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Abstract: Aerial drones have improved significantly over the recent decades with stronger and
smaller motors, more powerful propellers, and overall optimization of systems. These improvements
have consequently increased top speeds and improved a variety of performance aspects, along
with introducing new structural challenges, such as whirl flutter. Whirl flutter is an aeroelastic
instability that can be affected by structural or aerodynamic nonlinearities. This instability may
affect the prediction of potentially dangerous behaviors. In this work, a nonlinear reduced-order
model for a nacelle-rotor system, considering quasi-steady aerodynamics, is implemented. First,
a parametric study for the linear system is performed to determine the main aerodynamic and
structural characteristics that affect the onset of instability. Multiple polynomial nonlinearities in the
two degrees of freedom nacelle-rotor model are tested to simulate possible structural nonlinear effects
including symmetric cubic hardening nonlinearities for the pitch and yaw degrees of freedom; purely
yaw nonlinearity; purely pitch nonlinearity; and a combination of quadratic, cubic, and fifth-order
nonlinearities for both degrees of freedom. Results show that the presence of hardening structural
nonlinearities introduces limit cycle oscillations to the system in the post-flutter regime. Moreover, it
is demonstrated that the inclusion of quadratic nonlinearity introduces asymmetric oscillations and
subcritical behavior, where large and potentially dangerous deformations can be reached before the
predicted linear flutter speed.

Keywords: whirl flutter; nonlinear dynamics; fluid-structure interaction; rotor-nacelle system;
unmanned aerial systems

1. Introduction

Drones, or unmanned vehicles, are becoming more common for a variety of appli-
cations due to their increased reliability, improved aerodynamics, pilot safety concerns
with manned aircraft with regards to force limits caused by velocity/maneuverability, and
most importantly only being limited by structural and aerodynamic parameters rather
than the pilot’s ability to handle these flight conditions before losing consciousness [1].
This leads to the importance of investigating the fluid-structure interaction limitations
of these unmanned aerial systems, and addressing all physical phenomenon that can
arise. For instance, the stall effect must still be considered as the physical limits of an
airfoil can cause flight disturbances or failure. Furthermore, rotor-powered systems are
becoming increasingly utilized due to their unique ability to perform vertical take-off and
landing (VTOL) while still having the capability of operating as a fixed-wing aircraft, as
well as being cheaper to operate than jet-powered systems [2]. The most popular and
well-developed of these vehicles is the tilt-rotor, which alters the rotor configuration to
perform vertical take-off and landing or forward flight. This additional degree of freedom,
combined with large diameter rotors, causes additional complications and complexities to
an already present phenomenon known as whirl flutter.
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Whirl flutter is a potentially disastrous aeroelastic instability faced by propeller-driven
aircraft that was first witnessed in 1938 but came to prominence again in 1960 [3,4]. Whirl
flutter can cause propellers and the surrounding structures to fail and therefore must be
accurately predicted. Whirl flutter is the result of a coupling of the structure of the wing, the
aerodynamic forces and moments on the wing and the rotor, and the gyroscopic effect of
the rotor [5,6]. The rigid nature of the rotors in these VTOL systems introduces additional
couplings not seen in traditional helicopters [7]. The onset of whirl flutter is difficult to
predict, and the inclusion of the additional degree of freedom from the tilting rotors makes
this an even more challenging task. Often, for simplicity, nonlinearities are neglected in
the modeling of these systems, but these systems commonly have nonlinear characteristics
and behaviors due to the aerodynamics and the inherent structural nonlinearities in the
system, such as freeplay caused by construction characteristics, aging, and wear [8]. These
nonlinearities make the flutter prediction a more challenging task, and if they are not
accurately accounted for, it could cause a catastrophic system failure.

There is a multitude of modern propulsion systems currently in use by aerial vehicles.
A broad list of unmanned aerial vehicles using a propeller-driven system from the United
States is shown in Table 1, along with the model’s name, manufacturer, propulsion type,
maximum speed, wingspan, and overall length. The two types of propeller propulsion
systems outlined are rotary-wing (Rw) and fixed-wing (Fw), illustrated in column four of
Table 1. Due to the fundamental nature of the mathematical model, the axis of propeller
thrust or the size of the aircraft will not affect the results showing when the onset of the
whirl flutter phenomenon will occur.

Table 1. Broad list of UAVs with either fixed-wing or rotary-wing configuration. #: This column is a list of reference citation
numbers used for each aircraft.

Reference
Citation # Application Model Manufacturer Type Maximum

Speed (Km/h) Wingspan (m) Length (m)

[9] Military Black Hornet FLIR Rw 18 0.12 0.168

[10] Military Desert Hawk III Lockheed
Martin Fw 92 1.5

[11] Military InstantEye (Gen3) Physical
Sciences Rw

[12] Military Karma GoPro Rw
[13] Military K-MAX Kaman Rw 185 14.7 15.8
[14] Military MQ-1 Predator GA-ASI Fw 215 16.8 8.22
[15] Military MQ-19 Aerosonde AAI Fw 11
[16] Military MQ-1C Gray Eagle GA-ASI Fw 305 17 9
[17] Military MQ-25 Stingray Boeing Fw

[18] Military MQ-4C Triton Northrop
Grumman Fw 613 40 14.5

[19] Military MQ-8 Fire Scout Northrop
Grumman Rw 250 10.7 12.6

[20] Military MQ-9 Reaper GA-ASI Fw 445 20 11

[21] Military Phoenix 30 UAV
Solutions Rw 0.5 0.5

[22] Military RQ-11 AeroVironment Fw 81 1.4 1
[23] Military RQ-12 Wasp AeroVironment Fw 83 1 0.8

[24] Military RQ-170 Sentinel Lockheed
Martin Fw

[25] Military RQ-180 Northrop
Grumman Fw

[26] Military RQ-20 Puma AeroVironment Fw 83 2.8 1.4
[27] Military RQ-21 Blackjack Insitu Fw 167 4.9 2.5

[28] Military RQ-23 Tiger Shark

Navmar
Applied
Sciences

Corporation

Fw 148 6.7 4.5
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Table 1. Cont.

Reference
Citation # Application Model Manufacturer Type Maximum

Speed (Km/h) Wingspan (m) Length (m)

[29] Military RQ-4 Global Hawk Northrop
Grumman Fw 39.9 14.5

[30] Military RQ-7 Shadow AAI Fw 200 6 3.6
[31] Military ScanEagle Insitu Fw 150 3.11 1.71

[32] Military Silver Fox BAE,
Raytheon Fw 93 2.4

[33] Military Stalker Lockheed
Martin Fw 72 3.7

[34] Military Switchblade AeroVironment Fw 157
[35] Military T-20 JUMP Arcturus Fw 139 5.3 2.7
[36] Military T-Hawk Honeywell Rw
[37] Hobby Mini 2 DJI Rw 57 0.29 0.25
[38] Hobby Matrice 300 DJI Rw 82.8 0.43 0.42
[39] Hobby Mavic 2 DJI Rw 68 0.18 0.25
[40] Hobby Inspire 2 DJI Rw 94 0.42 0.31
[41] Hobby Phantom 4 Pro DJI Rw 72 0.35 0.35
[42] Hobby Autel EVO II Pro Autel Rw 72 0.40 0.40

[43] Hobby Brinc Lemur Tactical
Drone Brinc Rw 80

[44] Hobby TRINITY F90+ QUANTUM Tw 61 2.39 1.20

[45] Hobby Sentaero Censys
technologies Tw 72 1.20

[46] Hobby XENO FX HiTech Fw 61 1.25 1.00
[47] Hobby P-47 Thunderbolt Durafly Fw 1.1 0.99
[48] Hobby KingTwin 1700 Avios (PNF) Fw 1.7 1.2
[49] Hobby P-51 Warbird RC Moment Fw 1.2 1.1
[50] Hobby BOREY 20 Uavos Fw 108 4.4 0.9
[51] Hobby ALBATROSS 2.2 Uavos Fw 275 15.0 6.5
[51] Hobby Apus Duo 15 Uavos Fw 97 15
[51] Hobby SAT-i Uavos Fw 50 7.30 3.20
[50] Hobby SITARIA E Uavos Fw 140 5.2 2.8

[52] Hobby Albatross UAV Applied
Aeronautics Fw 129 3.0

[53] Hobby PD-2 Ukrspec
Systems Fw/Rw 140 5

[54] Hobby EOS C VTOL Threod Fw/Rw 122 5.0 1.8
[55] Hobby PENGUIN B UAV Factory Fw 130 3.3 2.3

The given data in Table 1 can be categorized by propulsion type, wingspan, length,
and maximum flight speed in order to select a planform to generate a mathematical model.
These systems rely on motor and propeller propulsion systems, each with unique geometric
and dynamic properties. The improvement to motor function and propeller design has
made rotor-powered aerial vehicles faster and more maneuverable. These systems, with
increased cruise/maximum speeds, have brought new challenges, including a structural
phenomenon known as whirl flutter. Therefore, a full mathematical model of structure and
aerodynamics is needed to proficiently define vibrational effects on the drone.

Other researchers have begun investigating this topic, but a fully-encompassing study
has not yet been carried out. Previous researchers have taken various approaches to this
problem. Many have opted to use reduced-order or lumped-parameter models solved
analytically, while others have chosen to use computational fluid dynamics (CFD) and
multiphysics packages or experiments to investigate this complex topic. Mair et al. [8]
carried out an analytical nonlinear stability analysis for a rotor system. This investiga-
tion was limited to nonlinearity in the yaw degree of freedom, and nonlinearities are
varied for different odd orders of nonlinearity (third-order, fifth-order, etc.). Bifurcation
diagrams were presented, and corrected stability boundaries were given, accounting for
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the additional nonlinearities. In a similar study, Mair et al. [56] presented an improved
tilt-rotor model and investigated the stability boundaries and bifurcations when including
odd orders of nonlinearity. Both of these analytical studies showed that a correct stability
boundary is not found through linear studies, and nonlinear effects must be included.

Rather than using analytical models, other researchers have chosen to use CFD simula-
tions to investigate whirl flutter onset and corresponding stability. Yeo et al. [57] employed
two different rotorcraft analysis codes to investigate tilt-rotor whirl flutter. Comprehensive
Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD) II and Rotor-
craft Comprehensive Analysis System (RCAS) are both used to investigate whirl flutter
and to compare results to one another. The codes compared well to each other, and it
was found that blade pitch-flap coupling, rotor lag frequency, rotor rotational speed, and
density all have a major impact on whirl flutter onset speed and therefore need to be
correctly modeled and selected. Shen et al. [58] also compared two analyses methods
for tilt-rotor. In their work, RCAS was compared to Dymore for tilt-rotor whirl flutter
prediction. Higgins et al. [59] also employed CFD simulations to investigate whirl flutter
onset and stability on the XV-15 and V-22 aircraft. Their solution technique combined the
University of Glasgow’s CFD solver (Helicopter Multi-Block) and a NASTRAN structural
model. Expanding on the research.

Researchers have not so frequently, especially in recent years, used experimental
investigations to study whirl flutter onset and characteristics. Piatak et al. [60] used an
experimental study to investigate the effects of pitch-flap coupling and control stiffness
on the stability boundaries. In a similar investigation, Wilson et al. [61] proposed a new
microwave-based measurement system for vibrations from flutter to aid other investigators
in their experimentation.

From the discoveries of tilt-rotor whirl flutter onset, some researchers have turned
towards finding a solution in order to control this potentially disastrous phenomenon.
Acree et al. [62] investigated rotor designs that could improve the stability margins of
these systems using a CAMRAD II model that allows for easy rotor design modifications.
Heeg et al. [63] carried out whirl flutter analyses for the proposed X-57 to predict any
indication that whirl flutter should be present within its operating condition for different
configurations using CAMRAD II and Dymore. Based on their analyses, they found a
proposed configuration that should not exhibit any whirl flutter in operation.

This study investigates several parameters governing the onset of whirl flutter to
identify critical configurations that can lead to flutter onset. Further research in this
work investigates the stability of whirl flutter in the presence of quadratic and cubic
structural nonlinearities. In order to better understand the overall system’s response,
several nonlinear stiffness models are selected to evaluate the hardening or softening
effects of structural stiffnesses in the two degrees of freedom of the system. A bifurcation
analysis is then performed to determine the impacts of the structural nonlinearities on the
type of instability (supercritical or subcritical) and the amplitude of oscillations. The rest
of this paper is organized as follows: The nonlinear aeroelastic modeling is presented in
Section 2 and is followed by an investigation of the linear characteristics of the system
in Section 3. The nonlinear characteristics of the system are presented in Section 4 and
the nonlinear stiffness response with linear characteristics are shown in Section 5. Lastly,
conclusions are provided in Section 6.

2. Nonlinear Aeroelastic Modeling

The aeroelastic model consists of a two degrees of freedom system simulating the
nacelle and a rigid rotor simulating the propeller [58]. The system is represented by a
spring-mass-damper system with a coupling in the yaw and pitch with propeller rotation in
a freestream flow environment. A schematic of the system under investigation is presented
in Figure 1, illustrating the rotation of the propellers, stiffness, and damping in the yaw
and pitch directions of the nacelle motion, and fluid flow normal to the initial state of
the system.



Drones 2021, 5, 122 5 of 22Drones 2021, 5, x FOR PEER REVIEW 5 of 22 
 

 

Figure 1. Schematic of a nacelle-rotor two degrees of freedom system. 

The governing equations of motion, given in Equation (1), outline the response of the 

system in pitch and yaw [8]. 

[
𝐼𝑛 0
0 𝐼𝑛

] {
�̈�
�̈�

} + [
𝐶𝜃 −𝐼𝑥Ω
𝐼𝑥Ω 𝐶𝜓

] {
�̇�
�̇�

} + [
𝐾𝜃 0
0 𝐾𝜓

] {
𝜃
𝜓

} = [
𝐹𝜃

𝐹𝜓
] (1) 

where the forcing functions are depicted as aerodynamic reactions based on the geometry 

of the propellers and rotor angular speed [8]. 

Quasi-steady aerodynamic forcing for the pitch and yaw motions is considered, as 

illustrated in Equations (2) and (3). The aerodynamic loads consider the geometric and 

kinematic responses of the system. For the forcing terms, NB is the number of blades, 𝜌 

denotes the air density, 𝑐𝑙,𝛼 represents the blade lift slope, R is the rotor radius, 𝛺 repre-

sents the rotor angular velocity, 𝑐 is the blade chord length, 𝑎 is the pivot length to rotor 

radius ratio, and 𝑉 is the freestream velocity [64,65]. It should be mentioned that the ref-

erence scenario selected for this study has the geometric and dynamic properties shown 

in Table 2 [4,66]. 

𝐹𝜃 =
𝑁𝐵

2
(
1

2
𝜌𝑐𝑙,𝛼𝑅4Ω2)𝑅

[
 
 
 
 

−

(

 
 

(

 
𝑐

𝑅
∫

𝜂4

√(
𝑉
ΩR

)
2

+ 𝜂2

𝑑𝜂
1

0

)

 + 𝑎2

(

 
𝑐

𝑅
∫

𝜂2

√(
𝑉
ΩR

)
2

+ 𝜂2

𝑑𝜂
1

0

)

 
�̇�

Ω

)

 
 

−

(

 
𝑐

𝑅
∫

(
𝑉
ΩR

)
2

𝜂2

√(
𝑉
ΩR

)
2

+ 𝜂2

𝑑𝜂
1

0

)

 𝜓 + 𝑎𝜇

(

 
𝑐

𝑅
∫

𝜂2

√(
𝑉
ΩR

)
2

+ 𝜂2

𝑑𝜂
1

0

)

 𝜃

]
 
 
 
 

 

(2) 

𝐹𝜓 =
𝑁𝐵

2
(
1

2
𝜌𝑐𝑙,𝛼𝑅4Ω2)𝑅

[
 
 
 
 

−

(

 
 

(

 
𝑐

𝑅
∫

𝜂4

√(
𝑉
ΩR

)
2

+ 𝜂2

𝑑𝜂
1

0

)

 + 𝑎2

(

 
𝑐

𝑅
∫

𝜂2

√(
𝑉
ΩR

)
2

+ 𝜂2

𝑑𝜂
1

0

)

 
�̇�

Ω

)

 
 

− 

(

 
𝑐

𝑅
∫

(
𝑉
ΩR

)
2

𝜂2

√(
𝑉
ΩR

)
2

+ 𝜂2

𝑑𝜂
1

0

)

 𝜃 + 𝑎𝜇

(

 
𝑐

𝑅
∫

𝜂2

√(
𝑉
ΩR

)
2

+ 𝜂2

𝑑𝜂
1

0

)

 𝜓

]
 
 
 
 

 

(3) 

Figure 1. Schematic of a nacelle-rotor two degrees of freedom system.

The governing equations of motion, given in Equation (1), outline the response of the
system in pitch and yaw [8].[

In 0
0 In

]{ ..
θ
..
ψ

}
+

[
Cθ −IxΩ

IxΩ Cψ

]{ .
θ
.
ψ

}
+

[
Kθ 0
0 Kψ

]{
θ
ψ

}
=

[
Fθ

Fψ

]
(1)

where the forcing functions are depicted as aerodynamic reactions based on the geometry
of the propellers and rotor angular speed [8].

Quasi-steady aerodynamic forcing for the pitch and yaw motions is considered, as
illustrated in Equations (2) and (3). The aerodynamic loads consider the geometric and
kinematic responses of the system. For the forcing terms, NB is the number of blades,
ρ denotes the air density, cl,α represents the blade lift slope, R is the rotor radius, Ω
represents the rotor angular velocity, c is the blade chord length, a is the pivot length to
rotor radius ratio, and V is the freestream velocity [64,65]. It should be mentioned that the
reference scenario selected for this study has the geometric and dynamic properties shown
in Table 2 [4,66].
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In order to develop an effective mathematical model, an unmanned aerial vehicle with
aerodynamic and structural properties listed in Table 2 is selected for this investigation. The
following geometric and dynamic properties are based on the P-51 and P-47 scale model
drones, for which the design conditions for the mathematical model are used. The P-51
and P-47 use a four-blade propeller with dimensions of 9.8 × 6”. The P-47 utilizes a 750 kV
brushless motor with a 35A ESC and the P-51 utilizes an 850 kV brushless motor and a 30A
ESC, resulting in cruise speeds between 6.6 m/s and 6.9 m/s and rotor angular velocities
roughly between 2100 deg/s and 2450 deg/s. These design conditions can also be seen in
the scaled model of XC-142A vertical takeoff and landing (VTOL) aircraft [67]. It should be
noted that, although this particular mathematical model is based on scaled drones, this
type of analysis will work on any rotary-wing manned or unmanned system, as shown
in the aeroelastic analysis performed on the AW159 Wildcat Release to Service military
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document [68]. Ribner [64] presented a deviation of the forces and moments applied to a
rotor nacelle system. When deriving the yawed motion based on the simple momentum
theory, the second-order ψ is neglected, thereby removing the coupling from the stiffness
matrix. A method of averaging, developed by Mair et al [8], was used to select the values
for the range provided by Reed III [4].

Table 2. Geometric and dynamic parameters of the system [4,8].

Description Symbol Value

Rotor radius R 0.152 m

Rotor angular velocity Ω 2291.83 deg-s−1

Freestream velocity V 6.7 m s−1

Pivot length to
rotor radius ratio a 0.25

Rotor moment of inertia Ix 0.000103 kg m2

Nacelle moment of inertia In 0.000178 kg m2

Structural pitch damping Cθ 0.05729578 Nm s deg−1

Structural pitch stiffness Kθ 22.9183 Nm deg−1

Structural yaw damping Cψ 0.05729578 Nm s deg−1

Structural yaw stiffness Kψ 22.9183 Nm deg−1

Number of blades NB 4

Blade chord c 0.026 m

Blade lift slope cl,α 0.10966 deg−1

In order to solve the eigenvalues of the system concerning the equilibrium point,
where 0 is a 4 × 4 zero matrix and I is a 4 × 4 identity matrix, the Jacobian matrix is used,
as shown in Equation (4), with Equations (5)–(10) being substituted [69].

J =
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−
[
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(6)
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A3 =
( c

R

) ∫ 1

0

n4√ (
U(i)
ΩR

)2
+ n2

dn (10)

After solving the eigenvalues, the undamped natural frequency, ω, and the damping
ratio, ζ, can be calculated using Equations (11) and (12), respectively.

ω =

√
Re(λ)2 + Im(λ)2 (11)

ζ =
−Re(λ)

ω
(12)

Utilizing this mathematical model, several influencing physical variables can be
investigated to determine which variable is most significant to initiate whirl flutter effects
in the linear system [70]. It should be mentioned that the initial conditions are bound
to a thousandth of a radian through each iteration or a reset will occur in an effort to
reduce any parametric errors that may accumulate in the recursive nature of the analysis.
This work analyzes the modal damping ratio against the ratio of freestream velocity to
blade tip velocity for the response of several parameters. The following results are based
on two possible whirl flutter modes, either clockwise with the rotor angular velocity
(FW—forward) or counter-clockwise, opposite the rotor angular velocity (BW—backward).

3. Linear Characteristics of the System: Onset Speed of Whirl Flutter

Initially, a parametric study for the linear system is performed to determine the main
aerodynamic and structural characteristics that affect the onset of instability. A nonlinear
analysis is then performed, where nonlinearities are introduced into the nacelle structural
properties, and the effects of different combinations of nonlinear functions and locations
in the system are discussed. The parameters investigated in this study are the number
of blades, length of blades, rotor angular velocity, chord length, structural yaw stiffness,
structural pitch stiffness, and nacelle moment of inertia. The mathematical quantities for
each of these conditions are independently varied, and the response on the modal damping
ratio is plotted. The first variable tested is the number of blades; the resulting modal
damping ratio curves are illustrated in Figure 2a, in which the red portion of the plot area
is related to the unstable flutter region. The instability region shown in a red tint begins at
a modal damping ratio of zero and continues through all negative values. The instability
is shown from Equation (12) where the eigenvalues are mathematically represented in
combination with the eigenvalue stability theory. As the number of blades is increased
from two to six, there is a slight decrease in the U/Vtip of instability crossing. This indicates
that as more blades are introduced to aerodynamic systems, whirl flutter is initiated at a
slightly lower freestream velocity. Furthermore, it should also be noted that whirl flutter
will only occur in the BW angular direction due to the real terms of the eigenvalues [70].

The second study investigates the effects of the blade radius, R, on the onset speed of
flutter of the system, as depicted in Figure 2b. For this section, a four-blade system is used,
and the length of each blade is varied simultaneously. Based on the results, increasing the
length of the blades leads to a decrease in the required freestream velocity to induce flutter.
However, there is a notable increase in the modal damping ratio as a result of the increased
length, once again, keeping the same Ix, only the BW angular direction leads to flutter.

Next, the effect of altering the rotor’s angular velocity on the system’s instability is
studied, as shown in Figure 2c. As expected, by increasing the rotor velocity, the onset of
flutter begins at lower freestream velocities. This effect is because the velocity near the tip
of the blade is increasing as the rotor velocity increases, which would inevitably make the
equality of U/Vtip approach zero. The modal damping ratio is not significantly altered, and
BW is the only configuration by which flutter is initiated, as verified by Mair et al. [8].



Drones 2021, 5, 122 8 of 22

Drones 2021, 5, x FOR PEER REVIEW 8 of 22 
 

and the length of each blade is varied simultaneously. Based on the results, increasing the 

length of the blades leads to a decrease in the required freestream velocity to induce flut-

ter. However, there is a notable increase in the modal damping ratio as a result of the 

increased length, once again, keeping the same Ix, only the BW angular direction leads to 

flutter. 

Next, the effect of altering the rotor’s angular velocity on the system’s instability is 

studied, as shown in Figure 2c. As expected, by increasing the rotor velocity, the onset of 

flutter begins at lower freestream velocities. This effect is because the velocity near the tip 

of the blade is increasing as the rotor velocity increases, which would inevitably make the 

equality of U/Vtip approach zero. The modal damping ratio is not significantly altered, and 

BW is the only configuration by which flutter is initiated, as verified by Mair et al. [8]. 

Concerning the influence of the chord length of the blade on the system’s instability, 

it is clear from the plotted curves in Figure 2d that a notable variation takes place in the 

flutter response by increasing the chord length. Indeed, an increase in the chord length 

results in an increase in the aerodynamic force and, hence, the flutter speed takes place at 

smaller speeds. Once again, only the BW direction causes flutter instability. 

  
(a) (b) 

  

(c) (d) 

Figure 2. Modal damping ratio plotted against the ratio of freestream velocity to blade tip velocity for the response of (a) 

number of blades, (b) length of blades (radius), (c) rotor angular velocity, and (d) chord length. 
Figure 2. Modal damping ratio plotted against the ratio of freestream velocity to blade tip velocity for the response of
(a) number of blades, (b) length of blades (radius), (c) rotor angular velocity, and (d) chord length.

Concerning the influence of the chord length of the blade on the system’s instability,
it is clear from the plotted curves in Figure 2d that a notable variation takes place in the
flutter response by increasing the chord length. Indeed, an increase in the chord length
results in an increase in the aerodynamic force and, hence, the flutter speed takes place at
smaller speeds. Once again, only the BW direction causes flutter instability.

Next, the impacts of the moment of inertia regarding the rotor and nacelle, as well as
the effects of the linear pitch and yaw on the onset of flutter, are investigated, as presented
in Figure 3. Inspecting these plots, it is clear that if the rotor angular velocity is chosen
in the clockwise direction (FW), flutter cannot take place and an increase in the coupled
modal damping is obtained. Further, an increase in the nacelle or rotor moment of inertia
results in a decrease in the onset speed of instability, as shown in Figure 3a,b, respectively.
As for the yaw and pitch stiffnesses, they have a negligible effect on the flutter speed of the
system, as depicted in Figure 3c,d, respectively.
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Based on this linear investigation on the effects of the system’s parameters on the
onset speed of instability, it is shown that the most influential parameters initiating whirl
flutter at a lower U/Vtip velocity are rotor angular velocity and length of the blades. On
the other hand, the other studied parameters have little effect on the whirl flutter speed.
In particular, the linear yaw and pitch stiffnesses have a negligible effect on the onset of
instability. It should be mentioned that the clockwise direction (FW) for the rotor angular
velocity results in an increase of the total damping in the system and hence no flutter can
be present.

4. Bifurcation Analysis: Effects of the Nonlinear Stiffnesses on the System’s Response

There are many sources of nonlinearities in systems subjected to whirl flutter, including
material properties, control mechanisms, and fixtures to aerodynamic nonlinearities, such
as separated flow and dynamic stall, among others. In this work, the focus is on the possible
structural sources of nonlinearities. These nonlinearities can cause either the hardening or
the softening of structural behaviors. These later behaviors can introduce several different
post- and pre-flutter responses in the bifurcation diagrams of the rotor-based system. In
the rest of this study, different nonlinear functions for the restoring moment for pitch and
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yaw degrees of freedom are considered. The parameters considered for the subsequent
analyses can be seen in Table 2.

The first case examined is the cubic restoring moment, depicted in Figure 4a, included
symmetrically in both pitch and yaw degrees of freedom. The linear term remains constant
as the base value while the cubic term is varied. It follows from the plotted curves in
Figure 4a that, as the nonlinearity is increased, there is a hardening effect characterized
by an increase in the moment at higher deflections. Mathematically, the cubic term in this
defining function creates a more significant moment version angle growth, which rapidly
affects the data at values greater than 10◦.
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The second case of restoring moment considered is the linear-quadratic-cubic case, for
which the linear and cubic terms are kept constant and the quadratic coefficient is varied,
as depicted in Figure 4b. The introduction of this quadratic term results in an asymmetry
in the restoring moment curve, although the restoring moment still presents a hardening
effect. The same nonlinear restoring moment is again introduced in both pitch and yaw.
The next nonlinear case investigated is the third- and fifth- order case while varying the
cubic coefficient. As illustrated in Figure 4c, the first four cubic- and fifth-order cases
resemble mainly hardening behaviors. However, the last case, 0.5ψ − 20ψ3 + 500ψ5, has
initial softening between 0◦ and 5◦, after which it begins to exhibit hardening. This case
within the cubic- and fifth-order investigation of this system introduces a new parameter
to the study by making the softening cubic term dominate the given angles. This cubic
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softening behavior is investigated to understand its effects on the angles of pitch and yaw
on the system.

The final case considered in this work investigates the linear, quadratic, cubic, and
fifth-order representation for the yaw and pitch restoring moments. As illustrated in the
moment versus angle plot in Figure 4d, the initial deflection curve represents softening
behavior that transitions into hardening. It should be noted that the cubic term in this case
is negative, which causes the slope of the deflection to be concave downward. It is further
understood that the cubic- and fifth-order terms produce inflection points after about 4◦,
which creates an upward concave curve.

The nonlinear response of this system is shown by the bifurcation diagrams, illustrated
in Figure 5, presenting the variation of the maximum angular deflection as a function of
the freestream velocity. The presence of the hardening structural nonlinearity in the system
introduces limit cycle oscillations to the system in the post-flutter regime. The symmetry
of these nonlinear terms in the two degrees of freedom causes an equivalent response
in both the pitch and yaw deflections. Considering the linear-cubic case of nonlinearity,
Figure 5a shows the Hopf bifurcation occurring at roughly 5.66 m/s, with a supercritical
type behavior [71–74]. As the base value of the cubic term increases, the maximum angular
deflection decreases. This response indicates the increase of the hardening effect, which
causes the full system to reduce the angular deflection. Additionally, the maximum
freestream velocity is limited because there is a possibility of unpredicted stall effects that
makes freestream velocities over 10 m/s unfeasible and unrealistic.
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As observed from the plotted curves in Figure 5b, the inclusion of the positive
quadratic term has a negligible effect on the bifurcation diagram of the system, which can
be seen by the lower maximum deflection at the flutter point and end of the simulation. As
the nonlinear terms are included in both pitch and yaw, the dynamical response in both
degrees of freedom look almost the same. The quadratic nonlinearity in the described case
is further examined, as illustrated in Figure 6b. It is clear from the time histories shown
in Figure 6b that the pitch and yaw angular deflections are not in agreement. Based on
the coupled system proposed, there are inherent asymmetries in the aerodynamic force.
However, the coupling between θ and ψ is not primarily responsible for the described
behavior shown in both the time histories and phase portraits in Figure 6b, which will be
discussed in-depth later. This behavior is known as the drift effect, which is caused by the
presence of the quadratic nonlinearity.

As previously mentioned, the possibility of obtaining a subcritical Hopf bifurcation
may exist within linear-cubic-fifth and linear-quadratic-cubic-fifth representations of the
restoring moment versus the yaw or pitch angle. This is due to the presence of the softening
effect in these representations. Therefore, the bifurcation diagrams’ simulations are run
forward and backward in order to detect the subcritical instability if it exists. The results for
the pitch deflections in the forward and backward simulations are overlaid with each other
and illustrated in Figure 5c,d for both representations. The results clearly show the presence
of the subcritical instability, for which there is a hysteresis region when the nonlinear
softening effects become more prominent. These results indicate that there are critical
values of the negative cubic nonlinearity at which the system changes instability from
supercritical to subcritical. It should be mentioned that the positive quadratic nonlinearity,
included in the fourth representation (Figure 5c), leads to a reduction in the softening
effect nonlinearity, and hence the hysteresis region becomes smaller and smaller when the
quadratic nonlinearity is increased.

As briefly mentioned previously, the drift effect is an underlying reason for the unusual
response of the system when the quadratic nonlinearity is present in the restoring moment
representation, as shown in Figure 5b. The time history of the steady-state response for
quadratic and cubic cases previously described is depicted in Figure 6. For each of the
five cases, the drift effect is an apparent and distinguished difference between the coupled
θ and ψ deflections, as shown in Figure 6c. In order to visualize the drift effect in case
of the linear-quadratic-cubic configuration, the fifth scenario is analyzed, and the results
are shown in Figure 6d. Therefore, the quadratic and cubic nonlinear stiffness scenario is
reevaluated considering the peak-to-peak measurement. With the inclusion of this shift,
the two angular deflections in the pitch and yaw directions follow the same trends and
very closely overlap.

Further investigation into the time series of the fifth case is shown in Figure 6b. In
the defined scenario, measurements for the angle are made considering the maximum
amplitudes. However, as shown in the time history plot, the maximum values of the
pitch and yaw angles occur at separate maximum values due to the drift effect and phase
difference. In all cases, peak-to-peak amplitude measurements are necessary for accurate
results when the quadratic nonlinearity is present in the restoring moment.
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The maximum angles for the pitch and yaw at two critical points are illustrated in
Table 3 for the linear-cubic case. The first maximum point shown occurs at a freestream
velocity of 6 m/s, considered a point after flutter begins. The second maximum point
occurs at 10 m/s, which is selected as the limit of applicability for this mathematical model
due to the linear representation of the aerodynamic forces. Every wind speed beyond the
10 m/s threshold is uncertain due to the possibility of the stall effect within the system,
which the model does not account for. Each of the four scenarios is outlined in Table 3, with
the maximum deflection angle in degrees after the point of flutter, 6 m/s, and at the end of
the simulation, 10 m/s, although it should be noted that, as illustrated in Figure 5, not all
the bifurcation diagrams are considered to the end of simulation time at 10 m/s. However,
this data is still included in the table to illustrate the parametric trends. For instance, in
the linear-quadratic-cubic-fifth order configuration, the maximum deflection at the end
of the simulation would be around 15◦, which, as mentioned before, would introduce the
possibility of the stall effect, which has not been accounted for in this mathematic model.

Table 3. Points of maximum deflection for all scenarios.

Equation
Max (deg) @ Point

after Onset of Flutter
(6 m/s) Pitch-θ

Max (deg) @
End of Simulation

(10 m/s) Pitch-θ

Max (deg) @ Point
after Onset of Flutter

(6 m/s) Yaw-ψ

Max (deg) @
End of Simulation

(10 m/s) Yaw-ψ

Cubic nonlinearities

0.5ϕ + 100ϕ3 1.753 6.720 1.753 6.720

0.5ϕ + 200ϕ3 1.239 4.752 1.239 4.752

0.5ϕ + 300ϕ3 1.012 3.880 1.012 3.880

0.5ϕ + 400ϕ3 0.876 3.360 0.876 3.360

0.5ϕ + 500ϕ3 0.784 3.005 0.784 3.005

Quadratic & cubic nonlinearities

0.5ϕ + 0.1ϕ2 + 100ϕ3 1.753 6.720 1.753 6.720

0.5ϕ + 0.5ϕ2 + 100ϕ3 1.752 6.720 1.752 6.720

0.5ϕ + 1.0ϕ2 + 100ϕ3 1.748 6.720 1.748 6.720

0.5ϕ + 5.0ϕ2 + 100ϕ3 1.733 6.725 1.735 6.725

0.5ϕ + 10ϕ2 + 100ϕ3 1.360 6.870 1.390 6.880

Cubic & fifth-order nonlinearities

0.5ϕ − 0.10ϕ3 + 2500ϕ5 4.6525 6.695 4.653 6.695

0.5ϕ − 1.0ϕ3 + 2500ϕ5 4.7255 6.755 4.726 6.755

0.5ϕ − 5.0ϕ3 + 2500ϕ5 5.065 7.000 5.066 7.000

0.5ϕ − 10ϕ3 + 2500ϕ5 5.503 7.305 5.504 7.305

0.5ϕ − 20ϕ3 + 2500ϕ5 6.398 7.370 6.399 7.370

Quadratic, cubic, and fifth-order nonlinearities

0.5ϕ+ 0.05ϕ2 − 20ϕ3 + 500ϕ5 12.389 14.735 12.392 14.735

0.5ϕ+ 0.10ϕ2 − 20ϕ3 + 500ϕ5 12.386 14.735 12.388 14.735

0.5ϕ+ 0.20ϕ2 − 20ϕ3 + 500ϕ5 12.197 14.735 12.195 14.725

0.5ϕ+ 0.50ϕ2 − 20ϕ3 + 500ϕ5 12.188 14.730 12.187 14.710

0.5ϕ+ 1.00ϕ2 − 20ϕ3 + 500ϕ5 11.256 14.950 11.257 14.845

The phase portraits of the pitch and yaw degrees of freedom when considering the
four restoring moment representations are illustrated in Figure 7. Clearly, the overall
stability of the defined system remains stable within the boundaries shown for each case.
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It should be noted that the phase portraits are considered at the maximum freestream
velocity in each of the four scenarios from Figure 5. The trajectories in phase space suggest
an asymmetric behavior, and it is essential to mention that the nonlinearity is symmetric
(cubic) and present in pitch and yaw symmetrically. The aerodynamic behavior introduces
this asymmetry under propeller rotation and nacelle motion.
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0.5𝜑 + 1.00𝜑2 − 20𝜑3 + 500𝜑5 11.256 14.950 11.257 14.845 
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The maximum angular deflection for pitch and yaw degrees of freedom based on
linear, quadratic, and cubic nonlinear stiffnesses are illustrated in Figure 7b. Based on
the bifurcation diagram, the flutter speed occurs at roughly 5.66 m/s, as it has in the
previous case due to the fundamental nature of the system with the presence of the
supercritical instability. However, unlike the previous scenarios, there is a noticeable dip
in the maximum deflection at ~7.6 m/s for case 5. The behavior that occurs at 7.6 m/s
may indicate the presence of a secondary bifurcation. To test this, a study of the phase
portraits before and immediately after this dip is investigated. Furthermore, it can be seen
in Figure 7c that there is a sudden step in the trends of the data at the point of flutter, which
could indicate subcritical behavior in the system. As for the fourth representation of the
restoring moment, the phase portraits in Figure 7d illustrate the complex behavior of the
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system. In the phase portrait for the pitch and yaw angles, there are three discernable
orbits: a global orbit spanning from −7.5 to 7.5 degrees and two local orbits within.

5. Effects of the System’s Properties and Number of Blades on the Nonlinear Response
of the System

A study based on the linear results is considered for the nonlinear first case of the
linear-cubic-fifth-order configuration, shown in green in Figure 7, 0.5ϕ − 0.1ϕ3 + 2500ϕ5.
It should be noted that the parameters investigated for this particular case were run with
both increasing and decreasing velocities to discover the effects of each parameter on the
subcritical or supercritical instability of the system under investigation. The impact of the
nacelle moment of inertia is first investigated, as depicted in Figure 8a. It is clear that, as
the nacelle moment of inertia increases, a slight variation from a supercritical to subcritical
becomes apparent. This is shown by the two extremes for this parameter, In equal to
0.0001 kg-m2, shown in red, and on the other end, In equal to 0.0006 kg-m2, shown in cyan.
The forward and backward simulations overlap and show supercritical behavior at the
point of flutter. However, the forward and backward simulations, shown in green, exhibit
subcritical Hopf bifurcation. This bifurcation diagram plot shows a clear trend of increasing
subcritical behavior in the system as the nacelle moment of inertia increases, although the
transition rate is relatively slow. It should be mentioned that the increase of the nacelle
moment of inertia results in an increase in the whirl flutter speed, as demonstrated in the
linear analysis Figure 3a.
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The second parameter investigated in this study is the rotor moment of inertia. The
corresponding bifurcation diagrams are shown in Figure 8b. Inspecting this figure, the
increase in the rotor moment of inertia is followed by a decrease in the linear flutter
speed, as expected from the linear analysis Figure 3b. Additionally, it is noted that, as
the rotor moment of inertia increases, a much faster rate from a supercritical to subcritical
instability takes place compared to the nacelle moment of inertia effects. This is illustrated
by considering the two boundaries for this parameter, Ix equal to 0.00005 kg-m2, shown in
red, and Ix equal to 0.0006 kg-m2, shown in cyan. The forward and backward simulations
in red overlap and show supercritical Hopf bifurcation. However, the cyan forward and
backward simulations exhibit subcritical behavior. This plot shows a clear trend of rapidly
increasing subcritical behavior in the system as the rotor moment of inertia increases.

The effects of varying the length of the blades (radius) using a four-blade system as
the base case are studied in Figure 8c. As demonstrated in the linear analysis Figure 2b,
an increase in the blade length is followed by linear flutter speed reduction, which is also
observed in the bifurcation diagrams shown in Figure 8c. Further, as the length of the blade
increases, the system transitions from a slightly subcritical instability to a supercritical
one. It should be noted that the radius shown in Figure 2b of 0.1016 m is unable to run
at the given nonlinear parameters of this system. Indeed, the linear flutter speed for
this specific radius is higher than 10 m/s. The results of this parameter study suggest
a nonlinearly varying flutter speed as the length of the blades increases, as well as the
convergent behavior to a supercritical instability.

The plotted bifurcation diagrams shown in Figure 8d show the influence of the number
of blades on the system’s instability. This portion of the study investigates the effects from
having two to six blades when considering a constant base blade length from Table 2.
Clearly, as showed in the linear analysis Figure 2a, the whirl flutter speed increases when
the number of blades is decreased. Further, the subcritical nonlinearity is more prominent
when the number of blades is decreased, and the flutter speed is higher.

Next, the impacts of the system’s properties and number of blades on the system’s
response and instability are investigated when considering the fifth case of the linear-
cubic-fifth representation, shown in pink in Figure 5, 0.5ϕ − 20ϕ3 + 2500ϕ5. It should be
mentioned that this scenario showed subcritical Hopf bifurcation in Figure 5. Similar to
the plots shown in Figure 8, the same properties are studied when considering forward
and backward speeds in order to determine the effects of each parameter on the instability
of the given system. Furthermore, the parametric studies for all cases show a variation
in the freestream velocity at which flutter occurs. Considering that the case used for this
parameter study was initially subcritical at the given base parameters, the effects of each
parameter are expected to follow similar trends.

It follows from the plots shown in Figure 9 that the subcritical instability takes place
in all configurations, and all parameters investigated do not change the type of instabil-
ity. However, their effects shown in Figure 8 are present when considering the fourth
representation for the restoring moment. Indeed, an increase in the nacelle moment of
inertia has a negligible impact on the system’s instability, and all hysteresis regions are
similar and only linear effects of the nacelle moment of inertia are present, as depicted in
Figure 9a. Concerning the rotor moment of inertia effects on the type of instability and
system’s response, it follows from Figure 9b that the linear influence of this parameter
is dominant on the flutter speed. In addition, similar to the previous effects shown in
Figure 8b, the subcritical behavior becomes more prominent for higher values of the rotor
moment of inertia.

The plots in Figure 9c,d illustrate the impacts of the blade length and number of blades
on the system’s performance and stability. Inspecting these figures, it is observed that a
reduction in the blade length or the blade number result in an increase in the linear flutter
speed of the system as well as a more notable subcritical effect on the system’s instability.
This trend is particularly important when the number of blades is selected to be two, as
shown in Figure 9d.
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6. Conclusions

The influence of drones on modern society can be seen around the world, from
industry and farming to warfare. By understanding the phenomenon known as whirl
flutter, designers and manufactures can improved system lifespans and avoid catastrophic
failure. Unmanned ariel systems are taking aviation to new heights, limited only by the
structural and aerodynamic parameters rather than the pilot’s ability to handle these
flight conditions. This is why, now more than ever, it is important to investigate the
structural aeroelastic limitations of these systems and address the phenomenon that can
arise. Specifically, whirl flutter, an aeroelastic instability present in propeller-driven aircraft,
is a difficult phenomenon to predict. Nonlinearities in the system, both structural and
aerodynamic, can contribute to the onset of whirl flutter, complicating its prediction. In
this study, a nonlinear reduced-order model was used to investigate the effects of different
system’s parameters on whirl flutter and the system’s response and instability to structural
nonlinearities. A parametric study was carried out and properties that have a larger impact
on the onset of whirl flutter were identified and evaluated. It was found that more blades,
shorter blade lengths, increased angular velocity, and increased chord length all induce a
lower critical linear flutter velocity, meaning that these are crucial features to optimize and
focus on during the designing phase. Other property effects on the system’s linear stability
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were explored. It was demonstrated that the pitch and yaw stiffnesses have a negligible
effect on the linear whirl flutter speed.

Considering one system configuration, the influence of different structural nonlin-
earities was investigated. Multiple polynomial nonlinearities were introduced into the
system, including symmetric cubic hardening nonlinearities for the pitch and yaw de-
grees of freedom; purely yaw nonlinearity; purely pitch nonlinearity; and a combination
of quadratic, cubic, and fifth-order nonlinearities for both degrees of freedom. It was
shown that hardening structural nonlinearities introduce limit cycle oscillations in the
post-flutter regime. Including a quadratic nonlinearity causes asymmetric oscillations due
to the presence of the drift effect. Including softening cubic nonlinearity resulted in the
presence of subcritical Hopf bifurcations, which can cause large amplitude deformations
before the predicted flutter speed. It was shown that there is a significant effect of the
system’s properties and number of blades on the type of instability, depending on the
present structural nonlinearities in the system.
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