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Abstract: A proper classification of 3D point clouds allows fully exploiting data potentiality in
assessing and preserving cultural heritage. Point cloud classification workflow is commonly based
on the selection and extraction of respective geometric features. Although several research activities
have investigated the impact of geometric features on classification outcomes accuracy, only a few
works focused on their accuracy and reliability. This paper investigates the accuracy of 3D point
cloud geometric features through a statistical analysis based on their corresponding eigenvalues
and covariance with the aim of exploiting their effectiveness for cultural heritage classification.
The proposed approach was separately applied on two high-quality 3D point clouds of the All
Saints’ Monastery of Cuti (Bari, Southern Italy), generated using two competing survey techniques:
Remotely Piloted Aircraft System (RPAS) Structure from Motion (SfM) and Multi View Stereo (MVS)
techniques and Terrestrial Laser Scanner (TLS). Point cloud compatibility was guaranteed through
re-alignment and co-registration of data. The geometric features accuracy obtained by adopting the
RPAS digital photogrammetric and TLS models was consequently analyzed and presented. Lastly, a
discussion on convergences and divergences of these results is also provided.

Keywords: 3D models; geometric features; 3D point cloud classification; eigenvalues; geomatic
surveys techniques; R software

1. Introduction

Monitoring a cultural heritage building is essential to evaluate its health status and
detect any deformations that have occurred as well as to preserve and disseminate its
relevance. Such purposes can be achieved by producing an accurate three-dimensional (3D)
representation of the sites under investigation. The 3D models, indeed, can capture their
appearances and reproduce their geometric details digitally [1]. Consequently, 3D models
are currently recognized as a powerful tool to document the current state of a cultural
building [2].

Over the years several methodologies have been proposed to generate accurate and
reliable 3D digital scene reconstruction. Among them, image-based modeling (e.g., pho-
togrammetry), the range-based approach (e.g., Terrestrial Laser Scanner), or the integration
of the abovementioned technologies are currently recognized as the most productive [2].
Nonetheless, selection of the appropriate technology and procedure to adopt is always a
challenging matter. Indeed, such a choice is affected by the size and the complexity of the
object under investigation, as well as the necessary level of accuracy and the location con-
straints. Commonly, the range-based approaches produce a high-density 3D point cloud
that allows creating a high-resolution geometric model, while the image-based techniques
are more appropriate to generating high-resolution textured 3D models depicting only the
main object structure [1]. Fusing the outputs of both surveying techniques allows fully
exploiting their potentialities, reducing their limits.
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Among the range-based sensors, TLS is largely used in the cultural heritage field
thanks to its ability to quickly extract accurate 3D dense point clouds of any study object [3].
However, this method is not limitation-free, mainly because of the instrumental standpoint
distance and inclination issues, which can generate an inhomogeneous point cloud [3].
Such an artifact can only be partially resolved by locating the instrumental standpoint
perpendicularly and relatively close to the element to be surveyed [4]. Moreover, additional
restrictions may derive from the complexity of carrying and arranging the required tools
in difficult-to-reach areas. Lastly, TLS is not convenient in terms of both instrumental and
time costs to collect and handle data [4].

In contrast, photogrammetry is based on the application of perspective or projective
geometry formulations to convert the 2D image measurements into a 3D model. This occurs
by detecting the corresponding points in photos that depict the same element from diverse
positions. Such procedures were originally carried out manually (analytic and analogic
photogrammetry) and only in the 1990s were they automatized (digital photogrammetry).

Photogrammetric data can be gathered using different available data collection plat-
forms (space, airborne, and terrestrial). As highlighted by Colomina and Molina (2014) [5],
among them, RPAS is a valid alternative as it allows acquiring high-resolution metric
and qualitative data using low-cost tools. Indeed, the constant development of electronic
and optical devices (e.g., integrated circuits, radio-controlled systems) initially used in
the military field and later introduced in the civil sector, together with sensor size and
weight reduction, resulted in a severe decrease in their cost, supporting their spread on
the market. Moreover, RPAS can fly at low altitudes without any risk to the pilot [6].
This allows meeting users’ needs, such as obtaining a Ground Sample Distance (GSD)
adapted to the size of the object under investigation as well as reaching difficult-to-access
areas, through proper planning of the flight mission [7]. However, this approach has some
disadvantages; in particular, it can only be applied to small-sized areas, with the resultant
point cloud quality affected by GCP amount and distribution [8], flight plans [9,10], and
camera calibration parameters [11–13]. Thus, RPAS digital photogrammetry, based on
the integration of Structure from Motion (SfM) techniques with MultiView Stereo (MVS)
algorithms, allows generating more homogeneous yet less dense point clouds than the
ones generated from TLS.

A detailed analysis of the 3D structure under investigation requires a proper inter-
pretation of generated point clouds. However, assigning a correct label to each individual
point is challenging, mainly because of the abovementioned limitations: lack of homogene-
ity and low density of points. To meet such a goal, appropriate features arising from the
spatial arrangement of each individual point are a relevant source of information. Since
such features are estimated for every single point, they do not include context information
and, thus, they have to be estimated within a local 3D neighborhood [14]. Consequently,
these features describe the local shape characteristics of the examined points and allow
classifying each of them [15]. The standard approaches for 3D point cloud classification
involve their combination through the development of a proper set of categorization rules.
A good round-up of the most used features and their contribution to the classification
process was given by Chehata et al. (2009) [16] and Mallet et al. (2011) [17]. The invariant
moments, e.g., the covariance matrix, are commonly applied to this scope [18]. However,
the quality of classification output is affected by the adopted scheme as well as by the
amount and the kind of applied features. Indeed, most of the geometric features are ir-
relevant and redundant and should therefore be neglected [14]. Although Dittrich et al.
(2017) [15] showed the susceptibility of some of them to noise, only few research activities
have been carried out to evaluate geometric feature robustness and reliability and, to the
best of my knowledge, none of them was focused on comparing the performances of the
geometric features of TLS and RPAS photogrammetry-based point clouds.

The main goal of this study is to assess and compare the consistency of the eigenvalues-
derived geometric features extracted from accurate 3D models generated by two geomatic
survey approaches: RPAS digital photogrammetry and TLS. These techniques were selected
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because they are the most popular ones for producing accurate 3D scene reconstructions in
the cultural heritage field. Once the 3D point clouds were generated and their accuracy
assessed, the geometric features were extracted, and their reliability was evaluated through
the application of the Gaussian law of variance propagation. To meet such a purpose
a proper code in the R environment was developed. The All Saints’ Monastery of Cuti
(Bari) cultural heritage building was selected as the case study because of its historical and
architectural relevance.

The paper is organized as follows. Section 2 provides a detailed description of the
proposed methodology. Specifically, after introducing a synthetic pipeline of the entire
procedure, each operative step is explained in a specific section: (i) Section 2.1 reports field
data activities and database building; (ii) Section 2.2 illustrates the digital photogrammetric
process adopted to handle the data collected by RPAS, while (iii) Section 2.3 describes
the procedure applied to process TLS data; (iv) Section 2.4 depicts the evaluation of the
resultant point cloud accuracy as well as the computation of the geometric features; lastly,
(v) Section 2.5 expounds the statistical method adopted to evaluate geometric feature
accuracy. The main properties of the All Saints’ Monastery of Cuti (Bari, Southern Italy),
selected as the case study of this work, are described in Section 3. Lastly, results, strengths,
and weaknesses of the adopted procedure are discussed in Section 4, while the conclusions
are provided in Section 5.

2. Materials and Methods

This section describes the methodology adopted to address the research goals, with the
operative workflow outlined in Figure 1. Once the data collection phase was completed and
the database built, photogrammetric pictures and TLS scans were handled separately, and
their outcomes evaluated and compared. Lastly, after ensuring point cloud compatibility,
eigenvalues-based geometric features were estimated, and their corresponding accuracy
and reliability assessed.

2.1. Data Collection and Database Construction

Three flight campaigns were carried out over the experimental site on 18 April 2019
using a consumer quadcopter DJI Inspire 1 weighing 2.9 kg (payload included). This
RPAS was equipped with a 3-axis gimbal to compensate for accidental vehicle movements,
as well as a low-cost GNSS/INS positioning receiver to gather its position and the DJI
Ground Station Pro app (Dà-Jiāng Innovations) [19] to set up and oversee the missions.
All actions were performed at the same cruising speed (4.0 m/s) and altitude (25 m AGL,
above ground level). According to the research of Dandois et al. (2015) [20], the STOP&GO
flight mode was selected to reduce the number of blurry pictures collected using a DJI
ZenMuse X3 camera, characterized by a focal length of 3.61 mm and a pixel size of 1.56
µm, mounted on the RPAS’ gimbal at both nadiral and 45◦ positions. Waypoint position
was set to ensure the acquisition of both nadiral and oblique photogrammetric pictures,
and thus, different longitudinal and transverse overlaps between them were established.
Indeed, a longitudinal and transverse overlap of 90% was set to gather nadiral, while
longitudinal and transverse overlaps of 90 and 70%, respectively, were selected to collect
the oblique photos. Such a combination of flight and camera features ensured the collection
of 202 aerial photogrammetric pictures with a nominal Ground Sample Distance (GSD) of
1.1 cm/pixel.

Simultaneously, an appropriate topographic survey was conducted to acquire the
positions of 21 permanent natural elements on 20 December 2019. These points, homoge-
neously allocated overall to the pilot site, were surveyed using a Leica Geosystem GS18T
receiver. Such a receiver was logged into the national network (National Dynamic Network
RDN2008) of the Continuous Operation Reference Stations (CORS) through the permanent
station in Valenzano (Bari) and the network Real-Time Kinematic (nRTK) acquisition mode
was chosen. Ellipsoidal altitude points, stored up by the receiver, were further converted
into orthometric altitude points with ConveRgo software [21], while RDN2008/UTM
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zone 33N (N-E) (EPSG: 6708) was selected as the Reference system. After their positions
were collected, the data set was split into two respective categories composed of 11 and
10 points. Both of them were imported in Agisoft PhotoScan (v.1.4.1, Agisoft LLC -St.
Petersburg, Russia) software [22], currently known as Metashape, which handled the RPAS-
photogrammetric data and extracted accurate cloud points. The first group was adopted
as Ground Control Points (GCPs) and the second one as Check Points (CPs) during the
alignment phase of the gathered pictures.
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Figure 1. Operative workflow implemented to assess the accuracy and reliability of RPAS-
photogrammetric and TLS-based 3D point clouds and to compare both models’ performances.

Lastly, a Leica RTC360 3D Laser Scanner was adopted to acquire 34 scans of the study
area on 29 November 2019. Such an instrument (recording capacity: 2,000,000 pts/sec,
maximum range: 130 m, and range accuracy: 1.0 mm + 10 ppm) (Xiaohui et al. 2019) was
set about 50 m away from the Monastery to also collect the dome data. Moreover, TLS
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scans were homogeneously collected at the All Saints’ Monastery of Cuti. The proprietary
Leica Cyclone software (v.9.2.0) [23] was, thus, adopted to handle these data.

2.2. RPAS Digital Photogrammetry

Figure 2 reports the procedure adopted to produce the RPAS-photogrammetric point
cloud following the suggestions of Caroti et al. (2017) [24], Beretta et al. (2018) [25], and
Manfreda et al. (2018) [26]. Specifically, the process was broken down into four key
steps: (i) workspace and dataset setting up; (ii) image block orientation; (iii) filtering and
georeferencing; and (iv) photogrammetric outcome generation.

Drones 2021, 5, 145 6 of 24 
 

 
Figure 2. Photogrammetric pipeline. 

Before importing the collected images into the Agisoft environment, they were 
checked over visually to detect and clean out the blurry ones, which could affect outcome 
accuracy. In addition, a quantitative evaluation of their quality was subsequently carried 
out by applying the “Estimate Image Quality” tool, which returns a value between 0 and 
1 according to their sharpness, blurring, and distortion. Indeed, 0 was assigned to very 
poor-quality pictures while 1 was assigned to very high-quality ones [27–31]. In the pre-
sent study, the useful images were selected using 0.6 as the threshold. After adequate im-
ages were selected, the workspace was arranged by fixing the values as reported in Figure 
2. Specifically, the threshold of 3 m was assigned to the “Camera Positioning Accuracy” 
parameter to be consistent with the average 3D positioning accuracy value stored by the 
RPAS GNSS receiver, equal to 2.54 m. Conversely, the “Image Altitude Accuracy” was set 
as equal to 10 degrees because the RPAS-integrated Inertial Measurement Unit (IMU) did 
not provide any information on altitude measurements. 

For the “Image block Orientation” step (second phase), aimed at the alignment of 
pictures and tie points detection, as pinpointed in Figure 2, the “High” accuracy mode 
was set with a threshold equal to 0 for the “Limits of Key Points and Tie Points” parame-
ter, as recommended by Gruen and Beyer (2001) [30] and Triggs et al. (2000) [31]. This 
ensured no unchecked points filtering. After aligning the images and extracting the sparse 
point cloud, at the start of the third phase, named “Georeferencing and filtering”, three 
additional criteria were adopted to evaluate the systematic error and enhance the accuracy 
of the output. These criteria were as follows: (i) removal of all points characterized by low 
base–height ratios (ratio between the largest and smallest semiaxis of the error ellipse ob-
tained by triangulating 3D point coordinates between two photos), such as those located 
on the edge of the images. This criterion was met by fixing the “Photogrammetric Resti-
tution Uncertainty” parameter, which allows detecting the uncertainty in the position of 
a tie point based on the geometric relationship of the cameras from which that point was 
projected or triangulated, considering geometry and redundancy [22]; (ii) elimination of 
all less reliable points by setting a threshold equal to 3 as the “Projection Accuracy” pa-
rameter. Such a variable measures the “Mean Key Point Size”, defined as the standard 

• Estimating image quality
• Reference setting

• Coordinate system: RDN2008/UTM 
zone 33N (NE) (EPSG: 6708)

• Camera altitude accuracy: 3m
• Camera Position accuracy: 10 deg
• 3D marker accuracy: 0.02 m
• Marker accuracy: 0.5 pixel

Workspace and 
dataset setting up

• Accuracy: high
• Key point Limit: 0
• Tie point Limit: 0
• Adaptive Camera Model Fitting

Image block 
orientation

• Gradual selection
• Photogrammetric restitution 

uncertainty:10 pixel
• Projection Error: 3 pixel
• Reprojection Error: 0.4 pixel

• GCPs collimation

Filtering and 
georeferencing

• Dense point clouds
• 3D textured model

Photogrammetric 
outcome generation
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Before importing the collected images into the Agisoft environment, they were checked
over visually to detect and clean out the blurry ones, which could affect outcome accuracy.
In addition, a quantitative evaluation of their quality was subsequently carried out by
applying the “Estimate Image Quality” tool, which returns a value between 0 and 1
according to their sharpness, blurring, and distortion. Indeed, 0 was assigned to very
poor-quality pictures while 1 was assigned to very high-quality ones [27–31]. In the present
study, the useful images were selected using 0.6 as the threshold. After adequate images
were selected, the workspace was arranged by fixing the values as reported in Figure 2.
Specifically, the threshold of 3 m was assigned to the “Camera Positioning Accuracy”
parameter to be consistent with the average 3D positioning accuracy value stored by the
RPAS GNSS receiver, equal to 2.54 m. Conversely, the “Image Altitude Accuracy” was set
as equal to 10 degrees because the RPAS-integrated Inertial Measurement Unit (IMU) did
not provide any information on altitude measurements.

For the “Image block Orientation” step (second phase), aimed at the alignment of
pictures and tie points detection, as pinpointed in Figure 2, the “High” accuracy mode was
set with a threshold equal to 0 for the “Limits of Key Points and Tie Points” parameter, as
recommended by Gruen and Beyer (2001) [30] and Triggs et al. (2000) [31]. This ensured no
unchecked points filtering. After aligning the images and extracting the sparse point cloud,
at the start of the third phase, named “Georeferencing and filtering”, three additional
criteria were adopted to evaluate the systematic error and enhance the accuracy of the
output. These criteria were as follows: (i) removal of all points characterized by low base–
height ratios (ratio between the largest and smallest semiaxis of the error ellipse obtained
by triangulating 3D point coordinates between two photos), such as those located on the
edge of the images. This criterion was met by fixing the “Photogrammetric Restitution
Uncertainty” parameter, which allows detecting the uncertainty in the position of a tie point
based on the geometric relationship of the cameras from which that point was projected
or triangulated, considering geometry and redundancy [22]; (ii) elimination of all less
reliable points by setting a threshold equal to 3 as the “Projection Accuracy” parameter.
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Such a variable measures the “Mean Key Point Size”, defined as the standard deviation
value of the Gaussian blur at the scale at which the point was detected [22]. This condition
guarantees the exclusion of all tie points with uncertainty 3 times higher than the minimum
one; and, lastly, (iii) a threshold of 0.4 was assigned to the “Reprojection Error” parameter
(estimation of the error obtained by comparing a point’s original position on the image and
the location of that point when it is re-projected to the photo [22]) in order to clean out all
points characterized by a significant residual value. These threshold values were selected
according to the recommendations by Saponaro et al. (2019a) [32]; Dandois et al. (2015) [20];
Gagliolo et al. (2018) [33]. This ensured the reduction of restitution errors and improvement
of the orientation parameters. Indeed, by integrating the three abovementioned criteria,
implemented in the “Gradual selection” tool, about 20% of the inaccurately estimated
points from clouds were removed. Further improvement of georeferencing through the
reduction of image block deformation resulted from uploading the GCPs in the Metashape
software [34]. Thus, the dense point cloud was produced, and its accuracy was assessed
by computing the root mean square error (RMSE) (phase 4—“Photogrammetric outcome
generation”). The final output was imported into the CloudCompare environment for
subsequent analysis [35].

2.3. TLS

Field scanning data collected using the Leica RTC360 3D Laser Scanner were im-
ported into Leica Cyclone software where they were registered and georeferenced. This
software was equipped with the “Registration module”, which allowed the automatic
compensation for errors from the pre-registration procedure carried out during the data
acquisition phase [36]. Thus, a total of 25 natural or artificial targets easily detectable
in the clouds were picked as homologous points among the scans by using the Cloud
Constraints Wizard tool [37]. This resulted in an average overlap of 46% among them.
Before exploring the errors committed by computing the base statistics (mean, minimum,
maximum, median, and quartile values), needless elements such as people and cars were
filtered and cleaned out [3–38]. Lastly, all extracted point clouds were merged into a single
one and exported as pts. This outcome was further investigated in the CloudCompare
environment, which allowed extracting several geometric features useful to investigating
the point clouds from several points of views [39].

2.4. Geometric Feature Extraction and 3D Point Cloud Accuracy Assessment

CloudCompare software provides a few plugins aimed at investigating point cloud
accuracy and examining their spatial 3D information [32]. Because of this, the two resultant
models were imported into that environment and thoroughly analyzed. Before proceeding
in this direction, resultant cloud compatibility was also evaluated. The clouds were re-
aligned and co-registered by pinpointing the GCPs in both models [3]. The TLS-based
point cloud showed higher accuracy than the one obtained by surveying GCPs in nRTK
mode and thus was used as a benchmark during the co-registration phase, as suggested by
Fugazza et al. (2018) [40]. Subsequently, less accurate zones and points not depicting the
pilot site were removed through the application of the Segment tool, implemented in the
CloudCompare environment.

Hence, only the spatial information related to the case study was investigated during
the subsequent steps through the computation of specific geometric features. Indeed,
the 3D scene structure can be locally described by extracting the three eigenvalues (λ1,
λ2 and λ3) of the 3D covariance matrix S, also known as the 3D structural tensor [41].
These eigenvalues express the dispersion relevance along their eigenvector and allow
defining the structure typology: when λ1 » λ2, λ3, the structure is unidimensional, since
the points are distributed along one main axis; while, when λ1 and λ2 » λ3 the structure
is bidimensional because all the selected points are essentially arranged along two axes
only; lastly, when λ1, λ2 and λ3 show similar values, the structure is tridimensional. S was
estimated by considering the spatial information of all 3D points (X = (X, Y, Z)) within a
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local neighborhood V, defined by applying a sphere of a fixed radius rs [42]. The size of rs
was determined in accordance with the proposal by Demantké et al. (2011) [43]. Thus, the
radius was set as 0.05 m in accordance with the study area heterogeneity.

However, as recommended by West et al. (2004) [44] and Pauly et al. (2003) [45], the
eigenvalues were not directly applied to explain the local structure at a point X; rather,
a set of geometric features based on them (Linearity Lλ, Anisotropy Aλ, Sphericity Sλ,
Planarity Pλ, Omnivariace Oλ, Curvature Cλ, Eigenvalues’ sum ∑λ) were computed. In
the following, the formal definition of such parameters is reported:

Lλ=
λ1 − λ2

λ1
, (1)

Aλ=
λ1 − λ3

λ1
, (2)

Pλ=
λ2 − λ3

λ1
, (3)

Sλ=
λ3

λ1
, (4)

Oλ=
3
√

λ1 × λ2 × λ3, (5)

Cλ=
λ3

λ1 + λ2 + λ3
, (6)

Σλ= λ1 + λ2 + λ3. (7)

Previous research studies proved that these factors are sensitive to noise [46–48], and
therefore, the investigation of the robustness of the eigenvalues and relatives-based features
deserve considerable attention. Indeed, as shown by Soudarissanane et al. (2011) [49], each
individual 3D point experiences a random noise content owing to the influence of various
factors. The methodology adopted to assess the accuracy and reliability of geometric
features extracted from TLS and RPAS-based point clouds is thoroughly described in the
next section.

The performance of the two resulting point clouds was firstly evaluated in terms
of acquisition and processing time, number of points, and volume density. Indeed, as
proposed by Jo and Hong (2019) [4] and Son et al. (2020) [3], the combination of such
parameters allowed analyzing the homogeneity of point distribution. Volume density was
estimated by using the “Cloud Density” tool implemented in the CloudCompare software.
Their performance was then assessed by using the Multiscale Model-to-Model Cloud
Comparison (M3C2) approach [39], which is based on two subsequent steps: the former,
aimed at defining the normal point, and the latter intended to calculate the difference
between the two considered point clouds. During the process, the normal scale and the
maximum depth of the cylindrical projection were set as 0.10 and 0.5 m, respectively.
The projection scale value (0.10 m) was instead chosen according to RPAS roughness, as
suggested by Di Francesco et al. (2020) [50]. Indeed, this parameter strongly influenced the
M3C2 output since selecting a too-small value enhances noise accumulation, while picking
a too-high value hides the differences.

For each estimated distance, the M3C2 algorithm allowed also computing the Distance
Uncertainty. A Level of Detection (LoD) equal to 95% was set to discriminate the statistically
significant change in terms of distance between the two considered dense point clouds.
Thus, the distance was statically significant when it was higher than the LoD95% value,
computed by applying Equation (8).

LoD95% = ±1.96×

√
σ1(d)

2

n1
+

σ2(d)
2

n2
+ reg

. (8)
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σ1(d)2 and σ2(d)2 are the variances of the two clouds’ positions, while n1 and n2 are the
numbers of points of RPAS- and TLS-extracted clouds, respectively. Lastly, reg represents
the co-registration error between the two considered dense point clouds. The outcome of
this procedure was used as a benchmark to evaluate the accuracy.

2.5. The Gaussian Law of Variance Propagation

As mentioned in the previous section, each 3D point is subjected to noise mainly from
the survey instrument, terrain heterogeneity, and scanning geometry [49], which translates
into an error in the planimetric and altitude coordinate values definition expressed as the
standard deviations related to each component (σx, σy, σz). Nevertheless, their values are
not homogeneous over the entire 3D structure since each individual point can show a
different deviation standard. The variance of a function f (f = f (x1, . . . , xn)) of random
variables xi can be appreciated through the application of the variance propagation law.
Commonly, the Taylor series, reported in Equation (9), was adopted to address such
a purpose.

f (x + dx) = f (x) + ∑∞
n=1

f (n)(x)
n!

(dx)n. (9)

Generally, only the first-order term is adopted to model the error because of the
irrelevant effect of all higher order terms on the variance propagation, as shown by Dittrich
et al. (2017) [15]. Thus, Equation (9) is simplified as follows:

f (x + dx) = f (x) + f ′(x)× dx. (10)

Thus, it is expressed as:

f (x + dx)− f (x) = f ′(x)× dx, (11)

d f = f ′(x)× dx. (12)

When n > 1, Equation (12) is modified as follows:

d f = ∑n
i=1

δ f
δxi
× dxi. (13)

Assuming all variables as mutually independent and squaring Equation (13), the
Gaussian law of variance propagation of function f is obtained:

σ2
f = ∑n

i=1 (
δ f
δxi

)
2
× σ2

xi
. (14)

By applying the Gaussian law of variance propagation at the 3D structure tensor, the
variances of the abovementioned features, described by Equations (1)–(7), are expressed as
follows [15]:

σ2
L =

λ1
2 × σλ2

2 + λ2
2 × σλ1

2

λ1
4 , (15)

σ2
A =

λ1
2 × σλ3

2 + λ3
2 × σλ1

2

λ1
4 , (16)

σ2
P =

λ1
2 × σλ2

2 + λ1
2 × σλ3

2 + (λ2 − λ3)
2 × σλ1

2

(λ1)
4 , (17)

σ2
S =

λ1
2 × σλ3

2 + λ3
2 × σλ1

2

λ1
4 , (18)

σ2
O =

λ1
2 × λ2

2 × σλ3
2 + λ1

2 × λ3
2 × σλ2

2 + λ2
2 × σλ1

2

9 ∗∏3
i=1 λ1 × 3

√
∏3

i=1 λi

, (19)
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σ2
C =

λ3
2 × σλ1

2 + λ3
2 × σλ2

2 + (λ1 + λ2)
2 × σλ3

2

(∑3
I=1 λi)

4 , (20)

σ2
∑ = ∑3

i=1 σλ2
i
. (21)

See Dittrich et al. (2017) [15] for more details concerning the application of the
Gaussian law of variance propagation at the 3D structure tensor. A proper code in the
R environment was developed to implement the Gaussian law of variance propagation
and to estimate the geometric features accuracy. It was separately applied on TLS and
RPAS-based geometric features. Lastly, the outputs of both procedures were compared.

3. Case Study

The All Saints’ Monastery of Cuti (Figure 3), located 2 km away from the city center of
Valenzano (Bari, Southern Italy), was selected as the case study of this research both for
its historical and architectural relevance and for the current intention of the municipality
of Valenzano to support local tourism. It was built by the priest Eustazio together with a
group of monks between 1080 and 1083 to provide the people living in the countryside
surrounding Bari with a Catholic place of prayer. Despite its abandonment in 1811, the
demolition of two cloisters, and the addition of extra elements, i.e., two bell towers and
boundary walls, the Monastery is still considered one of the few remaining well-conserved
Apulian Romanesque architecture examples [51]. Indeed, it is a hall church with domes
on the axis, a typical structure of Apulian architecture since the 7th century [50]. Its
external part consists of three domes in line with the central nave and an incomplete
portico that only partially covers the church. The central dome is the highest and widest.
Its interior part is divided into three naves with a half-barrel vault. Unfortunately, most of
the original furnishings and liturgical vestments have been lost over the years [50]. RPAS-
photogrammetric, topographic, and TLS surveys were separately conducted to generate its
3D representation, as previously described.
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Figure 3. Study area: All Saints’ Monastery of Cuti, located in the province of Bari (Southern Italy).
The RGB orthophoto and the 3D scene representation produced by handling RPAS-photogrammetric
data are reported on the left and on the right of the panel, respectively. Ground Control Points (GCPs)
(in yellow) and Check Point (in light blue) locations are represented on the orthophoto. (Coordinate
Reference System: WGS84/Pseudo-Mercator (EPSG:3857)).
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4. Results and Discussion

Two dense point clouds reflecting the All Saints’ Monastery of Cuti, located in the
province of Bari, were generated [50]. The former was extracted by handling 202 RPAS-
photogrammetric photos, including both nadiral and oblique pictures, while the latter was
obtained by processing 24 TLS scans. The remaining 10 scans were not included during the
processing step since they referred to the interior of the Monastery. Firstly, the results of
these techniques were compared in terms of the time needed to collect and process the data.
As highlighted in Table 1, TLS seemed to be a more affordable tool to produce 3D scene
reconstruction thanks to the shorter data processing time (450 versus 978 min) albeit the
acquiring time was about 136 min more. The time needed to measure GCPs and CPs, equal
to 40 min, was added to the abovementioned acquisition time. This kind of evaluation
depended on computer performance. An Intel® CoreTM i7-3970X CPU @3.50GHz with
16 GB RAM was applied in this case.

Table 1. Main features of RPAS-based and TLS-based point clouds.

RPAS TLS
ACQUISITION TIME (min) ~14 ~150
PROCESSING TIME (min) ~974 ~300
DENSE POINT CLOUDS

NUMEROSITY (n◦ points) 28,202,789 195,939,535

This parameter was not enough to assess the performance of the two techniques,
and thus, additional proprieties such as volume density and number of points were in-
volved. TLS returned a higher number of points (195,939,535 versus 28,202,789) (Table 1),
which should have resulted in a higher-detailed reproduction of the Monastery geometry.
However, the corresponding 3D point cloud was heavy and hard to oversee and manage.
Therefore, as proposed by Son et al. (2020) [3] and already explained in Section 2.3, it was
further filtered to drastically reduce point numerosity. Nonetheless, the resultant cloud
was still denser than that one produced using RPAS-photogrammetry (191,519,447 versus
28,202,789) (Table 1). This parameter was not significant enough to define the 3D recon-
struction effectiveness and reliability. As a consequence, point distribution homogeneity
was investigated by estimating the volume density parameter, as suggested by Jo and
Hong (2019) [4] and Son et al. (2020) [3]. Figure 4 reports volume density outcomes for
both models. Although the volume density parameter was higher for the TLS-based model
than the RPAS-based one, a lack of data related to the ground and the central part of the
roof can be detected. Such a loss of data, depicted in white in Figure 4, made it impossi-
ble to reconstruct that area using only TLS data. As previously observed by Lague et al.
(2013) [39] and Di Francesco et al. (2020) [50], point inhomogeneity in the TLS cloud was
mainly caused by the distance between the Monastery and the instrumental standpoint.
The combination of the inhomogeneous distribution of points and the lack of data impacted
on the quality of the final 3D reconstruction. In contrast, the RPAS model generated a
homogenous point distribution over all the study area thanks to the integration of nadiral
and oblique photos. This ensured the generation of a consistent 3D reconstruction both
horizontally and vertically. Nevertheless, its output quality was affected by the user’s skill
in acquiring and handling data [50]. Both model outcomes did not experience significant
blockages and, therefore, the vertical facades were totally reconstructed.
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Figure 4. Volume density levels generated from RPAS-based and TLS-based point clouds are reported
on the (top) and on the (bottom), respectively. This parameter was computed within a sphere with a
radius equal to 0.05 m.

The two techniques were also compared in terms of the accuracy of the generated 3D
digital representations. Thus, basic statistics metrics were estimated for the two resultant
models. Mean, Maximum, and Minimum Error (ME, Max, and Min) values were calculated
for the TLS-based reconstruction. Their values were equal to 0.004, 0.017, and 0.001 m,
respectively. Median, 1st, and 3rd quartiles were computed as well. Their values were equal
to 0.002, 0.001, and 0.003 m. Conversely, base statistics metrics related to the RPAS-based
model are reported in Table 2. The root mean square error (RMSE) estimated on GCPs
evaluated the Bundle Block Adjustment (BBA) phase accuracy, while the ones computed
on CPs assessed the accuracy of the final product. The errors committed on each axis
(RMSEx, RMSEy, and RMSEz) and the total errors (RMSET) are reported in Table 2. 3D
reconstruction generated by handling TLS data was slightly more accurate than the one
produced by processing RPAS input data.



Drones 2021, 5, 145 12 of 20

Table 2. RMSE referring to the point cloud extracted using RPAS-photogrammetry for both GCPs
and CPs. The total values and their components along the three axes (x, y, and z) are reported.

GCPs CPs

RMSEx (m) 0.014 0.009
RMSEy (m) 0.016 0.013
RMSEz (m) 0.026 0.022

Lastly, cloud-to-cloud distance was also evaluated through the application of the
M3C2 tool of CloudCompare. As previously, the most significant divergences were located
on the vegetated areas and on the roof (Figure 5). This was essentially caused by the lack of
data in the TLS-based model, as already highlighted in the previous paragraphs. Excluding
those areas, the M3C2 outcome showed a value comprised between −0.063 and 0.005 m
on the horizontal and vertical facades of the Monastery, and between −0.2 and −0.1 m on
the portal and rose window. The precision of this measurement was instead evaluated by
computing M3C2 Uncertainty, with results reported in Figure 5. M3C2 Uncertainty was
between 0.065 and 0.085 m and between 0.09 and 0.146 m for the Monastery structure and
the green areas, respectively. This comparison ensured full compatibility among the ob-
tained reconstructs and highlighted the weakness of each applied approach, already noted
in the previous paragraph. No specific issues were detected by performing that analysis.
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A further investigation concerning the resultant models was performed by extracting
the corresponding geometric features and their accuracy, as detailed in Section 2.5. Thus,
the three eigenvalues (λ1, λ2 and λ3) of the 3D covariance matrix S were extracted from TLS
and RPAS dense point clouds (Figure 6). To easily compare their values, the corresponding
histograms were computed and are reported in Figure 7. λ1, λ2 and λ3 values were within
the same order of magnitude for both models albeit the number of points were different
for the two resultant clouds, as previously highlighted. Moreover, λ1 and λ3 had the same
trend in contrast to the second eigenvalue, which showed a more complex distribution
of around 0.0007 for the TLS-based model compared to the RPAS one. This indicated
that the size and the shape of the point clouds generated by RPAS and TLS were similar
along the most elongated direction (identified by λ1) as well as along the “flat” dimension
(defined by λ3). Conversely, some divergences were detected along the second elongation
direction (underlined by λ2). As depicted in Figure 6, these differences are mainly located
on the vegetated areas and on the ground, and thus, they did not affect the point clouds’
performance in the area under investigation. This indicated that no significant differences
were detected among them.
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Generally, covariance features are used more often than raw eigenvalues for 3D
structure investigations and point cloud classification purposes [17,44]. Therefore, as
explained in Section 2.5, eigenvalues-based geometric features and their corresponding
variances were assessed as well. Histograms of these properties referring to the RPAS and
TLS models are depicted in Figures 8 and 9, respectively. Although all features were in
the same order of magnitude, anisotropy, curvature, and sphericity showed similar trends
in both models, in contrast to the remaining features (omnivariance, linearity, rigenvalue
sum, and planarity). The latter are detailed in Figures 10 and 11, which illustrate that the
differences are essentially from the lack of data on the ground and on the vegetated areas
in the TLS model. Moreover, Figures 10 and 11 highlight that the RPAS-based point cloud
was less affected by noise, and thus, the obtained features were easier to interpret and
manage. This indicated that the RPAS dense point cloud was more stable and consistent.
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Figure 8. Histogram of eigenvalues-based geometric features extracted from the RPAS dense point cloud.

Drones 2021, 5, 145 18 of 24 
 

 
Figure 9. Histogram of eigenvalues-based geometric features extracted from the TLS dense point cloud. Figure 9. Histogram of eigenvalues-based geometric features extracted from the TLS dense point cloud.



Drones 2021, 5, 145 16 of 20
Drones 2021, 5, 145 19 of 24 
 

 
Figure 10. Anisotropy, planarity, linearity, mean curvature, eigenvalue sum, omnivariance extracted from RPAS. 

 
Figure 11. Anisotropy, planarity, linearity, mean curvature, eigenvalue sum, omnivariance extracted from TLS. 

Lastly, the variance of the geometric features extracted from the RPAS-based and 
TLS-based models was separately estimated by applying the Gaussian law of variance 

Figure 10. Anisotropy, planarity, linearity, mean curvature, eigenvalue sum, omnivariance extracted from RPAS.

Drones 2021, 5, 145 19 of 24 
 

 
Figure 10. Anisotropy, planarity, linearity, mean curvature, eigenvalue sum, omnivariance extracted from RPAS. 

 
Figure 11. Anisotropy, planarity, linearity, mean curvature, eigenvalue sum, omnivariance extracted from TLS. 

Lastly, the variance of the geometric features extracted from the RPAS-based and 
TLS-based models was separately estimated by applying the Gaussian law of variance 

Figure 11. Anisotropy, planarity, linearity, mean curvature, eigenvalue sum, omnivariance extracted from TLS.

Lastly, the variance of the geometric features extracted from the RPAS-based and
TLS-based models was separately estimated by applying the Gaussian law of variance
propagation [15]. The outcome of this analysis is reported in Figure 12, which describes the
trend of geometric features variance as a function of λ1. The features trends as a function
of λ2 and λ3 were nearly similar and, thus, only the values according to λ1 variation
were reported. The variance contribution was significant at low values for all examined
properties, except linearity, curvature, and omnivariance were the most affected by that
noise. In particular, as to the linearity, the variance effect was more evident in the RPAS
model than in the TLS model. As previously stated, in both models the low values of λ1
corresponded to the vegetation, considered to be the noisiest and least accurate zone. This
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indicated that the noise particularly affected the vegetated areas. In contrast, the noise
impact was less relevant in accordance with the increment of λ1 values.
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Thus, the Gaussian law of variance propagation underlined the noise impact on the
eigenvalues-based geometric features. This implied that all considered geometric features
were mainly corrupted by the noise at low values of the eigenvalues. Thus, specific
attention should be paid to these areas, which may require a further filtering analysis
before the classification procedure. In the investigated case, these areas were not linked to
the All Saints’ Monastery of Cuti, and as a consequence, they were not properly filtered.

5. Conclusions

This paper assessed TLS and RPAS digital photogrammetry approaches to reproduc-
ing accurate 3D scene reconstruction of a cultural heritage building. Specifically, after
investigating the performance of the two abovementioned approaches, geometric features
were extracted from both resultant models and evaluated. This analysis was carried out on
the All Saint Monastery, located in Valenzano (Bari, Southern Italy), selected as the pilot
site for this study because of its historical and architectural relevance.

The area under investigation was inspected by applying three different geomatic
techniques: a topographic survey to collect GCPs and CPs, a photogrammetric method
to gather photogrammetric photos using an RPAS, and lastly a TLS acquisition. RPAS
SfM-MVS and TLS approaches are widely used to reproduce a cultural heritage building
with accuracy because of their ease of use and high level of automation. However, both
techniques had pros and cons and, thus, their limits and benefits were compared and
discussed. The main divergences between the abovementioned methods are as follows:

a. RPAS allowed reducing the time required to collect the input data while TLS permit-
ted generating the final 3D model in a shorter operational time;

b. The RPAS-based point cloud was less dense than the one produced by TLS and thus
more easily manageable;

c. The point distribution of the TLS-derived cloud was not homogeneous and, conse-
quently, the accuracy of the 3D reconstruction was not uniform in the final model;

d. RPAS allowed surveying the entire study area while TLS did not permit the collection
of data concerning the roof of the Monastery, the vegetated areas, and the grounds;

e. RPAS was a low-cost tool while TLS was a highly expensive instrument.

Thus, although two accurate 3D digital representations were produced, both point
clouds showed several limitations, mainly from the lack of data in relation to the roof of the
Monastery, the vegetated areas, and the grounds in the TLS outcome as well as the low point
numerosity in the RPAS cloud. Additionally, the RPAS-based point cloud was obtained by
using Metashape, a commercial user-friendly software that enables 3D scene reproduction
with camera self-calibration. Although this was an undeniable advantage in terms of
saving processing time, it resulted in a decrement of the accuracy of the generated 3D
model. Such an error level was in part reduced by the introduction of GNSS measurement
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during the BBA phase. As a result, the 3D scene representation was only partial in the
case of the TLS model, and it was less reliable in the case of the RPAS-based model. This
indicated that neither of the two outcomes could be considered an effective reconstruction
of the examined physical asset.

Nevertheless, point clouds are commonly applied to meet classification purposes and
structure investigation. Thus, the eigenvalues-based geometric features and the propagated
variance were also inspected. All point clouds are affected by noise, mainly from the survey
instrument, terrain heterogeneity, and scanning geometry. The noise, however, was not
homogeneous overall in the generated models and, thus, a critical analysis of its distribution
appeared essential to detect and reduce errors and uncertainty levels. The Gaussian law
of variance propagation approach to the point cloud-derived products allowed meeting
such a purpose. Indeed, assessing the variance trend involved detecting the noise influence
on the final model and geometric features reliability. Both models showed similar trends
for all eigenvalues-based geometric features: the variance contribution was higher at low
values. Nevertheless, linearity, curvature and omnivariance were most affected by the
noise and, thus, could not be considered stable. Thus, no significant differences in variance
were detected between the models. Only the trend of the linearity variance was slightly
different. Further investigations are required to generalize these results and to quantify the
contribution of such a procedure to classification output.

In conclusion, although the RPAS-based 3D reconstruction was less accurate than that
extracted by adopting the TLS, it allowed representing the scene entirely and computing
consistent and reliable geometric features useful for addressing classification purposes.
The use of the Gaussian law of variance propagation approach appears promising to detect
the noise impact on eigenvalues-based geometric features before performing a subsequent
classification procedure.
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Abbreviation

3D Three-Dimensional
AGL Above Ground Level
BBA Bundle Block Adjustment
CORS Continuous Operation Reference Stations
CPs Check Points
EPSG European Petroleum Survey Group
GCPs Ground Control Points
GNSS Global Navigation Satellite System
GSD Ground Sample Distance
IMU Inertial Measurement Unit
INS Inertial Navigation System
LoD Level of Detection
M3C2 Model-to-Model Cloud Comparison
MSV MultiView Stereo
nRTK Network Real-Time Kinematic
RMSE Root Mean Square Error
RPAS Remotely Piloted Aircraft Systems
SfM Structure from Motion
TLS Terrestrial Laser Scanner
v. version
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