
 
 

 

 
Drones 2021, 5, 145. https://doi.org/10.3390/drones5040145 www.mdpi.com/journal/drones 

Article 

Accuracy Assessment of Cultural Heritage Models Extracting 
3D Point Cloud Geometric Features with RPAS SfM-MVS and 
TLS Techniques 
Alessandra Capolupo 

Department of Civil, Environmental, Land, Construction and Chemistry (DICATECh), Politecnico di Bari,  
Via Orabona 4, 70125 Bari, Italy; alessandra.capolupo@poliba.it; Tel.: +39-080-5963357 

Abstract: A proper classification of 3D point clouds allows fully exploiting data potentiality in as-
sessing and preserving cultural heritage. Point cloud classification workflow is commonly based on 
the selection and extraction of respective geometric features. Although several research activities 
have investigated the impact of geometric features on classification outcomes accuracy, only a few 
works focused on their accuracy and reliability. This paper investigates the accuracy of 3D point 
cloud geometric features through a statistical analysis based on their corresponding eigenvalues 
and covariance with the aim of exploiting their effectiveness for cultural heritage classification. The 
proposed approach was separately applied on two high-quality 3D point clouds of the All Saints’ 
Monastery of Cuti (Bari, Southern Italy), generated using two competing survey techniques: Re-
motely Piloted Aircraft System (RPAS) Structure from Motion (SfM) and Multi View Stereo (MVS) 
techniques and Terrestrial Laser Scanner (TLS). Point cloud compatibility was guaranteed through 
re-alignment and co-registration of data. The geometric features accuracy obtained by adopting the 
RPAS digital photogrammetric and TLS models was consequently analyzed and presented. Lastly, 
a discussion on convergences and divergences of these results is also provided. 

Keywords: 3D models; geometric features; 3D point cloud classification; eigenvalues; geomatic sur-
veys techniques; R software 
 

1. Introduction 
Monitoring a cultural heritage building is essential to evaluate its health status and 

detect any deformations that have occurred as well as to preserve and disseminate its 
relevance. Such purposes can be achieved by producing an accurate three-dimensional 
(3D) representation of the sites under investigation. The 3D models, indeed, can capture 
their appearances and reproduce their geometric details digitally [1]. Consequently, 3D 
models are currently recognized as a powerful tool to document the current state of a 
cultural building [2]. 

Over the years several methodologies have been proposed to generate accurate and 
reliable 3D digital scene reconstruction. Among them, image-based modeling (e.g., pho-
togrammetry), the range-based approach (e.g., Terrestrial Laser Scanner), or the integra-
tion of the abovementioned technologies are currently recognized as the most productive 
[2]. Nonetheless, selection of the appropriate technology and procedure to adopt is always 
a challenging matter. Indeed, such a choice is affected by the size and the complexity of 
the object under investigation, as well as the necessary level of accuracy and the location 
constraints. Commonly, the range-based approaches produce a high-density 3D point 
cloud that allows creating a high-resolution geometric model, while the image-based tech-
niques are more appropriate to generating high-resolution textured 3D models depicting 
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only the main object structure [1]. Fusing the outputs of both surveying techniques allows 
fully exploiting their potentialities, reducing their limits. 

Among the range-based sensors, TLS is largely used in the cultural heritage field 
thanks to its ability to quickly extract accurate 3D dense point clouds of any study object 
[3]. However, this method is not limitation-free, mainly because of the instrumental stand-
point distance and inclination issues, which can generate an inhomogeneous point cloud 
[3]. Such an artifact can only be partially resolved by locating the instrumental standpoint 
perpendicularly and relatively close to the element to be surveyed [4]. Moreover, addi-
tional restrictions may derive from the complexity of carrying and arranging the required 
tools in difficult-to-reach areas. Lastly, TLS is not convenient in terms of both instrumental 
and time costs to collect and handle data [4]. 

In contrast, photogrammetry is based on the application of perspective or projective 
geometry formulations to convert the 2D image measurements into a 3D model. This oc-
curs by detecting the corresponding points in photos that depict the same element from 
diverse positions. Such procedures were originally carried out manually (analytic and an-
alogic photogrammetry) and only in the 1990s were they automatized (digital photogram-
metry). 

Photogrammetric data can be gathered using different available data collection plat-
forms (space, airborne, and terrestrial). As highlighted by Colomina and Molina (2014) 
[5], among them, RPAS is a valid alternative as it allows acquiring high-resolution metric 
and qualitative data using low-cost tools. Indeed, the constant development of electronic 
and optical devices (e.g., integrated circuits, radio-controlled systems) initially used in the 
military field and later introduced in the civil sector, together with sensor size and weight 
reduction, resulted in a severe decrease in their cost, supporting their spread on the mar-
ket. Moreover, RPAS can fly at low altitudes without any risk to the pilot [6]. This allows 
meeting users’ needs, such as obtaining a Ground Sample Distance (GSD) adapted to the 
size of the object under investigation as well as reaching difficult-to-access areas, through 
proper planning of the flight mission [7]. However, this approach has some disad-
vantages; in particular, it can only be applied to small-sized areas, with the resultant point 
cloud quality affected by GCP amount and distribution [8], flight plans [9,10], and camera 
calibration parameters [11–13]. Thus, RPAS digital photogrammetry, based on the inte-
gration of Structure from Motion (SfM) techniques with MultiView Stereo (MVS) algo-
rithms, allows generating more homogeneous yet less dense point clouds than the ones 
generated from TLS. 

A detailed analysis of the 3D structure under investigation requires a proper inter-
pretation of generated point clouds. However, assigning a correct label to each individual 
point is challenging, mainly because of the abovementioned limitations: lack of homoge-
neity and low density of points. To meet such a goal, appropriate features arising from 
the spatial arrangement of each individual point are a relevant source of information. 
Since such features are estimated for every single point, they do not include context infor-
mation and, thus, they have to be estimated within a local 3D neighborhood [14]. Conse-
quently, these features describe the local shape characteristics of the examined points and 
allow classifying each of them [15]. The standard approaches for 3D point cloud classifi-
cation involve their combination through the development of a proper set of categoriza-
tion rules. A good round-up of the most used features and their contribution to the clas-
sification process was given by Chehata et al. (2009) [16] and Mallet et al. (2011) [17]. The 
invariant moments, e.g., the covariance matrix, are commonly applied to this scope [18]. 
However, the quality of classification output is affected by the adopted scheme as well as 
by the amount and the kind of applied features. Indeed, most of the geometric features 
are irrelevant and redundant and should therefore be neglected [14]. Although Dittrich et 
al. (2017) [15] showed the susceptibility of some of them to noise, only few research activ-
ities have been carried out to evaluate geometric feature robustness and reliability and, to 
the best of my knowledge, none of them was focused on comparing the performances of 
the geometric features of TLS and RPAS photogrammetry-based point clouds. 
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The main goal of this study is to assess and compare the consistency of the eigenval-
ues-derived geometric features extracted from accurate 3D models generated by two ge-
omatic survey approaches: RPAS digital photogrammetry and TLS. These techniques 
were selected because they are the most popular ones for producing accurate 3D scene 
reconstructions in the cultural heritage field. Once the 3D point clouds were generated 
and their accuracy assessed, the geometric features were extracted, and their reliability 
was evaluated through the application of the Gaussian law of variance propagation. To 
meet such a purpose a proper code in the R environment was developed. The All Saints’ 
Monastery of Cuti (Bari) cultural heritage building was selected as the case study because 
of its historical and architectural relevance. 

The paper is organized as follows. Section 2 provides a detailed description of the 
proposed methodology. Specifically, after introducing a synthetic pipeline of the entire 
procedure, each operative step is explained in a specific section: (i) Section 2.1 reports field 
data activities and database building; (ii) Section 2.2 illustrates the digital photogrammet-
ric process adopted to handle the data collected by RPAS, while (iii) Section 2.3 describes 
the procedure applied to process TLS data; (iv) Section 2.4 depicts the evaluation of the 
resultant point cloud accuracy as well as the computation of the geometric features; lastly, 
(v) Section 2.5 expounds the statistical method adopted to evaluate geometric feature ac-
curacy. The main properties of the All Saints’ Monastery of Cuti (Bari, Southern Italy), 
selected as the case study of this work, are described in Section 3. Lastly, results, strengths, 
and weaknesses of the adopted procedure are discussed in Section 4, while the conclu-
sions are provided in Section 5. 

2. Materials and Methods 
This section describes the methodology adopted to address the research goals, with 

the operative workflow outlined in Figure 1. Once the data collection phase was com-
pleted and the database built, photogrammetric pictures and TLS scans were handled sep-
arately, and their outcomes evaluated and compared. Lastly, after ensuring point cloud 
compatibility, eigenvalues-based geometric features were estimated, and their corre-
sponding accuracy and reliability assessed. 
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Figure 1. Operative workflow implemented to assess the accuracy and reliability of RPAS-photo-
grammetric and TLS-based 3D point clouds and to compare both models’ performances. 

2.1. Data Collection and Database Construction 
Three flight campaigns were carried out over the experimental site on 18 April 2019 

using a consumer quadcopter DJI Inspire 1 weighing 2.9 kg (payload included). This 
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RPAS was equipped with a 3-axis gimbal to compensate for accidental vehicle move-
ments, as well as a low-cost GNSS/INS positioning receiver to gather its position and the 
DJI Ground Station Pro app (Dà-Jiāng Innovations) [19] to set up and oversee the missions. 
All actions were performed at the same cruising speed (4.0 m/s) and altitude (25 m AGL, 
above ground level). According to the research of Dandois et al. (2015) [20], the STOP&GO 
flight mode was selected to reduce the number of blurry pictures collected using a DJI 
ZenMuse X3 camera, characterized by a focal length of 3.61 mm and a pixel size of 1.56 
μm, mounted on the RPAS’ gimbal at both nadiral and 45° positions. Waypoint position 
was set to ensure the acquisition of both nadiral and oblique photogrammetric pictures, 
and thus, different longitudinal and transverse overlaps between them were established. 
Indeed, a longitudinal and transverse overlap of 90% was set to gather nadiral, while lon-
gitudinal and transverse overlaps of 90 and 70%, respectively, were selected to collect the 
oblique photos. Such a combination of flight and camera features ensured the collection 
of 202 aerial photogrammetric pictures with a nominal Ground Sample Distance (GSD) of 
1.1 cm/pixel. 

Simultaneously, an appropriate topographic survey was conducted to acquire the 
positions of 21 permanent natural elements on 20 December 2019. These points, homoge-
neously allocated overall to the pilot site,were surveyed using a Leica Geosystem GS18T 
receiver. Such a receiver was logged into the national network (National Dynamic Net-
work RDN2008) of the Continuous Operation Reference Stations (CORS) through the per-
manent station in Valenzano (Bari) and the network Real-Time Kinematic (nRTK) acqui-
sition mode was chosen. Ellipsoidal altitude points, stored up by the receiver, were further 
converted into orthometric altitude points with ConveRgo software [21], while 
RDN2008/UTM zone 33N (N-E) (EPSG: 6708) was selected as the Reference system. After 
their positions were collected, the data set was split into two respective categories com-
posed of 11 and 10 points. Both of them were imported in Agisoft PhotoScan (v.1.4.1, 
Agisoft LLC -St. Petersburg, Russia) software [22], currently known as Metashape, which 
handled the RPAS-photogrammetric data and extracted accurate cloud points. The first 
group was adopted as Ground Control Points (GCPs) and the second one as Check Points 
(CPs) during the alignment phase of the gathered pictures. 

Lastly, a Leica RTC360 3D Laser Scanner was adopted to acquire 34 scans of the study 
area on 29 November 2019. Such an instrument (recording capacity: 2,000,000 pts/sec, 
maximum range: 130 m, and range accuracy: 1.0 mm + 10 ppm) (Xiaohui et al. 2019) was 
set about 50 m away from the Monastery to also collect the dome data. Moreover, TLS 
scans were homogeneously collected at the All Saints’ Monastery of Cuti. The proprietary 
Leica Cyclone software (v.9.2.0) [23] was, thus, adopted to handle these data. 

2.2. RPAS Digital Photogrammetry 
Figure 2 reports the procedure adopted to produce the RPAS-photogrammetric point 

cloud following the suggestions of Caroti et al. (2017) [24], Beretta et al. (2018) [25], and 
Manfreda et al. (2018) [26]. Specifically, the process was broken down into four key steps: 
(i) workspace and dataset setting up; (ii) image block orientation; (iii) filtering and georef-
erencing; and (iv) photogrammetric outcome generation. 



Drones 2021, 5, 145 6 of 24 
 

 
Figure 2. Photogrammetric pipeline. 

Before importing the collected images into the Agisoft environment, they were 
checked over visually to detect and clean out the blurry ones, which could affect outcome 
accuracy. In addition, a quantitative evaluation of their quality was subsequently carried 
out by applying the “Estimate Image Quality” tool, which returns a value between 0 and 
1 according to their sharpness, blurring, and distortion. Indeed, 0 was assigned to very 
poor-quality pictures while 1 was assigned to very high-quality ones [27–31]. In the pre-
sent study, the useful images were selected using 0.6 as the threshold. After adequate im-
ages were selected, the workspace was arranged by fixing the values as reported in Figure 
2. Specifically, the threshold of 3 m was assigned to the “Camera Positioning Accuracy” 
parameter to be consistent with the average 3D positioning accuracy value stored by the 
RPAS GNSS receiver, equal to 2.54 m. Conversely, the “Image Altitude Accuracy” was set 
as equal to 10 degrees because the RPAS-integrated Inertial Measurement Unit (IMU) did 
not provide any information on altitude measurements. 

For the “Image block Orientation” step (second phase), aimed at the alignment of 
pictures and tie points detection, as pinpointed in Figure 2, the “High” accuracy mode 
was set with a threshold equal to 0 for the “Limits of Key Points and Tie Points” parame-
ter, as recommended by Gruen and Beyer (2001) [30] and Triggs et al. (2000) [31]. This 
ensured no unchecked points filtering. After aligning the images and extracting the sparse 
point cloud, at the start of the third phase, named “Georeferencing and filtering”, three 
additional criteria were adopted to evaluate the systematic error and enhance the accuracy 
of the output. These criteria were as follows: (i) removal of all points characterized by low 
base–height ratios (ratio between the largest and smallest semiaxis of the error ellipse ob-
tained by triangulating 3D point coordinates between two photos), such as those located 
on the edge of the images. This criterion was met by fixing the “Photogrammetric Resti-
tution Uncertainty” parameter, which allows detecting the uncertainty in the position of 
a tie point based on the geometric relationship of the cameras from which that point was 
projected or triangulated, considering geometry and redundancy [22]; (ii) elimination of 
all less reliable points by setting a threshold equal to 3 as the “Projection Accuracy” pa-
rameter. Such a variable measures the “Mean Key Point Size”, defined as the standard 

• Estimating image quality
• Reference setting

• Coordinate system: RDN2008/UTM 
zone 33N (NE) (EPSG: 6708)

• Camera altitude accuracy: 3m
• Camera Position accuracy: 10 deg
• 3D marker accuracy: 0.02 m
• Marker accuracy: 0.5 pixel

Workspace and 
dataset setting up

• Accuracy: high
• Key point Limit: 0
• Tie point Limit: 0
• Adaptive Camera Model Fitting

Image block 
orientation

• Gradual selection
• Photogrammetric restitution 

uncertainty:10 pixel
• Projection Error: 3 pixel
• Reprojection Error: 0.4 pixel

• GCPs collimation

Filtering and 
georeferencing

• Dense point clouds
• 3D textured model

Photogrammetric 
outcome generation



Drones 2021, 5, 145 7 of 24 
 

deviation value of the Gaussian blur at the scale at which the point was detected [22]. This 
condition guarantees the exclusion of all tie points with uncertainty 3 times higher than 
the minimum one; and, lastly, (iii) a threshold of 0.4 was assigned to the “Reprojection 
Error” parameter (estimation of the error obtained by comparing a point’s original posi-
tion on the image and the location of that point when it is re-projected to the photo [22]) 
in order to clean out all points characterized by a significant residual value. These thresh-
old values were selected according to the recommendations by Saponaro et al. (2019a) 
[32]; Dandois et al. (2015) [20]; Gagliolo et al. (2018) [33]. This ensured the reduction of 
restitution errors and improvement of the orientation parameters. Indeed, by integrating 
the three abovementioned criteria, implemented in the “Gradual selection” tool, about 
20% of the inaccurately estimated points from clouds were removed. Further improve-
ment of georeferencing through the reduction of image block deformation resulted from 
uploading the GCPs in the Metashape software [34]. Thus, the dense point cloud was pro-
duced, and its accuracy was assessed by computing the root mean square error (RMSE) 
(phase 4—“Photogrammetric outcome generation”). The final output was imported into 
the CloudCompare environment for subsequent analysis [35]. 

2.3. TLS 
Field scanning data collected using the Leica RTC360 3D Laser Scanner were im-

ported into Leica Cyclone software where they were registered and georeferenced. This 
software was equipped with the “Registration module”, which allowed the automatic 
compensation for errors from the pre-registration procedure carried out during the data 
acquisition phase [36]. Thus, a total of 25 natural or artificial targets easily detectable in 
the clouds were picked as homologous points among the scans by using the Cloud Con-
straints Wizard tool [37]. This resulted in an average overlap of 46% among them. Before 
exploring the errors committed by computing the base statistics (mean, minimum, maxi-
mum, median, and quartile values), needless elements such as people and cars were fil-
tered and cleaned out [3–38]. Lastly, all extracted point clouds were merged into a single 
one and exported as .pts. This outcome was further investigated in the CloudCompare 
environment, which allowed extracting several geometric features useful to investigating 
the point clouds from several points of views [39]. 

2.4. Geometric Feature Extraction and 3D Point Cloud Accuracy Assessment 
CloudCompare software provides a few plugins aimed at investigating point cloud 

accuracy and examining their spatial 3D information [32]. Because of this, the two result-
ant models were imported into that environment and thoroughly analyzed. Before pro-
ceeding in this direction, resultant cloud compatibility was also evaluated. The clouds 
were re-aligned and co-registered by pinpointing the GCPs in both models [3]. The TLS-
based point cloud showed higher accuracy than the one obtained by surveying GCPs in 
nRTK mode and thus was used as a benchmark during the co-registration phase, as sug-
gested by Fugazza et al. (2018) [40]. Subsequently, less accurate zones and points not de-
picting the pilot site were removed through the application of the Segment tool, imple-
mented in the CloudCompare environment. 

Hence, only the spatial information related to the case study was investigated during 
the subsequent steps through the computation of specific geometric features. Indeed, the 
3D scene structure can be locally described by extracting the three eigenvalues (λ1, λ2 and 
λ3) of the 3D covariance matrix S, also known as the 3D structural tensor [41]. These ei-
genvalues express the dispersion relevance along their eigenvector and allow defining the 
structure typology: when λ1 » λ2, λ3, the structure is unidimensional, since the points are 
distributed along one main axis; while, when λ1 and λ2 » λ3 the structure is bidimensional 
because all the selected points are essentially arranged along two axes only; lastly, when 
λ1, λ2 and λ3 show similar values, the structure is tridimensional. S was estimated by con-
sidering the spatial information of all 3D points (X = (X, Y, Z)) within a local neighborhood 
V, defined by applying a sphere of a fixed radius rs [42]. The size of rs was determined in 
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accordance with the proposal by Demantké et al. (2011) [43]. Thus, the radius was set as 
0.05 m in accordance with the study area heterogeneity. 

However, as recommended by West et al. (2004) [44] and Pauly et al. (2003) [45], the 
eigenvalues were not directly applied to explain the local structure at a point X; rather, a 
set of geometric features based on them (Linearity Lλ, Anisotropy Aλ, Sphericity Sλ, Pla-
narity Pλ, Omnivariace Oλ, Curvature Cλ, Eigenvalues’ sum ∑λ) were computed. In the 
following, the formal definition of such parameters is reported: 𝐿ఒୀഊభషഊమഊభ ,  (1) 𝐴ఒୀഊభషഊయഊభ ,  (2) 𝑃ఒୀഊమషഊయഊభ ,  (3) 𝑆ఒୀഊయഊభ, (4) 𝑂ఒୀ ඥఒభ×ఒమ×ఒయయ ,  (5) 𝐶ఒୀ ഊయഊభశഊమశഊయ,  (6) Σఒୀఒభାఒమାఒయ.  (7) 

Previous research studies proved that these factors are sensitive to noise [46–48], and 
therefore, the investigation of the robustness of the eigenvalues and relatives-based fea-
tures deserve considerable attention. Indeed, as shown by Soudarissanane et al. (2011) 
[49], each individual 3D point experiences a random noise content owing to the influence 
of various factors. The methodology adopted to assess the accuracy and reliability of ge-
ometric features extracted from TLS and RPAS-based point clouds is thoroughly de-
scribed in the next section. 

The performance of the two resulting point clouds was firstly evaluated in terms of 
acquisition and processing time, number of points, and volume density. Indeed, as pro-
posed by Jo and Hong (2019) [4] and Son et al. (2020) [3], the combination of such param-
eters allowed analyzing the homogeneity of point distribution. Volume density was esti-
mated by using the “Cloud Density” tool implemented in the CloudCompare software. 
Their performance was then assessed by using the Multiscale Model-to-Model Cloud 
Comparison (M3C2) approach [39], which is based on two subsequent steps: the former, 
aimed at defining the normal point, and the latter intended to calculate the difference be-
tween the two considered point clouds. During the process, the normal scale and the max-
imum depth of the cylindrical projection were set as 0.10 and 0.5 m, respectively. The 
projection scale value (0.10 m) was instead chosen according to RPAS roughness, as sug-
gested by Di Francesco et al. (2020) [50]. Indeed, this parameter strongly influenced the 
M3C2 output since selecting a too-small value enhances noise accumulation, while pick-
ing a too-high value hides the differences. 

For each estimated distance, the M3C2 algorithm allowed also computing the Dis-
tance Uncertainty. A Level of Detection (LoD) equal to 95% was set to discriminate the 
statistically significant change in terms of distance between the two considered dense 
point clouds. Thus, the distance was statically significant when it was higher than the 
LoD95% value, computed by applying Equation (8). 

𝐿𝑜𝐷ଽହ% = ±1.96 × ቌඨ𝜎ଵ(𝑑)ଶ𝑛ଵ + 𝜎ଶ(𝑑)ଶ𝑛ଶ + 𝑟𝑒𝑔ቍ. (8) 
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σ1(d)2 and σ2(d)2 are the variances of the two clouds’ positions, while n1 and n2 are 
the numbers of points of RPAS- and TLS-extracted clouds, respectively. Lastly, reg repre-
sents the co-registration error between the two considered dense point clouds. The out-
come of this procedure was used as a benchmark to evaluate the accuracy. 

2.5. The Gaussian Law of Variance Propagation 
As mentioned in the previous section, each 3D point is subjected to noise mainly from 

the survey instrument, terrain heterogeneity, and scanning geometry [49], which trans-
lates into an error in the planimetric and altitude coordinate values definition expressed 
as the standard deviations related to each component (σx, σy, σz). Nevertheless, their val-
ues are not homogeneous over the entire 3D structure since each individual point can 
show a different deviation standard. The variance of a function f (f = f (x1, ..., xn)) of random 
variables xi can be appreciated through the application of the variance propagation law. 
Commonly, the Taylor series, reported in Equation (9), was adopted to address such a 
purpose. 𝑓(𝑥 + 𝑑𝑥) = 𝑓(𝑥) + ∑ ௙(೙)(௫)௡!ஶ௡ୀଵ  (𝑑𝑥)௡.  (9) 

Generally, only the first-order term is adopted to model the error because of the ir-
relevant effect of all higher order terms on the variance propagation, as shown by Dittrich 
et al. (2017) [15]. Thus, Equation (9) is simplified as follows: 𝑓(𝑥 + 𝑑𝑥) = 𝑓(𝑥) + 𝑓ᇱ(𝑥) × 𝑑𝑥.  (10) 

Thus, it is expressed as: 𝑓(𝑥 + 𝑑𝑥) − 𝑓(𝑥) = 𝑓ᇱ(𝑥) × 𝑑𝑥,  (11) 𝑑𝑓 = 𝑓ᇱ(𝑥) × 𝑑𝑥.  (12) 

When n > 1, Equation (12) is modified as follows: 𝑑𝑓 = ∑ ఋ௙ఋ௫೔ × 𝑑𝑥௜௡௜ୀଵ .  (13) 

Assuming all variables as mutually independent and squaring Equation (13), the 
Gaussian law of variance propagation of function f is obtained: 𝜎௙ଶ = ∑ ( ఋ௙ఋ௫೔)ଶ × 𝜎௫ଶ௜௡௜ୀଵ .  (14)

By applying the Gaussian law of variance propagation at the 3D structure tensor, the 
variances of the abovementioned features, described by Equations (1)–(7), are expressed 
as follows [15]: 𝜎௅ଶ =  ఒభమ×ఙഊమమାఒమమ×ఙഊభమఒభర ,  (15)

𝜎஺ଶ = ఒభమ×ఙഊయమାఒయమ×ఙഊభమఒభర ,  (16)

𝜎௉ଶ = ఒభమ×ఙഊమమାఒభమ×ఙഊయమା(ఒమିఒయ)మ×ఙഊభమ(ఒభ)ర ,  (17)

𝜎ௌଶ = ఒభమ×ఙഊయమାఒయమ×ఙഊభమఒభర ,  (18)

𝜎ைଶ = ఒభమ×ఒమమ×ఙഊయమାఒభమ×ఒయమ×ఙഊమమାఒమమ×ఙഊభమଽ∗∏ ఒభ× ට∏ ఒ೔య೔సభయయ೔సభ ,  (19)

𝜎஼ଶ =  ఒయమ×ఙഊభమାఒయమ×ఙഊమమା(ఒభାఒమ)మ×ఙഊయమ(∑ ఒ೔య಺సభ )ర ,  (20)𝜎∑ଶ = ∑ 𝜎ఒ೔మଷ௜ୀଵ .  (21)
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See Dittrich et al. (2017) [15] for more details concerning the application of the Gauss-
ian law of variance propagation at the 3D structure tensor. A proper code in the R envi-
ronment was developed to implement the Gaussian law of variance propagation and to 
estimate the geometric features accuracy. It was separately applied on TLS and RPAS-
based geometric features. Lastly, the outputs of both procedures were compared. 

3. Case Study 
The All Saints’ Monastery of Cuti (Figure 3), located 2 km away from the city center 

of Valenzano (Bari, Southern Italy), was selected as the case study of this research both for 
its historical and architectural relevance and for the current intention of the municipality 
of Valenzano to support local tourism. It was built by the priest Eustazio together with a 
group of monks between 1080 and 1083 to provide the people living in the countryside 
surrounding Bari with a Catholic place of prayer. Despite its abandonment in 1811, the 
demolition of two cloisters, and the addition of extra elements, i.e., two bell towers and 
boundary walls, the Monastery is still considered one of the few remaining well-con-
served Apulian Romanesque architecture examples [51]. Indeed, it is a hall church with 
domes on the axis, a typical structure of Apulian architecture since the 7th century [50]. 
Its external part consists of three domes in line with the central nave and an incomplete 
portico that only partially covers the church. The central dome is the highest and widest. 
Its interior part is divided into three naves with a half-barrel vault. Unfortunately, most 
of the original furnishings and liturgical vestments have been lost over the years [50]. 
RPAS-photogrammetric, topographic, and TLS surveys were separately conducted to 
generate its 3D representation, as previously described. 

 
Figure 3. Study area: All Saints’ Monastery of Cuti, located in the province of Bari (Southern Italy). The RGB orthophoto 
and the 3D scene representation produced by handling RPAS-photogrammetric data are reported on the left and on the 
right of the panel, respectively. Ground Control Points (GCPs) (in yellow) and Check Point (in light blue) locations are 
represented on the orthophoto. (Coordinate Reference System: WGS84/Pseudo-Mercator (EPSG:3857)). 
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4. Results and Discussion 
Two dense point clouds reflecting the All Saints’ Monastery of Cuti, located in the 

province of Bari, were generated [50]. The former was extracted by handling 202 RPAS-
photogrammetric photos, including both nadiral and oblique pictures, while the latter was 
obtained by processing 24 TLS scans. The remaining 10 scans were not included during 
the processing step since they referred to the interior of the Monastery. Firstly, the results 
of these techniques were compared in terms of the time needed to collect and process the 
data. As highlighted in Table 1, TLS seemed to be a more affordable tool to produce 3D 
scene reconstruction thanks to the shorter data processing time (450 versus 978 min) albeit 
the acquiring time was about 136 min more. The time needed to measure GCPs and CPs, 
equal to 40 min, was added to the abovementioned acquisition time. This kind of evalua-
tion depended on computer performance. An Intel® CoreTM i7-3970X CPU @3.50GHz 
with 16 GB RAM was applied in this case. 

Table 1. Main features of RPAS-based and TLS-based point clouds. 

 RPAS TLS 
ACQUISITION TIME (min) ~14 ~150 
PROCESSING TIME (min) ~974 ~300 
DENSE POINT CLOUDS 
NUMEROSITY (n° points) 28,202,789 195,939,535 

This parameter was not enough to assess the performance of the two techniques, and 
thus, additional proprieties such as volume density and number of points were in-volved. 
TLS returned a higher number of points (195,939,535 versus 28,202,789) (Table 1), which 
should have resulted in a higher-detailed reproduction of the Monastery geometry. How-
ever, the corresponding 3D point cloud was heavy and hard to oversee and manage. 
Therefore, as proposed by Son et al. (2020) [3] and already explained in Section 2.3, it was 
further filtered to drastically reduce point numerosity. Nonetheless, the resultant cloud 
was still denser than that one produced using RPAS-photogrammetry (191,519,447 versus 
28,202,789) (Table 1). This parameter was not significant enough to define the 3D recon-
struction effectiveness and reliability. As a consequence, point distribution homogeneity 
was investigated by estimating the volume density parameter, as suggested by Jo and 
Hong (2019) [4] and Son et al. (2020) [3]. Figure 4 reports volume density outcomes for 
both models. Although the volume density parameter was higher for the TLS-based 
model than the RPAS-based one, a lack of data related to the ground and the central part 
of the roof can be detected. Such a loss of data, depicted in white in Figure 4, made it 
impossible to reconstruct that area using only TLS data. As previously observed by Lague 
et al. (2013) [39] and Di Francesco et al. (2020) [50], point inhomogeneity in the TLS cloud 
was mainly caused by the distance between the Monastery and the instrumental stand-
point. The combination of the inhomogeneous distribution of points and the lack of data 
impacted on the quality of the final 3D reconstruction. In contrast, the RPAS model gen-
erated a homogenous point distribution over all the study area thanks to the integration 
of nadiral and oblique photos. This ensured the generation of a consistent 3D reconstruc-
tion both horizontally and vertically. Nevertheless, its output quality was affected by the 
user’s skill in acquiring and handling data [50]. Both model outcomes did not experience 
significant blockages and, therefore, the vertical facades were totally reconstructed. 
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Figure 4. Volume density levels generated from RPAS-based and TLS-based point clouds are re-
ported on the top and on the bottom, respectively. This parameter was computed within a sphere 
with a radius equal to 0.05 m. 

The two techniques were also compared in terms of the accuracy of the generated 3D 
digital representations. Thus, basic statistics metrics were estimated for the two resultant 
models. Mean, Maximum, and Minimum Error (ME, Max, and Min) values were calcu-
lated for the TLS-based reconstruction. Their values were equal to 0.004, 0.017, and 0.001 
m, respectively. Median, 1st, and 3rd quartiles were computed as well. Their values were 
equal to 0.002, 0.001, and 0.003 m. Conversely, base statistics metrics related to the RPAS-
based model are reported in Table 2. The root mean square error (RMSE) estimated on 
GCPs evaluated the Bundle Block Adjustment (BBA) phase accuracy, while the ones com-
puted on CPs assessed the accuracy of the final product. The errors committed on each 
axis (RMSEx, RMSEy, and RMSEz) and the total errors (RMSET) are reported in Table 2. 3D 
reconstruction generated by handling TLS data was slightly more accurate than the one 
produced by processing RPAS input data. 
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Table 2. RMSE referring to the point cloud extracted using RPAS-photogrammetry for both GCPs 
and CPs. The total values and their components along the three axes (x, y, and z) are reported. 

 GCPs CPs 
RMSEx (m) 0.014 0.009  
RMSEy (m) 0.016 0.013 
RMSEz (m) 0.026 0.022 

Lastly, cloud-to-cloud distance was also evaluated through the application of the 
M3C2 tool of CloudCompare. As previously, the most significant divergences were lo-
cated on the vegetated areas and on the roof (Figure 5). This was essentially caused by the 
lack of data in the TLS-based model, as already highlighted in the previous paragraphs. 
Excluding those areas, the M3C2 outcome showed a value comprised between −0.063 and 
0.005 m on the horizontal and vertical facades of the Monastery, and between −0.2 and –
0.1 m on the portal and rose window. The precision of this measurement was instead eval-
uated by computing M3C2 Uncertainty, with results reported in Figure 5. M3C2 Uncer-
tainty was between 0.065 and 0.085 m and between 0.09 and 0.146 m for the Monastery 
structure and the green areas, respectively. This comparison ensured full compatibility 
among the obtained reconstructs and highlighted the weakness of each applied approach, 
already noted in the previous paragraph. No specific issues were detected by performing 
that analysis. 
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Figure 5. M3C2 distance and Distance Uncertainty are depicted at the top and at the bottom, respec-
tively. The unit measurement is the meter. 

A further investigation concerning the resultant models was performed by extracting 
the corresponding geometric features and their accuracy, as detailed in Section 2.5. Thus, 
the three eigenvalues (λ1, λ2 and λ3) of the 3D covariance matrix S were extracted from 
TLS and RPAS dense point clouds (Figure 6). To easily compare their values, the corre-
sponding histograms were computed and are reported in Figure 7. λ1, λ2 and λ3 values 
were within the same order of magnitude for both models albeit the number of points 
were different for the two resultant clouds, as previously highlighted. Moreover, λ1 and 
λ3 had the same trend in contrast to the second eigenvalue, which showed a more complex 
distribution of around 0.0007 for the TLS-based model compared to the RPAS one. This 
indicated that the size and the shape of the point clouds generated by RPAS and TLS were 
similar along the most elongated direction (identified by λ1) as well as along the “flat” 
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dimension (defined by λ3). Conversely, some divergences were detected along the second 
elongation direction (underlined by λ2). As depicted in Figure 6, these differences are 
mainly located on the vegetated areas and on the ground, and thus, they did not affect the 
point clouds’ performance in the area under investigation. This indicated that no signifi-
cant differences were detected among them. 

 
Figure 6. λ1, λ2 and λ3 estimated within a local sphere with a radius 0.05 m from RPAS-based (on the top) and TLS-based 
(on the bottom) point clouds, respectively. 
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Figure 7. Histogram of λ1, λ2 and λ3 estimated within a local sphere with a radius 0.05 m from RPAS-based (on the top) 
and TLS-based (on the bottom) point clouds, respectively. 

Generally, covariance features are used more often than raw eigenvalues for 3D 
structure investigations and point cloud classification purposes [17,44]. Therefore, as ex-
plained in Section 2.5, eigenvalues-based geometric features and their corresponding var-
iances were assessed as well. Histograms of these properties referring to the RPAS and 
TLS models are depicted in Figures 8 and 9, respectively. Although all features were in 
the same order of magnitude, anisotropy, curvature, and sphericity showed similar trends 
in both models, in contrast to the remaining features (omnivariance, linearity, rigenvalue 
sum, and planarity). The latter are detailed in Figures 10 and 11, which illustrate that the 
differences are essentially from the lack of data on the ground and on the vegetated areas 
in the TLS model. Moreover, Figures 10 and 11 highlight that the RPAS-based point cloud 
was less affected by noise, and thus, the obtained features were easier to interpret and 
manage. This indicated that the RPAS dense point cloud was more stable and consistent. 
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Figure 8. Histogram of eigenvalues-based geometric features extracted from the RPAS dense point cloud. 
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Figure 9. Histogram of eigenvalues-based geometric features extracted from the TLS dense point cloud. 
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Figure 10. Anisotropy, planarity, linearity, mean curvature, eigenvalue sum, omnivariance extracted from RPAS. 

 
Figure 11. Anisotropy, planarity, linearity, mean curvature, eigenvalue sum, omnivariance extracted from TLS. 

Lastly, the variance of the geometric features extracted from the RPAS-based and 
TLS-based models was separately estimated by applying the Gaussian law of variance 
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propagation [15]. The outcome of this analysis is reported in Figure 12, which describes 
the trend of geometric features variance as a function of λ1. The features trends as a func-
tion of λ2 and λ3 were nearly similar and, thus, only the values according to λ1 variation 
were reported. The variance contribution was significant at low values for all examined 
properties, except linearity, curvature, and omnivariance were the most affected by that 
noise. In particular, as to the linearity, the variance effect was more evident in the RPAS 
model than in the TLS model. As previously stated, in both models the low values of λ1 
corresponded to the vegetation, considered to be the noisiest and least accurate zone. This 
indicated that the noise particularly affected the vegetated areas. In contrast, the noise 
impact was less relevant in accordance with the increment of λ1 values. 

 
Figure 12. The variance of geometric features computed from the RPAS (on the left) and TLS (on the right) models. 

Thus, the Gaussian law of variance propagation underlined the noise impact on the 
eigenvalues-based geometric features. This implied that all considered geometric features 
were mainly corrupted by the noise at low values of the eigenvalues. Thus, specific atten-
tion should be paid to these areas, which may require a further filtering analysis before 
the classification procedure. In the investigated case, these areas were not linked to the 
All Saints’ Monastery of Cuti, and as a consequence, they were not properly filtered. 

5. Conclusions 
This paper assessed TLS and RPAS digital photogrammetry approaches to reproduc-

ing accurate 3D scene reconstruction of a cultural heritage building. Specifically, after in-
vestigating the performance of the two abovementioned approaches, geometric features 
were extracted from both resultant models and evaluated. This analysis was carried out 
on the All Saint Monastery, located in Valenzano (Bari, Southern Italy), selected as the 
pilot site for this study because of its historical and architectural relevance. 

The area under investigation was inspected by applying three different geomatic 
techniques: a topographic survey to collect GCPs and CPs, a photogrammetric method to 
gather photogrammetric photos using an RPAS, and lastly a TLS acquisition. RPAS SfM-
MVS and TLS approaches are widely used to reproduce a cultural heritage building with 
accuracy because of their ease of use and high level of automation. However, both tech-
niques had pros and cons and, thus, their limits and benefits were compared and dis-
cussed. The main divergences between the abovementioned methods are as follows: 
a. RPAS allowed reducing the time required to collect the input data while TLS permit-

ted generating the final 3D model in a shorter operational time; 
b. The RPAS-based point cloud was less dense than the one produced by TLS and thus 

more easily manageable; 
c. The point distribution of the TLS-derived cloud was not homogeneous and, conse-

quently, the accuracy of the 3D reconstruction was not uniform in the final model; 
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d. RPAS allowed surveying the entire study area while TLS did not permit the collection 
of data concerning the roof of the Monastery, the vegetated areas, and the grounds; 

e. RPAS was a low-cost tool while TLS was a highly expensive instrument. 
Thus, although two accurate 3D digital representations were produced, both point 

clouds showed several limitations, mainly from the lack of data in relation to the roof of 
the Monastery, the vegetated areas, and the grounds in the TLS outcome as well as the 
low point numerosity in the RPAS cloud. Additionally, the RPAS-based point cloud was 
obtained by using Metashape, a commercial user-friendly software that enables 3D scene 
reproduction with camera self-calibration. Although this was an undeniable advantage in 
terms of saving processing time, it resulted in a decrement of the accuracy of the generated 
3D model. Such an error level was in part reduced by the introduction of GNSS measure-
ment during the BBA phase. As a result, the 3D scene representation was only partial in 
the case of the TLS model, and it was less reliable in the case of the RPAS-based model. 
This indicated that neither of the two outcomes could be considered an effective recon-
struction of the examined physical asset. 

Nevertheless, point clouds are commonly applied to meet classification purposes and 
structure investigation. Thus, the eigenvalues-based geometric features and the propa-
gated variance were also inspected. All point clouds are affected by noise, mainly from 
the survey instrument, terrain heterogeneity, and scanning geometry. The noise, however, 
was not homogeneous overall in the generated models and, thus, a critical analysis of its 
distribution appeared essential to detect and reduce errors and uncertainty levels. The 
Gaussian law of variance propagation approach to the point cloud-derived products al-
lowed meeting such a purpose. Indeed, assessing the variance trend involved detecting 
the noise influence on the final model and geometric features reliability. Both models 
showed similar trends for all eigenvalues-based geometric features: the variance contri-
bution was higher at low values. Nevertheless, linearity, curvature and omnivariance 
were most affected by the noise and, thus, could not be considered stable. Thus, no signif-
icant differences in variance were detected between the models. Only the trend of the lin-
earity variance was slightly different. Further investigations are required to generalize 
these results and to quantify the contribution of such a procedure to classification output. 

In conclusion, although the RPAS-based 3D reconstruction was less accurate than 
that extracted by adopting the TLS, it allowed representing the scene entirely and compu-
ting consistent and reliable geometric features useful for addressing classification pur-
poses. The use of the Gaussian law of variance propagation approach appears promising 
to detect the noise impact on eigenvalues-based geometric features before performing a 
subsequent classification procedure. 
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Abbreviation 
3D Three-Dimensional 
AGL Above Ground Level 
BBA Bundle Block Adjustment 
CORS Continuous Operation Reference Stations 
CPs Check Points 
EPSG European Petroleum Survey Group 
GCPs Ground Control Points 
GNSS Global Navigation Satellite System 
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GSD Ground Sample Distance 
IMU Inertial Measurement Unit 
INS Inertial Navigation System 
LoD Level of Detection 
M3C2 Model-to-Model Cloud Comparison 
MSV MultiView Stereo 
nRTK Network Real-Time Kinematic 
RMSE Root Mean Square Error 
RPAS Remotely Piloted Aircraft Systems 
SfM Structure from Motion 
TLS Terrestrial Laser Scanner 
v. version 
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