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Abstract: In this article we demonstrate that acceleration and deceleration of direction-turning drones
at waypoints have a significant influence to path planning which is important to be considered for
time-critical applications, such as drone-supported search and rescue. We present a new path
planning approach that takes acceleration and deceleration into account. It follows a local gradient
ascend strategy which locally minimizes turns while maximizing search probability accumulation.
Our approach outperforms classic coverage-based path planning algorithms, such as spiral- and
grid-search, as well as potential field methods that consider search probability distributions. We
apply this method in the context of autonomous search and rescue drones and in combination with
a novel synthetic aperture imaging technique, called Airborne Optical Sectioning (AOS), which
removes occlusion of vegetation and forest in real-time.
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1. Introduction

Autonomous UAVs are becoming more and more adept at handling complex tasks
and are thus used in various civil and commercial applications [1]. However, autonomous
and adaptive path planning still poses serious challenges due to numerous constraints,
such as limited energy, speed, and payload. An additional constraint in search and res-
cue scenarios can be considered of locating the target as fast as possible. This type of
problem is well studied in literature and is termed as a minimum time search problem
(MTS) [2–14]. The most prominent objective in these approaches is to optimize the expected
time of target detection [3–6]; however, other alternative approaches involve optimizing the
probability of target detection [7–9,15], minimizing its counterpart, i.e., probability of non-
detection [10,11] or maximizing the information gain [12,13,16]. Various sub-optimal and
heuristics-based algorithms such as gradient-based approaches [7,10–12,15], cross-entropy
optimization [2,5], Bayesian optimization algorithms [4], ant colony optimization [6], or
genetic algorithms [3] have been proposed to address the NP-hard complex problem [13].
These approaches can also be differentiated based on the considered UAV dynamics mod-
els, where they either do not consider velocity at all [2,4–9,15], or only consider simple
linear velocity models [3,10,11] but not acceleration or deceleration.

In addition to efficient path planning, effective imaging is also essential for wilderness
search and rescue operations. Large depth of field of conventional cameras (resultant
of having a narrow aperture) often project sharply the entire occlusion volumes (such
as forests) into the images captured. Objects of interest (people in search and rescue
scenario) at a particular distance often remain occluded by the occluders (such as forests).
Airborne optical sectioning (AOS) is a wide synthetic-aperture aerial imaging technique
that applies camera drones for the real-time removal of occlusion caused by vegetation,
such as forests [15,17–25]. It has been demonstrated as a capable and effective tool in
various applications (such as archaeology [17], wildlife observation [21], and search and
rescue [15,24]). AOS’ efficiency concerning the occlusion density, occluder sizes, number of
integrated samples, and size of the synthetic aperture has been explained by employing a
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randomly distributed statistical model [19,25]. By computationally integrating individual
images captured over a large scan area (possibly hundreds to thousands of square meters)
with narrow aperture camera optics, AOS generates integral images of an extremely
shallow depth of field below an occluding volume (cf. Figure 1b). These images enable
optical slicing through dense occlusion (caused by leaves, branches, and bushes) and
reveal focused targets in each slice (such as artefacts, objects, wildlife, or persons) which
would remain occluded for regular cameras (cf. Figure 1c). A fully autonomous and
classification-driven UAV (cf. Figure 1a) has been developed and deployed for carrying out
wilderness search and rescue operations [15]. The system presented in [15] comprises of
two essential and independent modules (AOS based imaging and classification module and
an adaptive path planning module). Thermal images are acquired in a 1D sampling pattern
and integrated for achieving an occlusion free view of the ground/target. A pre-trained
deep learning network achieves an average precision of 86% for detecting person in integral
images. In [24] we have already demonstrated how classification of partially occluded
persons in forests using aerial thermal images is significantly more effective when AOS
is used to integrate single images before classification rather than combined classification
results of single images. However, certain environmental conditions (warm background
temperature, precipitation, fog, etc.) can affect the performance of the thermal imaging
system and thus limiting the efficiency of AOS.
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With AOS, we achieve an unoccluded view (integral image) of the people in real-time. A pre-trained deep learning classi-
fier automatically detects them with >90% average precision [15,24]. 

In our previous work [15], a potential-field [14] based adaptive path planning was 
applied that was driven by confidences from a deep-learning person classifier collected 
during the flight. The probability map used by the path-planning algorithm was continu-
ously updated with classification confidence values of potential findings. However, accel-
eration and deceleration were also not considered, which makes path-planning highly un-
realistic in practice—especially for rotor-based drone systems that navigate through way-
points. In this work, we focus on achieving a linear velocity over the scanned region while 
considering the UAV’s acceleration and deceleration to plan its trajectories. Achieving 
constant velocity over the scanned region is essential for uniform sampling in AOS [15]. 
We also propose a gradient-based approach that maximizes the probability of target de-
tection with the above mentioned limitations. This proposed path planning algorithm can 
directly replace our old potential-field based method while utilizing the other aspects of 
AOS (e.g., integral imaging, person classification) for target detection as it is described in 
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deceleration into account, is described in Section 2.1 whereas Section 2.2 describes our 
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Figure 1. Airborne Optical Sectioning (AOS). (a) An autonomous drone [15] was developed and deployed for search
and rescue with its payload (thermal camera, Raspberry Pi, Intel Neural Compute Stick, LTE hat) shown in the inset.
(b) Wide synthetic aperture imaging principle with AOS for search and rescue purposes. Single images captured through a
large scan are computationally integrated (registered to the ground surface and averaged) to remove occlusion [15,17–25].
(c) Occlusion removal result with AOS: thermal signature of occluded people in single images is quite similar to that of
trees. With AOS, we achieve an unoccluded view (integral image) of the people in real-time. A pre-trained deep learning
classifier automatically detects them with >90% average precision [15,24].

In our previous work [15], a potential-field [14] based adaptive path planning was
applied that was driven by confidences from a deep-learning person classifier collected dur-
ing the flight. The probability map used by the path-planning algorithm was continuously
updated with classification confidence values of potential findings. However, acceleration
and deceleration were also not considered, which makes path-planning highly unrealistic in
practice—especially for rotor-based drone systems that navigate through waypoints. In this
work, we focus on achieving a linear velocity over the scanned region while considering
the UAV’s acceleration and deceleration to plan its trajectories. Achieving constant velocity
over the scanned region is essential for uniform sampling in AOS [15]. We also propose a
gradient-based approach that maximizes the probability of target detection with the above
mentioned limitations. This proposed path planning algorithm can directly replace our
old potential-field based method while utilizing the other aspects of AOS (e.g., integral
imaging, person classification) for target detection as it is described in [15]. Our trajectory
planning, which takes a dynamic UAV model with acceleration and deceleration into
account, is described in Section 2.1 whereas Section 2.2 describes our proposed algorithm
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to maximize the probability of target detection. Section 3 presents simulation results for
various representative probability distributions, and in Section 4 we discuss limitations
of our approach and the potential of future UAV models and flight controllers with more
dynamic maneuver capabilities for path planning.

2. Materials and Methods

Most commercial drones (especially rotor-based drones) only support piecewise lin-
ear waypoint flights and are still not able to fly continuously at a high uniform speed.
They need to stop, or slow down (due to limitations of maneuvering and tracking speed
capability), before changing directions. Not considering the changes in acceleration and de-
celeration leads to an unrealistic path planning, as illustrated in Section 2.1. In Section 2.2,
we present a new path planning approach that considers acceleration/deceleration and
outperforms our previous potential field based method used in [15], as well as classic
coverage-based path planning algorithms (i.e., spiral search or grid search).

2.1. Acceleration-Driven Trajectory Planning

As in [15], we want to assume the search region to be discretized into a uniform grid
of 30 m × 30 m cells, and that cells are sampled horizontally, vertically, or diagonally at
constant velocity to ensure full coverage of the cell within the drones’ field-of-view and
uniform sampling. Similar to our work in [15], we utilize calibrated cameras and GPS
information to project the digital elevation model of the terrain within each cell. The drone
samples multiple single images while crossing each cell and combines them to AOS integral
images. Flight speed within a cell must be constant to ensure uniform sampling for AOS,
since the person classifier used (YOLOv4-tiny network architecture [26]) was trained with
uniformly sampled image data. A non-uniform sampling which differs from the training
data would significantly reduce classification rate. Person classification is carried out for
each integral image. Each cell is associated with the probability of a person being found
within it (cf. Figure 2). The probability maps are initially defined by the rescue team (a
uniform probability map is assumed in its absence), and is adapted during flight based
on confidence scores of the person classifier. The quality of the initial probability map
accounts for how much area has to be scanned until the person is potentially found. In
the worst case, the whole area has to be covered. A discussion on adaptive sampling and
person classification is out of the scope of this article, and is independent of the presented
path-planning approach. The interested reader is referred to [15] for more details. Thus
far, constant flight speeds were assumed for the entire path through search area, which
does not hold in practice because of finitely fast accelerations and decelerations at the
turning waypoints.

Our new trajectory planner ensures that each scanned cell is crossed exactly with the
desired and constant scanning speed (see Figure 3a). This, however, introduces additional
linear trajectories (for acceleration and deceleration shown in Figure 3b) at both ends
(entrance and exit) of the scanned cell. Before entering it, the drone must be decelerated
to the desired scan speed and after leaving it the drone can be accelerated again to the
drone’s maximum velocity (to progress quicker to the next scan cell, see Figure 3c). We
utilize a kinematics based linear motion model to generate these piecewise linear path
segments. The distance between the entrance and exit edges of the scanned cell and the
auxiliary waypoints at which deceleration starts and acceleration is finished are computed
as follows: d =

(
v2

2 − v2
1
)
/(2a), where v1, v2 are the velocities before and after accelera-

tion/deceleration, and a the rate of acceleration/deceleration (positive/negative).
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for path planning, as explained in [15]. (a) Ignoring acceleration/deceleration leads to an unrealistically short flight path 

Figure 2. Probability map of a practical search and rescue scenario considered in [15]. The potential field algorithm is used
for path planning, as explained in [15]. (a) Ignoring acceleration/deceleration leads to an unrealistically short flight path
and time of 1291 m and 225 s. (b) Considering acceleration/deceleration increases path-length and flight-time to 1489 m
and 380 s, respectively. Start point (green circle), person found (red circle), detection probabilities (colors of cells), drone
speed (colors of path segments). The axillary acceleration/deceleration trajectories are the segments that gradually change
colors in (b). Each cell is 30 m × 30 m. The search area covers 6.3 ha.

Drones 2021, 5, 143 4 of 19 
 

and time of 1291 m and 225 s. (b) Considering acceleration/deceleration increases path-length and flight-time to 1489 m 
and 380 s, respectively. Start point (green circle), person found (red circle), detection probabilities (colors of cells), drone 
speed (colors of path segments). The axillary acceleration/deceleration trajectories are the segments that gradually change 
colors in (b). Each cell is 30 m × 30 m. The search area covers 6.3 ha. 

Our new trajectory planner ensures that each scanned cell is crossed exactly with the 
desired and constant scanning speed (see Figure 3a). This, however, introduces additional 
linear trajectories (for acceleration and deceleration shown in Figure 3b) at both ends (en-
trance and exit) of the scanned cell. Before entering it, the drone must be decelerated to 
the desired scan speed and after leaving it the drone can be accelerated again to the 
drone’s maximum velocity (to progress quicker to the next scan cell, see Figure 3c). We 
utilize a kinematics based linear motion model to generate these piecewise linear path 
segments. The distance between the entrance and exit edges of the scanned cell and the 
auxiliary waypoints at which deceleration starts and acceleration is finished are computed 
as follows: 𝑑 𝑣 𝑣 / 2𝑎 , where 𝑣 , 𝑣  are the velocities before and after accelera-
tion/deceleration, and 𝑎 the rate of acceleration/deceleration (positive/negative). 

 
Figure 3. Trajectory planner ensuring constant velocity for scanning over the desired scan cell ((a), 
here top left cell is visited first followed by the bottom right cell). Additional acceleration/decelera-
tion path segments generated on both sides of the scan cells (b). Direct line segment in-between scan 
cells are flown with maximum flight speed (c). Colors indicate velocity (blue to red = slow to fast). 

Note, that if neighboring cells are scanned in the same flight direction, the drone is 
not accelerated or decelerated, but continues at constant scan speed. Thus, the auxiliary 
deceleration and acceleration trajectories are only needed to bridge distances between 
non-neighboring cells fast, or if flight direction must be changed. They are flown at the 
maximum speed that the drone supports without overshooting into the scan cell too fast. 

Figure 2 illustrates, for the same probability map as used in [15], the difference in 
potential-field-based adaptive path-planning when acceleration/deceleration is ignored 
(Figure 2a), as it was the case in [15], and when it is considered (Figure 2b). With our drone 
prototype (a 4.5 kg MikroKopter OktoXL 6S12, measured average acceleration/decelera-
tion of 1.4 m/s2, a scan speed of 5 m/s, and a maximum flight speed of 10 m/s) and for a 
6.3 ha search area, a flight path of 1291 m and a total of 225 s flight time was determined 
until the target person is found for constant flying speed (i.e., ignoring acceleration/decel-
eration). In practice, however, this does not hold because the acceleration/deceleration 
trajectories are ignored. Considering them as explained above results in a 1489 m long 
flight path and in a flight time of 380 s instead (an increase in required flight time by a 
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Figure 3. Trajectory planner ensuring constant velocity for scanning over the desired scan cell
((a), here top left cell is visited first followed by the bottom right cell). Additional accelera-
tion/deceleration path segments generated on both sides of the scan cells (b). Direct line segment
in-between scan cells are flown with maximum flight speed (c). Colors indicate velocity (blue to
red = slow to fast).

Note, that if neighboring cells are scanned in the same flight direction, the drone is
not accelerated or decelerated, but continues at constant scan speed. Thus, the auxiliary
deceleration and acceleration trajectories are only needed to bridge distances between
non-neighboring cells fast, or if flight direction must be changed. They are flown at the
maximum speed that the drone supports without overshooting into the scan cell too fast.

Figure 2 illustrates, for the same probability map as used in [15], the difference in
potential-field-based adaptive path-planning when acceleration/deceleration is ignored
(Figure 2a), as it was the case in [15], and when it is considered (Figure 2b). With our drone
prototype (a 4.5 kg MikroKopter OktoXL 6S12, measured average acceleration/deceleration
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of 1.4 m/s2, a scan speed of 5 m/s, and a maximum flight speed of 10 m/s) and for a 6.3 ha
search area, a flight path of 1291 m and a total of 225 s flight time was determined until the
target person is found for constant flying speed (i.e., ignoring acceleration/deceleration).
In practice, however, this does not hold because the acceleration/deceleration trajectories
are ignored. Considering them as explained above results in a 1489 m long flight path and
in a flight time of 380 s instead (an increase in required flight time by a factor of 1.7).

We conclude that for waypoint-based path-planning acceleration driven trajectory
planning leads to more realistic results and in more accurate estimates of drones’ limited
energy and flight time. However, it should be noted that the drones´ energy consumption
does not only depend on flight time and acceleration/deceleration but also on many other
varying factors like wind, type of drone, gross weight, etc. Our trajectory computes an
ideal path without considering these unpredictable outside forces like wind, etc. The flight
controllers available on commercial rotor based drones are capable to correct any drifts
that are caused by such forces.

When only minimizing flight time or flight distance while ignoring local detection
probabilities but considering acceleration/deceleration, classic coverage-based path plan-
ning algorithms (i.e., spiral search or grid search) are fastest in traversing the entire search
region fully. This is primarily due to a minimum number of direction changes caused
by these search techniques, which also minimizes acceleration/deceleration trajectories
(see also examples in Appendix A). However, classification probabilities cannot be ignored
if the overall goal is to find a person as fast and as reliable as possible. Therefore, we utilize
the integral (area) under the sequentially accumulated probability (p(t)) curve w.r.t time
(APT) for evaluating the efficiency of different path planning algorithms in Section 3. The
upper limit of the integral is set by the path traversal time of the fastest algorithm (tmin).

APT =
∫ tmin

p(t)dt. (1)

The following section presents a new path-planning approach that considers
acceleration/deceleration, and that outperforms not only our previous potential-field
based method, but also spiral search and grid search for AOS-supported search and
rescue applications.

2.2. Radial Gradient Accent (RGA)

Observing the need to minimize turns while utilizing an acceleration driven trajectory
planner, we propose a new gradient-based method to maximize the probability of target
detection while minimizing flight time by reducing turns (cf. Figure 4).

To decide for the next cell to be scanned from the drone’s current position, a unique
set of directions (called radials) is determined in such a way that each radial will have a
unique direction and that all radials (originating all from the current cell’s center) together
will cross the centers of all unvisited cells. Each unvisited cell is then assigned to its
corresponding radial if its center is crossed by it. How many radials exist depends on the
resolution of the grid and the number of remaining unvisited cells. For each radial (i.e., the
cells assigned to it), we now compute the required trajectories and resulting flight time,
as explained in Section 2.1, and select the radial with the highest gradient of accumulated
probability w.r.t time (APT). Note, that the APT is similar to the unnormalized cumulative
distribution function and the area under this function is the inverse of the Expected Time
(ET) of target detection as explained in [2]. The first unvisited cell along this radial is
sampled next. Then we iteratively repeat the above process to decide for the next cells
to be scanned until all cells are visited or the target is found (i.e., classification with high
confidence confirmed by the rescue team, as in [15]).
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Figure 4. Radial Gradient Accent: (a) Three sample radials for a probability map and (b) their
corresponding APT plots. Cell colors in (a) indicate probabilities (as in Figure 2). Black cells are
previously visited cells. Green dot and red dots indicate current cell and end points of radials. Colors
of trajectories indicate flight speed (as in Figure 2): scan speed (green line segments), max. flight
speed (red line segments), acceleration/deceleration (blue line segments). Only cells with the centers
located on the corresponding radial are considered for scanning. In this example, the horizontal
radial is chosen next as it has the highest APT gradient (b).

Overall, this approach follows a local APT gradient ascend strategy with the assump-
tion that after the last cell was scanned, the best local choice for the next scan direction
is the one which contributes the highest APT gradient because it maximizes probability
accumulation while reducing turns (and with that, flight time). Note that, as explained
in Section 2.1, unvisited cell segments are scanned at constant scan speed, but are ap-
proached at maximum flight speed. This requires deceleration and acceleration before and
after scanning.

3. Results

In this section, we evaluate our Radial Gradient Accent (RGA) method by comparing
it against grid search and spiral search which, as fastest coverage-based path planning
algorithms, set the speed bars for full grid coverage but do not consider probabilities; and
the potential field algorithm in [15] (extended to acceleration/deceleration, as discussed
in Section 2.1 and shown in Figure 2a). We apply the probability maps shown in Figure 5
as representative examples for various scenarios during search and rescue operations
conducted in the field. Note, however, that the behavior of a lost person depends on many
factors (including psychology, physiology, age, gender, etc.) and is not considered here
while generating the representative probability maps. For evaluation, only simulations
have been carried out to compare the different path planning algorithms under identical
conditions. An exact comparison in the field would not be possible, since our online-path
planning depends on classification scores which vary with many factors, such as local
occlusion, lighting, and wind. Thus, carrying out two search flights under exactly identical
conditions is not possible.

Figures 6 and 7 illustrate the performance of the potential field algorithm and our
Radial Gradient Accent approach without and with considering acceleration/deceleration
on the scattered-smooth probability map (Figure 5b). Results for the other probability
maps can be found in Appendix A. Appendix B shows the results of our algorithm for a
uniform probability map (assumed in cases where the initial probability map is unreliable
or unavailable). The resulting path is more or less uniform spiral like depending on the
initial starting position.
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Comparing the results in Figures 6 and 7 reveals visually already that RGA requires
much less turns (i.e., accelerations/decelerations) and samples more uniformly than the
potential field algorithm. A quantitative comparison for all probability maps shown in
Figure 5 is presented in Figure 8.
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The APT plots in Figure 8 show that although spiral- and grid search always cover
the full search region fastest (planned trajectories are presented in Appendix A), they do
not maximize detection reliability over time. The latter corresponds to the integral of the
accumulated probability w.r.t time plots up to the shortest possible full coverage time.
Table 1 presents a quantitative summary.

From the results presented in Figure 8 and Table 1 it can be seen that our RGA approach
always outperforms spiral- and grid-search, as well as potential field in all cases as its APT
score (which is the accumulated probability w.r.t time integral) is significantly higher (28%,
50%, 11% respectively). Note, that APT combines accumulated detection probability over
search time.
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Table 1. Quantitative comparison (total flight time and distance, APT score) between considered path planning methods
and probability maps. While spiral search covers the full search region fastest without considering probabilities, RGA
outperforms all other methods in APT score (integral of the accumulated probability w.r.t time). Note that, depending
on the chosen starting point, grid and spiral search lead to slightly different results, and grid search might even be faster
than spiral search. However, both methods always result in a much lower APT score than RGA since probabilities are
not considered.

Probability Map Method Time (s) Distance (m) APT Score

scattered

grid 2355.98 9945.46 28,523.70
spiral 2144.08 9518.96 32,121.20

potential field 3612.76 17,030.36 39,247.74
RGA 3026.44 14,433.31 42,834.65

scattered-smooth

grid 2355.98 9945.46 26,463.08
spiral 2144.08 9518.96 28,934.02

potential field 3704.78 16,799.93 28,814.11
RGA 2644.96 12,483.69 34,513.97

exponential

grid 2355.98 9945.46 62,702.47
spiral 2144.08 9518.96 77,296.31

potential field 3173.29 15,238.73 84,015.36
RGA 2614.88 12,766.08 91,526.18

multiple-patches

grid 2355.98 9945.46 26,909.31
spiral 2144.08 9518.96 32,415.52

potential field 2678.48 12,225.33 44,628.51
RGA 2551.18 11,624.64 47,666.90

large-patch

grid 2355.98 9945.46 50,121.14
spiral 2144.08 9518.96 57,197.52

potential field 3546.04 16,542.41 62,949.78
RGA 2852.51 13,679.18 70,344.42

small-patch

grid 2355.98 9945.46 24,251.82
spiral 2144.08 9518.96 29,707.75

potential field 3158.86 14,456.42 34,517.50
RGA 2691.61 12,677.97 38,068.94

4. Discussion and Conclusions

This article demonstrates that considering acceleration and deceleration matters for
realistic path planning—especially when drones are applied, where velocity is by far not
linear over the flight path. Acceleration and deceleration for waypoint sampling has
a significant share of total flight time. Taking this into account is important especially
for time-critical applications, such as search and rescue. Furthermore, we presented a
new path planning approach, Radial Gradient Accent (RGA), which considers accelera-
tion/deceleration. It follows a local gradient ascend strategy that locally minimizes turns
while maximizing probability accumulation. In case of the 16 × 16 search grid resolutions
that were chosen for our evaluations, RGA requires about 2.36 ms on a laptop equipped
with Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz and 8GB of RAM. Considering all radials
per iteration, however, might be computationally too intensive for higher resolution grids
and lower-performance on-board processors. Furthermore, many of the radials intersect
only one cell at its center. Achieving a better radial coverage by considering also cells in the
vicinity of the radials might lead to performance improvements. RGA is a greedy choice
approach that strongly depends on the quality of local decisions. More efficient heuristics
than the max. APT gradient might achieve better overall results (i.e., higher APT scores).
Our algorithm could also be adapted and applied to drone swarms for conducting faster
search and rescue operations. Additional constraints, such as collision and obstacle avoid-
ance also needs to be considered. All of this has to be explored in the future. Currently, we
require uniform sampling in AOS as we apply a uniformly distributed occlusion model to
represent forest [19]. However, considering more complex, non-uniform occlusion model
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(e.g., if sparse and densely occluded regions can be measured during flight) will benefit
from non-uniform sampling. This will be investigated in future.

The problem of acceleration and deceleration is caused mainly because today’s flight
controllers used in commercial drones follow waypoints in a piecewise linear fashion.
Sharper turns at waypoints require major acceleration and deceleration—especially for
rotor-based drones. The influence of acceleration and deceleration can be significantly
reduced if future flight controllers (especially in combination with agile wing-based drones
and fast tracking) allow polynomial instead of piece-wise linear flight paths. Figure 9
illustrates this effect for the assumption that the drone is physically able to fly continuously
at constant velocity (without acceleration/deceleration). Instead of flying from waypoint
to waypoint, we simulate continuous heading changes (at differential time steps of 1 s)
towards the highest probability gradient (at +/−20 deg limits for smooth heading changes
at realistic velocities). As shown in Figure 9 for the scattered-smooth probability map, a
constant-velocity-based path-planning (continuous gradient) clearly outperforms (in APT
integral and sampling uniformity) an acceleration-aware path-planning, such as RGA, that
is applied for classical waypoint navigation which requires acceleration and deceleration.
Thus, improvements in aerodynamics and flight-control open entirely new doors for
efficient UAV-supported search and rescue missions.
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Appendix A

Planned trajectories with (a) and without (b) acceleration/deceleration and over-
age maps (c) for all probability maps and methods (Table 1). Examples are shown in
Figures 6 and 7.

Drones 2021, 5, 143 12 of 19 
 

 



Drones 2021, 5, 143 12 of 18
Drones 2021, 5, 143 13 of 19 
 

 



Drones 2021, 5, 143 13 of 18
Drones 2021, 5, 143 14 of 19 
 

 



Drones 2021, 5, 143 14 of 18
Drones 2021, 5, 143 15 of 19 
 

 
  



Drones 2021, 5, 143 15 of 18
Drones 2021, 5, 143 16 of 19 
 

 
  



Drones 2021, 5, 143 16 of 18

Drones 2021, 5, 143 17 of 19 
 

 

  



Drones 2021, 5, 143 17 of 18

Appendix B

Planned trajectories with (a) and without (b) acceleration/deceleration and coverage
maps (c) for a uniform probability map and methods (Table 1).
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