating crop biomass.

A Simple Algorithm for Yield Estimation (SAFY) model uses the allometric relation-
ship between daily crop leaf area index (LAI) and biomass accumulation to simulate the
crop growth stages. In addition, it uses light use efficiency theory to determine the optimal
parameters and estimate the final dry aboveground biomass of crops [18,23–25]. Song et al.,
(2020) [26] used the UAV-based Simulated Observation of Point Cloud (SOPC) derived
effective leaf area index (LAIe) [27] and the SAFY model to generate the fine-resolution
final DAM and yield maps of winter wheat. The SAFY model may be used to derive a more
accurate final DAM and yield estimation by combining the allometric relationship between
winter wheat canopy height and biomass. The objective of this study is to incorporate
the allometric relationship between crop canopy height and biomass into the SAFY model
and assess the accuracy of crop biomass estimation. A modified SAFY-height model will
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be developed and calibrated using ground-based measurements. The final DAM and
yield will be estimated from the calibrated modified SAFY-height model using UAV-based
canopy height and LAIe maps. The canopy height and LAIe maps of winter wheat will be
generated using the moving cuboid filter [28] and SOPC method [27].

2. Materials and Methods
2.1. Study Area

The study site locates in the west of Melbourne, Southwest Ontario, Canada (42.787707◦,
–81.594801◦). Since the study region has a shorter growing season, which can support one
harvest per year, the soft red winter wheat (Brevatn Branson, Corteva Agriscience, USA)
was seeded in October 2018 and harvested in July 2019. Two sub-fields were selected to
collect different parameters. The size of the sub-field is 100 m by 200 m. The sub-fields are
shown in Figure 1. The blue points are the sampling points in sub-field 1 (S1), and the red
points are the sampling points in sub-field 2 (S2).

Figure 1. The maps of study site. (a) The study site in Canada; (b) the sub-field 1 (S1) and 2 (S2)
within the winter wheat field. The blue points are the sampling points in S1; and the red points are
the sampling points in S2.

2.2. Ground Data Collection

The ground crop parameters collections were divided into two sub-fields since the
destructive DAM will affect the accuracy of the UAV-based LAIe and height data. These
two sub-fields were selected from one winter wheat field with the same cultivar, phenology,
and nutrition supplies. S1 was used to collect winter wheat DAM, canopy height, LAIe,
and final yield in 12 sampling locations. The Normalized Difference Water Index (NDWI)
map derived from the Sentinel 2 imagery on 22 April 2019 was used for the selection of
sampling locations. The NDWI map represents the water distribution of our study site,
which will lead to a significant variation of crop final yield. S2 was used to collect winter
wheat canopy height, LAIe, and final yield in 32 sampling locations. S2 used systematic
sampling method to evaluate model performance. In addition, the UAV-based imagery was
collected in S2. Multiple days of field work were conducted from 8 May to 20 July in 2019.
The detailed parameters and dates are shown in Table 1. The DAM was collected from
two blocks of a 0.5 m by 0.5 m section within a 2 m by 2 m area of each sampling location.
After collecting the fresh winter wheat sample, the sample was transferred to the lab and
oven dried at 80 ◦C for 24 h. The final dry weight of crop biomass was measured in the lab.
The LAIe was calculated from the digital hemispherical photograph using the CAN-EYE
v6.1. The digital hemispherical photograph was collected by a Nikon D300s camera and a
10.5 mm fisheye lens following the procedures described in Shang et al. (2014) [29]. The
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average crop canopy height was averaged from 10 measurements around the sampling
location within a 2-m radius.

Table 1. The data collection in S1 and S2, including dry aboveground biomass (DAM), canopy height, effective leaf area
index (LAIe), UAV imagery, and Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie (BBCH).

DAM (S1) DAM (S2) Canopy Height &
LAIe (S1)

Canopy Height &
LAIe (S2)

UAV Imagery
(S2) BBCH

8-May 12 samples 12 samples 20
11-May 32 samples 1257 images 21
17-May 12 samples 12 samples 32 samples 25
21-May 12 samples 12 samples 32 samples 1157 images 31
27-May 12 samples 12 samples 32 samples 1157 images 39
3-Jun 12 samples 12 samples 32 samples 49
11-Jun 12 samples 12 samples 32 samples 65
16-Jun 69
20-Jul 12 samples 32 samples 12 samples 85

2.3. Combine Harvester Yield Data Collection

The crop final yield data comes from a John Deere combine harvester at the end of
the season. The combine harvester had a 10 m wide head to collect the plant. The built-in
real-time kinematic (RTK)-global navigation satellite system (GNSS) recorded the distance
of the harvester moved every second. The area of the harvester moved will be calculated
using the width of the head and driven distance. The grain yield monitor on the harvester
recorded the grain weight, mass flow, and moisture content. The spatial yield map was
composed of many points, which were shown in Figure 2. ArcMap 10.7 (ESRI, Redlands,
CA, USA) was used to process the final yield data, including outlier removal, resampling,
and data extraction.

Figure 2. The winter wheat yield map generated from combine harvester for S2.

2.4. UAV-Based Image Collection

A DJI Phantom 4 RTK UAV system was used to collect RGB imagery for S2 on 11 May,
21 May, and 27 May. The crop phenology for these dates at the BBCH scale was 21, 31, and
39, which covered the leaf development stage to the booting stage. The Phantom 4 RTK
system can provide a 20MPix high-resolution imagery, and a ground RTK base station can
achieve very high accuracy positional information. All UAV flights were performed at
the altitude of 30 m with front and side overlapping of 90%. The UAV images have been
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processed to generate 3D point cloud data using Pix4Dmapper Pro v2.4 (Pix4D, Lausanne,
Switzerland). The total processing time of photogrammetric point cloud generation is 30 h
using a Windows computer with a 12 core Xeon cup and Quadro m4000 graphic card. The
final resolution of the aerial image is 0.8 cm, and the point density of point cloud data is
more than 4000 points/m2.

2.5. UAV-Based Plant Height and LAIe Maps

The UAV-based 3D point cloud data were used to generate the plant height and LAIe
maps for three UAV operation days. The recently developed moving cuboid filter was
used to retrieve the winter wheat plant height using the UAV-based 3D photogrammetric
point cloud data without in-situ measurements [28]. The UAV-based photogrammetric
point cloud data has very high point density with more than 4000 points/m2. The final
resolution of the products derived from photogrammetric point cloud data can be adjusted
based on the research requirement [27,28]. The spatial resolution of canopy height and
LAIe maps in this study was 2 m. In addition, the photogrammetric point cloud data can
generate canopy height and LAIe maps of winter wheat with high accuracy in the early
growth stages. The canopy height maps of winter wheat in S2 were shown in Figure 3.
The root mean square error (RMSE) for each canopy height map was 2.61 cm, 3.65cm, and
4.17 cm for the three dates respectively. The overall RMSE for all ground measurements
on three dates was 3.48 cm. The LAIe maps of winter wheat in S2 were shown in Figure 4.
The overall RMSE for all ground measurements on three dates was 0.19.

Figure 3. The Unmanned Aerial Vehicle (UAV)-based winter wheat canopy height maps in S2. (a) Plant height map on 11
May 2019; (b) plant height map on 21 May 2019; (c) plant height map on 27 May 2019. The resolution of the map is 2 m by
2 m.

The recent developed SOPC method was designed to estimate winter wheat LAIe
from UAV-based 3D point cloud data using the gap fraction theory without in-situ measure-
ments [26]. This method can successfully generate winter wheat LAIe maps at early growth
stages from the leaf development to the booting stage. The UAV-based SOPC derived LAIe
(SOPC-LAIe) maps are shown in Figure 4.
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Figure 4. The Simulated Observation of Point Cloud (SOPC) derived Unmanned Aerial Vehicle (UAV) based point cloud
effective leaf area index (LAIe) maps for S2. (a) LAIe map on 11 May 2019; (b) LAIe map on 21 May 2019; (c) LAIe map on
27 May 2019 [26].

2.6. Weather Data

Weather data comes from a weather station located on the main campus of Western
University, London, Ontario, which is 35 km away from the study site. The weather
station collected the shortwave solar radiation and air temperature every 30 min. The daily
shortwave solar radiation and the average air temperature were calculated; the data chart
is shown in Figure 5.

Figure 5. Daily shortwave solar radiation (MJ/m2) (a) and mean air temperature (◦C) (b) for the study site [28].
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2.7. Allometric Relationship Establishment

A piecewise linear regression model has been used to determine the relationship
between plant height and DAM on wheat [14]. The wheat growth can be separated into
two phases. The first phase covers the tillering and stems elongation stages; the second
phase covers the rest of the stages beyond the stem elongation stages. The equations are
shown below:

DAM = a1 × H + b1 i f ∑ Ta ≤ Tturn,

DAM = a2 × H + b2 i f ∑ Ta > Tturn, (1)

where DAM is the final dry aboveground biomass, H is the plant height, α1 is the increasing
rate of DAM to H in the first phase, b1 is the intercept in phase 1, a2 is the increasing rate of
DAM to H in the second phase, b2 is the intercept in phase 2, the ∑ Ta is the sum of optimal
air temperature accumulated since plant emergence, Tturn is the turning point between the
two phases which is the total accumulated temperature.

2.8. SAFY Model

The SAFY model has been used to simulate the winter wheat daily DAM and green
leave area index (GLAI) during the growing season based on the crop LUE and leaf
partitioning function theories [18,30,31]. The LUE theory is modelled below:

∆DAM = ELUE × Rg × εC ×
(

1 − e−k ×GLAI
)

× FT(Ta), (2)

where ELUE is the effective LUE; Rg is the incoming shortwave solar radiation; εC is
the climate coefficient, which εC = 0.48 [32–34]; the light-interception coefficient k is 0.5
under the assumption of the leaf angle distribution is uniform and the leaf inclination is a
spherical distribution [35,36]; and FT(Ta) is the temperature stress.

The daily increase of GLAI (∆GLAI) can be calculated from the fraction of the daily
DAM (∆DAM) which is portioned to leaves (PL) according to a given coefficient of specific
leaf area (SLA). The leaf partitioning function shows below:

∆GLAI = ∆DAM × PL (∑ Ta) × SLA, (3)

where PL is the fraction between leaf and dry aboveground biomass, which is determined
by air temperature and another two parameters (PLa and PLb ) [31]. The equation can be
written as follows:

PL (∑ Ta) = 1 − PLa × ePLb ∑ Ta (4)

After the air temperature reached the threshold STT , the GLAI can be calculated from
the following equation:

If ∑ Ta > STT

∆GLAI = GLAI ×
(
∑ Ta − STT

)
/Rs, (5)

where Rs is the rate of senescence.
After simulating the final DAM, the final crop yield can be calculated by multiplying

the harvest index with the DAM. The final estimated yield was compared with the harvester
measured yield to evaluate the performance of this study. The harvest index (HI) was
calculated from the ground biomass and final yield in field 1, the average for all 12 sample
points was 0.45. The equation shows below:

YIELD = DAM × HI. (6)

2.9. Modified SAFY-Height Model

The allometric relationship between crop canopy height and DAM is added to SAFY
model to develop the modified SAFY-height model. This model is able to simulate a
relationship between daily GLAI, canopy height, and DAM. First, the modified SAFY-height
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model will be calibrated using the ground-based DAM and canopy height measurements
to determine the optimal parameters of the canopy height and DAM allometric relationship
in S1 using the global optimization method, Shuffled Complex Evolution-University of
Arizona (SCE-UA) algorithm [37]. In step one, Song et al. used the LAIe map derived from
the UAV-based photogrammetric point cloud data to replace the GLAI and determined
the cultivar-specific parameters (PLa, PLb, STT , Rs) [26]. In step two, the modified SAFY-
height model will combine the UAV-based canopy height map, UAV-based LAIe map, the
cultivar-specific parameters, and allometric relationship parameters derived from step one
to simulate the final DAM. The general flow chart was shown Figure 6. Both LAIe and
canopy height data will be used to calibrate the modified SAFY-height model and calculate
cost function. The cost function combines both the RMSE of crop LAIe and canopy height.
The equation is shown as (Equation (7)):

Cost function =

[
1
N

N

∑
i=1

(GLAIsim − GLAItrue)
2

] 1
2

×
[

1
N

N

∑
i=1

(Heightsim − Heighttrue)
2

] 1
2

(7)

According to the results of Song’s study [26], the cultivar-specific parameters were
determined. The details are shown in Table 2.

Figure 6. The general flow chart of the DAM and yield estimation using the modified Simple Algorithm for Yield Estimation
(SAFY)-height model in this study. The parameters of plant height and DAM allometric relationship were determined first
calibration using plant height and ground biomass in S1 (Step 1). The final DAM and yield of S2 were determined in the
modified SAFY-height model calibration (Step 2).
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Table 2. SAFY parameters and associated values used in this study.

Parameter Name Notation Unit Range Value Source

Climatic efficiency εC - 0.48 [30–32]
Temperature range for winter wheat

growth Tmin, Topt, Tmax
◦C [0,25,30] [23,32]

Specific leaf area SLA m2/g 0.022 [23]
Initial dry aboveground biomass DAM0 g/m2 4.2 [18,23]

Light-extinction coefficient kext - 0.5 [18,23]
Day of plant emergence DOE day 64 In-situ measurement

Day of senescence DOS day 284 In-situ measurement
Daily shortwave solar radiation Rg MJ/m2/d In-situ measurement

Daily mean temperature Tair
◦C In-situ measurement

Partition to leaf function parameter a PLa - 0.2608 [26]
Partition to leaf function: parameter b PLb - 0.0015 [26]

Sum of temperature for senescence STT
◦C 1080.96 [26]

Rate of senescence Rs ◦C day 2475.48 [26]

Effective light-use efficiency ELUE g/MJ 1.5–3.5 Variable in this study
Range [18,23]

3. Results
3.1. Allometric Relationship between Plant Height and DAM

The DAM ranged from 15 to 1393 g/m2, and the plant height ranged from 18 to 90 cm
for S1 from 8 May to 20 July. The piecewise linear regression model was well established
from the plant height and DAM in S1. The relationship between canopy height and DAM
was divide into two components, which is represented by two linear models. The turning
point was the point where the data completely changes its behavior. Figure 7 shows the
relationship.

Figure 7. The relationship between winter wheat canopy height and dry aboveground biomass. Two
phases of the relationship were determined from 8 May to 20 July in S1. The blue dots represent
phase 1, which is the measurements from 8 May to 3 June; the orange dots represent phase 2, which
is the measurements from 3 June to 20 July.

After the calibration of the modified SAFY-height model using the ground measured
crop height and DAM in S1, the parameters a1, a2, b1, b2, and Tturn, in Equation (1) was
determined. The maximum, minimum, mean, median, and standard deviation (STD) list is
shown in Table 3.
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Table 3. The maximum, minimum, mean, median, and standard deviation (STD) of parameters a1,
a2, b1, b2, and Sh.

a1 a2 b1 b2 Tturn (◦C)

Maximum 17.4467 39.7575 −245.168 −1965.07 880.024
Minimum 8.28401 13.7626 −101.788 −650.488 655.86

Mean 11.601 25.75792 −159.4899 −1277.308 751.5983
Median 11.1733 25.8885 −149.1265 −1148.075 712.3645

STD 2.668668 8.14883 51.85487 441.7946 80.23252

According to the parameters of a1, a2, b1, and b2, question 1 can be written as

DAM = 11.60 × H − 149.13 i f ∑ Ta <= 712

DAM = 25.89 × H − 1148.08 i f ∑ Ta > 712. (8)

3.2. Estimated Plant DAM Using SAFY Model in S2

The median value of parameters of a1, a2, b1, and b2 were adopted in the modified
SAFY-height model to fix the relationship between winter wheat crop height and DAM.
The final DAM in S2 was derived from the modified SAFY-height model using the cultivar-
specific parameters of soft red winter wheat [26], height-DAM parameters, the UAV-based
crop height maps, and UAV-based LAIe maps. Figure 8 shows final DAM maps using the
modified SAFY-height model. Yield in the final DAM map ranged from 538 to 1808 g/m2.
Figure 9 shows the final crop yield map derived from the SAFY model and the modified
SAFY-height model which has same resolution as the harvester yield map. The yield ranged
from 303 to 904 g/m2, and the STD and mean were 81.94 g/m2 and 549 g/m2. Figure 10
shows the absolute difference yield maps for both SAFY and modified SAFY-height models
compared with the harvester yield map. The comparison of mean, STD, coefficient of
variation (CV), RMSE, and relative root mean square error (RRMSE) are shown in Table 4.

Figure 8. The estimation final DAM map derived from the modified SAFY-height model calibration
using the UAV based height and LAIe maps on 11 May, 21 May, and 27 May in S2.
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Figure 9. The yield maps for S2. (a) The harvester measured yield map; (b) the SAFY model derived yield map using
UAV-based LAIe; (c) the SAFY-height model derived yield map using UAV-based LAIe and height.

Figure 10. Absolute difference maps between the harvester grain yield and estimated yield. (a)
Absolute difference map between harvester grain yield and estimated yield map using UAV-based
LAIe; (b) absolute difference map between harvester grain yield and estimated yield map using
UAV-based LAIe and height.

Table 4. The statistic comparison between harvester measured yield and SAFY and modified SAFY-height model estimated
yield in mean, coefficient of variation (CV), standard deviation (STD), root mean square error (RMSE), relative root mean
square error (RRMSE).

Mean (g/m2) CV (%) STD (g/m2) RMSE (g/m2) RRMSE (%)

True yield 576.76 12.52 72.24
SAFY estimated yield 578.62 8.77 50.77 88 15.22

SAFY-height estimated yield 549.20 14.91 81.94 97 16.82
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4. Discussion
4.1. The Allometric Relationship between Winter Wheat Plant Height and DAM

Figure 7 shows the piecewise linear relationship between the winter wheat canopy
height and DAM in S1. It has a similar agreement to the results of Bakhshandeh et al.
(2012) [14] where the piecewise linear regression model can model the relationship between
the plant height and DAM. In this study, the winter wheat has different relationships
between plant height and DAM during the tillering stages to the booting stages (phase
one) and during booting stage to the heading stages (phase two). The rate of DAM changes
with the plant height exhibits a significant decrease after the booting stage because the
winter wheat started to produce the fruit after the booting stages, and plant height changes
become minimal.

The modified SAFY-height model using the ground measured winter wheat plant
height and DAM in S1 was determined equation 1. After adopting the median values of the
estimated parameters, Equation (1) can be written as Equation (8). The parameters a1, a2,
b1, b2 have similar values as the coefficients of the piecewise linear regression model for S1.
The turning points of the total accumulated temperature was determined from the modified
SAFY-height calibration, which was 712 ◦C on 3 June. The phenology of the winter wheat
on 3 June was the beginning of the booting stages. This turning point of accumulated
temperature indicated that the relationship between winter wheat plant height and DAM
changes after the booting stages. Based on Equation (8), the RMSE between estimated
DAM and ground measured DAM was estimated in S1. The first phase had a lower RMSE,
64 g/m2 when the total accumulated temperature was less than Tturn. The lower RMSE
reveals that the plant height contributed more to the estimation of accumulated DAM in
the early growth stages of winter wheat. The addition of plant height of winter wheat
improved DAM estimation before the booting stage.

In contrast, the second phase of the relationship between plant height and DAM
exhibited a larger RMSE, 197 g/m2. The larger RMSE revealed that the DAM derived from
plant height has a lower accuracy after the booting stages. This is because the plant height
has a lower variation in the later growth stages of winter wheat. Still, the accumulated
DAM has a more significant variation due to the LAI and soil stress differences. The most
contribution of the DAM comes from other factors rather than the plant height. Therefore,
the plant height may not be an excellent factor to indicate the DAM after the booting stages.
Although the piecewise linear regression model represents the allometric relationship
between wither wheat canopy height and DAMwell (Bakhshandeh et al., 2010) [14], this
model is incapable of demonstrating the yield variability of winter wheat after the booting
stage due to the larger RMSE.

4.2. Uncertainty of Final Yield Estimation Using the Modified SAFY-Height Model

After calibrating the modified SAFY-height model, the final winter wheat DAM and
yield map were generated in S2 (Figure 9) using the UAV-based photogrammetric LAI
and height maps. A similar pattern of the final yield map was observed in this study by
comparing the final yield map derived from the modified SAFY-height model with the
harvester measured and SAFY model final yield map. The absolute difference maps were
calculated for both the SAFY and modified SAFY-height models (Figure 10). It shows that
the upper left area in the field (blue rectangle area) has significant differences between these
two absolute yield maps. The modified SAFY-height model significantly eliminated the
estimation difference in the absolute yield map. However, the modified SAFY-height model
still has a larger difference than the SAFY model in other parts. The total number of points
with a difference (>150 g/m2) is 206 out of 1821 points. Among these 206 points, 149 points
have underestimated yield than the harvester measured yield. Most underestimated yield
zones were located at the area with a lower LAI value, which is less than 1.01 m2/m2, on
the 27 May LAI map (Figure 11). The estimation error of the canopy height derived from
the UAV-based photogrammetric point cloud should be considered since the height was
an input for the modified SAFY-model. The RMSE of all three canopy maps increased
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as the crop grew, leading to a significant variation in later canopy height estimation. In
addition, Song and Wang, (2019) [27] pointed out that the moving cuboid filter has an error
if the threshold of the filter exceeds a specific range. Therefore, introducing the allometric
relationship to the SAFY model also brings new errors for final products.

After removing the pixels with LAI value less than 1.01 on the 27 May LAIe map,
the RMSE and RRMSE were calculated for both SAFY and the modified SAFY model.
The modified SAFY-height model has lower RMSE and RRMSE, 91 g/m2 and 16.41%,
respectively, which is improved 3.3% and 0.5% from the SAFY model. In addition, the
modified SAFY-height model has a similar standard deviation and CV with the harvested
data. The details shown in Figure 12. It shows that the modified SAFY-height model has a
minor improvement in estimating the final yield in higher LAI areas.

4.3. Future Study

Although plant height and DAM have a well-estimated allometric relationship for
the winter wheat growing season, specifically in the early growth stages, the allometric
relationship does not improve the final yield estimation when using the modified SAFY-
height model. The lack of the relationship between plant height and LAI leads to a
larger RMSE and an underestimation in the final yield estimation for the entire field.
Since the new model improves the accuracy of yield estimation in high-LAI areas, the
relationship between LAI and crop height can be considered in future studies to improve
yield estimation in low-LAI areas. In addition, future research should consider external
factors, such as soil moisture and rainfall, to improve the yield estimation accuracy. Due to
the high correlation between plant height and DAM, the plant height can be used in many
other machine learning methods such as random forest and Support Vector Machine, which
interacts with different parameters and improves the yield estimation accuracy. Therefore,
the machine learning approaches could be a potential research direction on final crop DAM
and yield estimation.

Figure 11. The locations of yield were underestimated in the LAI map on 27 May.
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Figure 12. The statistic comparison between harvester, SAFY model, and modified SAFY-height
model estimated yield for high LAI area. (a) The yield mean value, coefficient of variation (CV), and
standard deviation (STD); (b) RMSE and RRMSE for two models.

5. Conclusions

This study developed the modified SAFY-height model by adding the relationship
between plant height and DAM. The modified SAFY-height model uses both plant height
and LAI information to calibrate the model and simulate the daily GLAI, plant height, and
DAM. The allometric relationship between plant height and DAM was determined using
the modified SAFY-height model in S1. In addition, the turning point of the accumulated
temperature was determined using the modified SAFY-height model. The allometric
relationship analysis reveals that the plant height is possible to estimate DAM before the
turning temperature. Still, the plant height is not a good factor in DAM estimation after this
turning point. The UAV-based plant height data before the booting stage of winter wheat,
for the first time, was applied to the modified SAFY-height model to generate the final DAM
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and yield maps. The modified SAFY-height model has a minor accuracy improvement in
estimation of the final yield in a high LAI area in the field.
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