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Abstract: This research effort proposes a novel method for identifying and extracting roads from aerial
images taken after a disaster using graph-based image segmentation. The dataset that is used consists
of images taken by an Unmanned Aerial Vehicle (UAV) at the University of West Florida (UWF) after
hurricane Sally. Ground truth masks were created for these images, which divide the image pixels
into three categories: road, non-road, and uncertain. A specific pre-processing step was implemented,
which used Catmull–Rom cubic interpolation to resize the image. Moreover, the Gaussian filter
used in Efficient Graph-Based Image Segmentation is replaced with a median filter, and the color
space is converted from RGB to HSV. The Efficient Graph-Based Image Segmentation is further
modified by (i) changing the Moore pixel neighborhood to the Von Neumann pixel neighborhood,
(ii) introducing a new adaptive isoperimetric quotient threshold function, (iii) changing the distance
function used to create the graph edges, and (iv) changing the sorting algorithm so that the algorithm
can run more effectively. Finally, a simple function to automatically compute the k (scale) parameter
is added. A new post-processing heuristic is proposed for road extraction, and the Intersection over
Union evaluation metric is used to quantify the road extraction performance. The proposed method
maintains high performance on all of the images in the dataset and achieves an Intersection over
Union (IoU) score, which is significantly higher than the score of a similar road extraction technique
using K-means clustering.

Keywords: efficient graph-based image segmentation; road extraction; computer vision; post-disaster
aerial footage

1. Introduction

The International Disaster Database, Université Catholique de Louvain—Brussels—
Belgium, shows that roughly 300–400 natural disasters have occurred annually since
2000 [1]. Natural disasters such as hurricanes, earthquakes, wildfires, and volcanic activity
can cause extreme destruction of property and infrastructure, personal injury, and death.
A particular threat to Floridians and other coastal states is hurricanes. It has been projected
that the combined forces of coastal development and climate change will increase the
amount of hurricane damage in the future [2–6]. One of the undeniable aftermaths of hurri-
canes is the damage and obstructions to roadways, which can inhibit emergency vehicles
from rescuing people. These obstructions may include: flooding, uprooted vegetation,
sinkholes, structural damage to the road, and other debris. Injuries that are sustained from
a hurricane impact may be life-threatening and require immediate emergency medical
services (EMS) [7]. An EMS driver does not have time to deal with blocked or defective
roadways. It is imperative that an EMS driver takes the fastest traversable route in order to
maximize the probability of saving a person’s life.

The use of satellite imagery and unmanned autonomous vehicles equipped with
cameras permits the mapping and exploration of territories that may be inaccessible and
unsafe. For instance, a swarm of unmanned aerial vehicles (UAVs) can be deployed after
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a disaster to assess damage to critical infrastructure. Similarly, a UAV can stream video to
a high-performance server with dedicated algorithms used to assess infrastructure damage
and the traversability of roads after a major hurricane. Mainly, the first step in assessing
the traversability of roads is to identify and extract the roads from images or video streams.
The difficulty of extracting continuous road segments can indicate that the road contains
debris and is potentially not traversable. After extraction, road segments can be fed into
classification algorithms to further assess traversability.

In this research, high-resolution UAV imagery was taken from the aftermath of hurricane
Sally at the University of West Florida (UWF). The images have been stored in a custom dataset.
Ground truth masks were created for images in this dataset so that the quality of subsequent
road extraction on these images could be assessed. A new approach was developed for road
extraction using a particular set of pre-processing techniques, a modified version of Efficient
Graph-Based image segmentation, and a novel post-processing heuristic.

The original contributions of this study can be summarized as: (i) the use of custom
aerial footage data taken from the UWF campus after hurricane Sally, (ii) the development
of ground truth masks to measure the quality of road extraction, (iii) the development
of a new post-processing heuristic which can identify and connect segments of the road
after image segmentation and help address one of the shortcomings of Efficient Graph-
Based image segmentation, and (iv) performing a hue and saturation analysis for the
segments neighboring road segments so that the segments that are similar enough can
be merged. The intention of this paper is to present our modified Efficient Graph-Based
image segmentation framework design with analysis and to show proof-of-concept results
of the entire pipeline on custom aerial footage data recorded after hurricane Sally in 2020.
Further analysis, such as robustness to noise and comparison with other methods, are not
included in the scope of the originally intended contribution in this article, and they are left
for a future work. Additionally, the planned future work also includes another important
aspect of comprehensive computational time analysis.

The remainder of the paper is organized as follows. Related work on image segmen-
tation is discussed in Section 2, followed by the details of Efficient Graph-Based Image
Segmentation in Section 3. Road Extraction is presented in Section 4, followed by the results
and discussion in Section 5. Conclusions are presented in Section 6.

2. Related Work

Image segmentation is a computer vision technique that divides an image into several
specific components with unique attributes. Modern image segmentation algorithms
are usually categorized as semantic (pixel-wise association with class label), instance
(accurate delineation of each object in an image), and panoptic (assigning class labels to
objects in images). Early image segmentation methods include threshold-based, centroid-
based, density-based, graph-based, fuzzy theory-based, hierarchical, and distribution-based
methods. The goal of this section is to outline some of the most popular techniques that
are well-suited to solving the problems of road extraction and traversability assessment.
A comprehensive survey of clustering algorithms can be found in [8]; furthermore, a survey
of clustering algorithms used in Image segmentation can be found in [9].

Centroid-based image segmentation and clustering involve finding an arbitrary num-
ber of centroids in a dataset and then grouping together data points with the smallest
distance to a particular centroid. One of the most algorithms, K- means, is a centroid-based
clustering algorithm [10]. However, K-means has significant drawbacks as it lacks flex-
ibility in the shape of the clusters, and there are no probabilities associated with cluster
assignments [11]. In other studies, the K-means algorithm is used to segment images; of
particular relevance, in [12], the road is extracted from images using the K- means algorithm
and morphological operations. The K-means algorithm is used to generate segments, and
then a simple geometric post-processing heuristic is applied, which attempts to identify the
segments that are road.
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Hierarchical clustering has also been used to segment images, both as a standalone
segmentation method and in combination with other segmentation methods. In [13],
images were first pre-segmented with the well-known graph-based segmentation method
of Normalized Cuts. Afterward, hierarchical segmentation was applied. In [14], the
study proposes an agglomerative hierarchical clustering-based high-resolution remote
sensing image segmentation algorithm. The algorithm showed favorable results over
standard K-means image segmentation. In [15], an agglomerative clustering technique
within a feature matrix is presented. It is shown to compare favorably with the image
segmentation algorithm and has the advantage of not needing to know the number of
clusters in advance.

The fuzzy sets-based method is another approach presented in the literature for image
segmentation [16]. In [17], the authors developed a fuzzy system to identify roads in aerial
images with five fuzzy membership functions (Good values, Up-Probable values, Down-
Probable values, Up-Bad values, and Down-Bad values), which help classify pixels as either
being road or non-road with a certain probability. Some limitations of this method are that it
is designed for 8-bit images, cannot handle regions of road less than 5 pixels in width, relies
on hard-coded values, and cannot handle shadows. In [18], the authors develop an approach
based on Fuzzy C-Means (FCM) to extract roads from foggy aerial images. The authors
point out that aerial image quality is susceptible to weather conditions, variations in lighting,
and properties of the ground. Fog can obscure the gray scale difference between road and
non-road regions in an image; thus, a defogging procedure should be applied if fog is present.
Other segmentation methods include density-based algorithms [19,20], Mean Shift-based
methods [21–26], and Gaussian mixture models (GMM)-based approaches [27–32].

In graph-based image segmentation methods, images must first be converted into
a graph where each pixel is a node in the graph. Next, a decision must be made as to
which edges to add to the graph. One option is to add edges between a pixel and all
other pixels that are in its neighborhood. Two obvious neighborhoods that can be used
are the Von Neumann 4-pixel neighborhood and the Moore 8-pixel neighborhood [33,34].
In [35], Normalized Cuts is used to segment high-resolution satellite images. Although
the experiments showed “good operability,” the slow running time of the algorithm was
discouraging. In [36], the Normalized Cuts method was used for the detection of roads
in aerial images. The aerial image is first segmented into 20 components. Next, color and
shape are used to determine which components are roads.

In terms of road extraction, there are several studies with various methods presented in
the literature, some of them worth mentioning here. The U-net neural network is one of the
methods presented for road extraction [37]. In [38], the authors propose an object-based classi-
fication approach for automatic road detection from orthophoto images. Additionally, a deep
convolutional neural network (CNN)-based framework for road detection and segmentation
from aerial images is presented in [39]. Similarly, another advanced algorithm, namely Fully
Convolutional Network (FCN) and conditional Generative Adversarial Networks (GAN), are
used for road extraction using RGB images captured by a UAV [40]. In [41], the author used
the Mask-R-CNN neural network to detect flood water on roads, and in [42], a Mask-R-CNN
approach was used to segment images in an effort to monitor the road surface condition.
There are numerous other high-performing neural network architectures used for image seg-
mentation presented in the literature. The lack of availability of large labeled datasets and the
unsuitability for sparse scenes limit the effectiveness of neural network-based methods [43].
A comparison of a large number of image segmentation methods, including neural network
and non-neural network-based methods, is conducted in [43].

There are also other notable techniques that have been used to segment images. In the
Affinity Propagation method, real number messages are exchanged between data points
until a high-quality set of clusters gradually emerges [44,45]. In [46], the authors present
MRF (Markov Random Fields) models that can accurately capture road network topologies
in synthetic aperture radar (SAR) images. In [47], the author proposes a genetic algorithm
to find the initial contour points so that an Active Contour Model can be used to find the
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road in images. In [48], ant colony optimization is used for parameter selection of fuzzy
object-based image analysis to extract the roads from remotely sensed images.

Although significant research has been conducted on image segmentation, road extraction
based on image segmentation after a major disaster using aerial footage is still an open area
of research. Little attention has been imparted to the development of custom pre- and post-
processing steps. In this paper, an Efficient Graph-Based Image Segmentation approach with
improvements performed via developed algorithms is introduced. This approach shows
advantages over K-mean clustering with a higher Intersection over Union (IoU) score.

3. Efficient Graph-Based Image Segmentation

The image segmentation approach that was used in this study to isolate segments
of traversable road is based on the Efficient Graph-Based image segmentation algorithm.
In this section, an overview of Efficient Graph-Based image segmentation (EGS) and the
modifications that are made is presented. The word efficient in the name of the algorithm
refers to the algorithm’s fast running time.

Consider an undirected graph G = (V, E), with V being a set of vertices of and
E being the set of edges consisting of two vertices (vi, vj) and a weight wij. In EGS, edge
weights represent how dissimilar two pixels in an image are. Similarity can be measured in
terms of pixel attributes, including hue and intensity, and a distance function such as the
L2 norm can be used for that purpose. EGS constructs a segmentation S by partitioning
V into k connected components C ∈ S, |S| = k (|•| represents the cardinality, numbers
of elements in that set). Next, the issue of deciding if there is evidence for a boundary
between components is considered. EGS introduced a novel pairwise region comparison
predicate that measures the similarity between boundary elements of two components
relative to the similarity inside of each component. The difference inside of each component
is quantified by Int(C), which is the largest edge weight in the minimum spanning tree
(MST) of the component [34].

Int(C) = max(w(e)), e ∈ MST(C) (1)

In Equation (1), if e is a graph’s edge, w(e) returns the weight of that edge. The difference
between components is captured by the term Di f (C1, C2), which represents the smallest
edge weight connecting the components [34].

Di f (C1, C2) = min(w(e))
∣∣ vi, vj ∈ e, vi ∈ C1, vj ∈ C2 (2)

In Equation (2), min(w(e)) refers to this minimum edge weight, that is, the small-
est (minimum) edge weight that exists connecting two distinct components C1 and C2.
The minimum edge weight must be used because using some quantile, such as the median,
produces an NP-hard computational problem. The region comparison predicate of EGS is
defined to be [34]:

D(C1, C2) =

{
True, Di f (C1, C2) > MInt(C1, C2)

False, Otherwise
(3)

where the minimum internal difference, MInt(C1, C2), is defined as [34]:

MInt(C1, C2) = min(Int(C1) + τ(C1), Int(C2) + τ(C2)) (4)

where τ(C) is a threshold function used to control how different two components must be
from each other in order for a boundary to exist between them. In Equation (4), Int(C) is the
largest edge weight in the MST. The default threshold function given in the EGS algorithm
is defined as [34]:

τ(C) =
k
|C| (5)
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where k is the lone parameter of EGS and can be thought of as the affinity for larger
components or, more succinctly, as a parameter to control scale. Any function that is not
negative can be used as τ(C).

The EGS algorithm works by first constructing a graph, G, from the image with
n vertices and m edges. The output of the algorithm is a segmentation of the vertices into
k components. The following steps define the algorithm [34]:

1. Sort the edges by non-decreasing edge weight.
2. Start with segmentation S0 where each vertex is its own component.
3. Construct the q-th segmentation Sq from Sq−1 by doing the following. Let vi, vj be

the vertices connected by the q-th edge. If vi, vj are not in the same components
Ci, Cj ∈ Sq−1

∣∣ C1 6= C2 and the weight is small compared to the internal difference
of Ci, Cj then join the two components; otherwise, take no action.

4. Repeat (3) for each q = 1, . . . , m.
5. Return the final segmentation as S = Sm.

There are several highly appealing features of the EGS algorithm. Reference [34]
emphasizes that in order for a segmentation algorithm to be of practical real-time use,
it should run in time approximately linear in the number of image pixels. The default
implementation given by the author runs in O(n ∗ log(n)) time where n is the total number
of pixels in the image; however, this can be improved to O(n + k) by using integer edge
weights and a constant time sorting algorithm. For images, the use of integer edge weights
is a great option because the color of each pixel in an image is usually represented by one
or more integers. Further details about the implementation of EGS on aerial images can be
found in [49].

The results section (Section 5) will show the application of EGS in road extraction that
the higher number of unique edge weights generated from the Euclidean distance is not
worth the sacrifice of computational speed. A lookup table can be pre-computed to increase
computational time efficiency if needed. Alternatively, using a sorting optimization can
decrease the computational time. However, even without using any sorting optimization,
the EGS method is incredibly fast and possibly the fastest method that can be used to
segment an image while considering all of the pixels in the image.

In this study, original contributions include the changes that were made to the default
algorithm as: (i) a simple way of automatically computing the parameter k and (ii) a new
adaptive isoperimetric quotient threshold function designed for road extraction. The basis
for this formula is that k should increase with image size to prevent tiny segments from
forming and attenuate the burden of post-processing.

k(z, n, m) =
α

z
√

nm (6)

The variable z captures the elevation of the UAV. The constant α is some real number
that controls the degree to which the elevation of the UAV affects the size of the road
segments. Presumably, the higher the elevation, the smaller the road segments will be.
In this study, α

z was set equal to 2.5. Additionally, a new threshold function is introduced
in this study, which has been given the name adaptive isoperimetric quotient threshold function

p = 2πr → r = p
2π

Aiso = π( p
2π )

2
= p2

4π

τ(C) = Aisok
|C|2

(7)

where p is the perimeter of a segment, r is the radius of a circle that encloses the segment,
and Aiso is the isoperimetric area of the circle that encloses the segment. The key feature of
this threshold function is that more compact circular components are less favorable than
long and skinny geometries. This provides a great improvement in the algorithm’s ability
to extract paths and roads. Further modifications to the EGS algorithm can be found in [49].
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4. Road Extraction
4.1. Data

The dataset consists of high-resolution aerial images captured of the UWF campus
after hurricane Sally [49–51]. The original dataset consisted of both images and videos
taken by the UAV. Out of these images, the 10 images that achieved the best job of capturing
the road were selected. Additionally, 21 screenshots from the UAV videos were taken.
These images were combined into a validation dataset, and ground truth masks were
generated for each image. The ground truth masks were created by assigning each pixel
in the image to one of three categories: road, non-road, or uncertain. Each category was
associated with a color: road with black, non-road with green, and uncertain with red.
Each image is approximately 5472 pixels by 3648 pixels. The “jpeg” file format of the source
images was converted to the non-lossy “png” file format. An image from the dataset and
its corresponding mask can be seen in Figure 1. In the right image (Figure 1), the black
region is road, the green region is non-road, and the red region is a region of uncertainty.
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Figure 1. A sample frame from aerial footage and its corresponding mask.

There are several interesting properties of the road in these images. One interesting
feature of the roads is that they are often located next to trees or large structures such
as buildings or poles. These objects can cast large shadows on the road, which creates
a variation in the color of the road. The road is generally located several inches below
the surrounding land, which is separated by a curb. Therefore, during a storm, the road
serves as a repository for dirt, sand, mud, leaves, and a myriad of other substances from
the surrounding land. Additionally, car tires can end up transferring dirt and other matter
across the road leading to discolorations and tire tracks. The UWF campus is a heavily
wooded environment. In particular, the longleaf pine grows all over the campus, and the
needles turn brown annually and shed all over the surrounding road. Similar to other urban
roads, the roads on the UWF campus have many painted markings and symbols. All of
these properties have a profound impact on road extraction and traversability assessment;
they tend to obfuscate these tasks. Figures 2 and 3 highlight various properties of the roads
in the dataset. In Figure 2, it can be seen from the top image that different parts of road in
an aerial image can vary drastically depending on various effects, such as dirt, mud, and
faded parking line marks. The bottom three images in Figure 2 show that trees can partially
block large chunks of road. Determining whether or not these trees lie on the road and lead
to non-traversability is an important question.
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4.2. Pre-Processing

This section introduces a high-performing pre-processing stack that aids in quality
road extraction. First, the image is resized using bicubic Catmull–Rom interpolation. Next,
a median filter with a kernel size proportional to the ratio of the original image size to
the resized image is applied. Finally, the color space is transformed from RGB to HSV.
This pre-processing stack was chosen in an effort to maximize the performance of road
extraction.

4.2.1. Catmull–Rom Bicubic Interpolation

The first step in the pre-processing stack is Catmull–Rom bicubic interpolation.
All subsequent operations (pre-processing, EGS, and post-processing) run more effectively after
this step. Although the nearest neighbor’s interpolation runs slightly better, the performance-to-
quality tradeoff observed from [52] is reason enough to stick with Catmull–Rom.

Catmull–Rom resizing works by generating an interpolating spline curve to find the
pixel values in the down-sampled image. A Catmull–Rom spline with centripetal parame-
terization can be computed as follows: let p = [x y]T denote some point. For a curve seg-
ment Ci defined by control points pi−1, pi, pi+1, pi+2 and knot sequence τi−1, τi, τi+1, τi+2.
The Catmull–Rom spline can be plotted with the following function [53]:

Ci =
τi+1−τ
τi+1−τi

L012 +
τ −τi

τi+1−τi
L123

L012 =
τi+1−τ

τi+1−τi−1
L01 +

τ −τi−1
τi+1−τi−1

L12

L123 =
τi+2−τ
τi+2−τi

L12 +
τ −τi

τi+2−τi
L23

L01 = τi−τ
τi−τi−1

pi−1 +
τ −τi−1
τi−τi−1

pi

L12 =
τi+1−τ
τi+1−τi

pi +
τ −τi

τi+1−τi
pi+1

L23 =
τi+2−τ

τi+2−τi+1
pi+1 +

τ −τi+1
τi+2−τi+1

pi+2

τi+1 = |pi+1 − pi|α + τi, α ∈ [0, 1]

(8)

4.2.2. Median Filter

The default EGS algorithm utilizes Gaussian blurring into the algorithm as a pre-
processing step to remove noise. For the process of road and path extraction, preserving
edges and linear structures is critical. The median filter has been shown to exhibit better
edge-preserving properties relative to linear image filters [54]. Since the EGS paper was
released, tremendous work has been conducted on improving the computational speed
of the median filter [55]. Thus, the Gaussian filter was removed from the algorithm and
replaced by a median filter. The kernel size of the median filter is chosen based on the ratio
of the original image size to the image size after resizing. The kernel is chosen this way so
that the compound effect of resizing and blurring does not result in potentially hazardous
objects on the road being blurred out of existence.

4.2.3. HSV Color Space

The color space is transformed to HSV in the developed pre-processing algorithm.
The numerical value of each channel remains an integer from 0–255 in order to use the sort-
ing optimizations that are presented in [49]. Given an 8-bit RGB image, the transformation
to HSV is defined as follows:

(1) The 8-bit B, G, R integers are scaled to fit in the range 0 to 1.
(2) V = max(B, G, R)
(3) S = V −min(B, G, R) i f V 6= 0; otherwise 0
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(4) H =


(60G− 60B)(V −min(B, G, R))−1 i f V = R

120 + (60B− 60R)(V −min(B, G, R))−1 i f V = G
240 + (60R− 60G)(V −min(B, G, R))−1 i f V = B

(5) H = H + 360 i f H < 0
(6) 0 ≤ V ≤ 1, 0 ≤ S ≤ 1, 0 ≤ H ≤ 360
(7) The H, S, V values are then scaled to fit back into the 0–255 range

V = 255(V), S = 255(S), H =
H
2

(9)

4.2.4. Compound Effect of Blur and Resize

In this study, an object in the road is analyzed before and after resizing and blurring to
assess their effects of them. Blurring after resizing has the obvious computation benefit of
needing to process fewer pixels than blurring prior to resizing. Additionally, the range of
usable kernel sizes will be smaller and more restricted, which will lead to more effective
blurring. In [49], before and after resizing and blurring images shows an interesting
difference between the Catmull–Rom interpolation plus median filter (CRM) combo versus
the nearest neighbor plus Gaussian filter (NG) combo. Specifically, when blurring is
completed after interpolation, for larger kernels, the CRM combo does a great job at
smoothing the road while preserving the edges along the side. Unnatural lighting effects,
discolorations, noise, and even road markings not relevant to the application at hand are
smoothed over. However, a glaring issue is that the speed bumps are virtually blurred out
of existence if the kernel gets too large and the image size is reduced too much. If those
had been potentially hazardous non-traversable objects instead of speed bumps, then it is
crucial that they are identified at some point. On the other hand, the NG combo does not
smooth over-the-road discolorations and lighting variations, as well as the CRM combo.
The NG combo image just becomes progressively blurrier for larger kernels. By strategically
choosing the percentage by which the image size is reduced and the median filter kernel size,
it is shown that the CRM combo performs better than the NG combo for pre-processing [49].

4.3. Post Processing

EGS has a post-processing operation baked into the algorithm. Specifically, for each
edge connecting two nodes a and b and for some user-defined integer, minSize:

1. If a is not b, go to (2); otherwise, keep iterating.
2. If the size of a’s segment is less than minSize or the size of b’s segment is less than

minSize, then merge segments a and b.

This post-processing operation allows the user to adjust how large the segments should
be. Although having an additional hyperparameter can be convenient in some situations,
for the purpose of automated road extraction, it is better to have a way to automatically
compute a reasonable value. This heuristic relies on the fact that neighboring segments
have a higher probability of belonging to a larger unified segment. However, the main
drawback of this approach is that the characteristics of each segment are not compared
in any way. This means that merging segments with no relation to each other is a likely
outcome. Since this method does not consider the similarity between neighboring segments
that are merged, large values should be used cautiously. A simple method to auto-compute
a value for this parameter is:

minSize =
k

2 ∗ (2.5)2 =

√
width ∗ height

5
(10)

After this, a new method is introduced, which is called Median Color Quantization
(MCQ). Median color quantization simply assigns a color to each segment, and that assigned
color is the median color of all pixels in that segment. Median color quantization can be
observed in Figure 4.
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The next step is to determine which segments are actually roads. The shape of the
road segments varies not only naturally but as a function of the location and angle of
the UAV camera. Furthermore, deposits of pine needles or other debris at the road-curb
interface can obfuscate the geometry of the road segments. The adaptive isoperimetric
quotient threshold function introduced earlier already searched for road-like geometries.
Additionally, in some cases, the road is not all in one segment. The road might be broken
up into multiple large sub-segments. These subsegments need to be merged. Before the
road segments are merged, if more than one exists, it is important to identify at least one
segment that is likely to be a road segment. This segment is called the Nucleation Site, from
which any remaining road segments will be merged. The nucleation site is identified via
a process called the Road Segment Identification (RSI) heuristic, defined below.

1. For each segment, compute the Road Segment Similarity Metric (δRSS).
2. Use the developed algorithm with k=1 to choose the best road segment, Sb.
3. Asses probability that Sb is, in fact, road and not non-road. If Sb is determined to be

non-road, conclude that there are no road segments in the image and halt. Otherwise,
go to step 4.

4. For each neighbor of Sb, compute the difference in hue and saturation between Sb
and the neighboring segment Snbr. If the change in hue and saturation is small, then
merge the two segments.

5. For all neighbors that were merged, repeat steps 4–5 using each neighbor in place of Sb.

The Road Segment Similarity Metric (δRSS) is defined as:

δRSS(c, rS) =
dist(c, rS)

max(dist(x, rS))
∈ [0, 1] (11)
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where dist is just some Minikowski distance, and max(dist(x, rS)) refers to the largest
possible distance from rS. The parameter c is the color value of the segment, and rS (road
sample) is a predefined value for the ideal color of the road. Two ways to compute rS are
as follows:

1. Crop a small piece of road out of an image or some small number of images. Then use
these samples to compute a value for rS. These road sample images can be taken from
the UAV dataset and treated as calibration images, or they can be obtained from some
pre-existing database.

2. Simply choose some shade of gray.

Some problems with this approach include: road markings can decrease the saturation
of a segment, and lighting effects and discoloration can cause the road to have a lighter gray
color. Using K-nearest neighbors and setting a k value assumes that there will be at least one
road segment in the image. δRSS can be treated as a probability, and values below a certain
threshold can be deemed non-road. Therefore, if δRSS is small enough for Sb, it can be
concluded that no road segments exist in the image. Another issue arises with this approach
if the road segments are not connected and cannot be chained together; a sample case is
depicted in Figure 5. In the figure, if region B is taken to be the nucleation site, then region
A would never be labeled as a road since the two segments are not connected. To address
this issue, after RSI completes for Sb, it can be run again, excluding all segments that have
already been labeled as road. This process can continue until a δRSS for Sb is computed.
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Figure 5. A sample case of image mask depicting multiple road segments that are not connected.

Reference [28] uses the minimum weight edge connecting disparate segments to look for
evidence of a boundary between them; the median or any other quantile edge weight cannot
be used because it results in an NP-hard problem. Since MCQ was applied, each segment is
represented by the median color of the underlying pixels in that segment. Now, it is possible
to make a more robust comparison of the median colors of neighboring segments and decide
whether or not to merge segments. The value color channel is not considered in an effort to
merge segments that were separated because of shadows. Shadows will cause a spike in the
value channel in an HSV image. The difference in HSV color between a segment of road with
a shadow and a segment of road without a shadow is depicted in Figure 6.
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5. Results and Discussions

In order to assess the quality of the road extraction, the Intersection over the Union
(IoU) technique was used. The IoU quantifies the extent to which the predicted segmenta-
tion overlaps with the ground truth segmentation. The parameters used in the presented
results are percent reduction (n%), minimum size (minSize), pixel neighborhood (k), thresh-
old function (τ(C)), and recursion depth (d).

5.1. Resizing and Median Filter Kernel

For the median blur operation that occurred during pre-processing, three different
kernel sizes were used. Their value is computed as a function of the image size. The
size of these three kernels corresponds to three levels of blurring: subtle, moderate, and
high. It can be seen from Table 1 that the moderate median kernel size of 15 results in the
highest IoU scores. These results show that not enough or too much median blurring can
result in poorer road extraction. For resizing, three different levels of size reduction were
considered. The image dimensions were reduced by n%. The n values used were: 50, 75,
and 90. From the data in Table 1, it can be seen that the highest IoU scores come from the
images that were reduced the least. Unfortunately, these higher IoU scores come at the cost
of longer algorithm running times. Figures 7–10 show results overlaying the ground truth
mask on the predicted mask for different images.

Table 1. Catmull–Rom Interpolation and Median Filter. Comparison of IoU for different image and
median filter kernel sizes.

% Resized Subtle Moderate High

50% 0.835 0.892 0.882
75% 0.788 0.825 0.823
90% 0.683 0.785 0.692
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5.2. Pixel Neighborhood and the MinSize Parameter

Three different pixel neighborhoods—extended, Von Neumann, and Moore, were
tested along with three values for the minSize parameter: k, k/2, and k/5. The extended
neighborhood is the Moore neighborhood plus the extra ring of pixels that border the Moore
neighborhood. This results in a maximum of 24 possible neighbors per pixel. Table 2 shows
that segmentation using the Von Neumann neighborhood achieves the highest overall IoU
score. This is interesting because building a graph while using the Von Neumann pixel
neighborhood results in the sparsest graph of the three neighborhoods used in this study.
The extended neighborhood performs the worst, even though it yields roughly six times as
many graph edges as the Von Neumann neighborhood. The Moore neighborhood shows
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the least amount of variance for different values of the minSize parameter. Figures 11–13
depict the results for each neighborhood.

Table 2. Pixel neighborhood and minSize. Comparison of IoU for different pixel neighborhoods and
values of minSize.

minSize

Neighborhood k k
2

k
5

Von Neumann 0.825 0.878 0.755
Moore 0.846 0.816 0.814
Extended 0.707 0.758 0.786
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Figure 13. Von Neumann neighborhood with minSize set at k/2.

5.3. Threshold Function and Distance Function

In this study, different distance functions and threshold functions were also analyzed.
The integer Euclidean distance is computed from a pre-computed lookup table. The lookup
table is created by calculating the square of each unique Euclidean distance and assigning it
a unique integer. The Euclidean distance performed very poorly for these images. Another
drawback of using the Euclidean distance is that it results in slower algorithm running
times. The newly proposed adaptive isoperimetric quotient threshold function yields the
highest overall IoU score when coupled with the Manhattan distance. The standard threshold
function seems to work better with Euclidean distances. The IoU scores are given in Table 3.
Figures 14–16 depict the results from modifying the threshold and distance functions.

Table 3. Threshold Function and Distance Function. Comparison of IoU for different threshold and
distance functions.

Distance

τ(C) Manhattan Euclidean Integer Euclidean

Standard 0.756 0.488 0.615
Adaptive Isoperimetric Quotient 0.877 0.246 0.370
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5.4. Recursive Graph-Based Segmentation

Further, an experiment was conducted where the proposed algorithm was recursively
called on its output. Table 4 shows results for different values of k, minSize, and the recursion
depth. Two groups were created, group A and group B. In both groups, minSize and k
grow as a function of the recursion depth. The rate of growth is higher for group B, but the
initial values of minSize and k are also much lower. Although the overall IoU scores were
lower than simply letting k and minSize automatically compute according to the newly
proposed Equation (6), it can be observed that the IoU scores increased with recursion
depth. Furthermore, group B, with a recursion depth of three, showed an impressive IoU
score of 0.872. Figures 17–19 depict the results for different recursion depths.

Table 4. Recursive Graph-Based Segmentation. Comparison of IoU for different growth functions
and recursion depths.

Recursion Depth (d)

Growth Function 1 2 3

Group A
k1 = k/2, minSize1 = k/4
minSized = minSized−1 + 30(d− 1)
kd = kd−1 + 50(d− 1)

0.804 0.807 0.815

Group B
k1 = k/4, minSize1 = k/8
minSized = minSized−1 + 50(d− 1)
kd = kd−1 + 100(d− 1)

0.795 0.798 0.872
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5.5. Comparison with K-Means

As a final analysis, the K-means algorithm was used to try and extract the road from im-
ages, and the results were compared to the approach presented in this study. This comparison
is depicted in Figure 20. Three different values for k were chosen. When using K-means for
road extraction, the post-processing presented in this paper is no longer valid. In K-means,
the segments do not necessarily represent objects in the image. Completely unrelated objects
on opposite sides of an image that happen to have similar colors can belong to the same
segment. When the proposed post-processing is applied after K-means segmentation, the
nucleation site that is discovered could just be some stray pixel. Therefore, to extract the roads,
a simple thresholding operation was applied. The image was converted into a binary image,
and then morphological operations were applied. It can be observed from Tables 5 and 6 that
the proposed method in this paper performs significantly better than the K-means-based road
extraction. The low IoU scores primarily stem from labeling non-road as road.
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Table 5. K-means Based Road Extraction. Comparison of IoU for different values of k.

# Centroids 25 50 100

IoU 0.361 0.352 0.337

Table 6. EGS versus K-means. The IoU scores of EGS and K-means are compared for the same images
in the database. For K-means, the k value was chosen that resulted in the highest IoU.

Image No. EGS K-Means

0 0.745 0.234
2 0.858 0.442
4 0.846 0.403
Mean IoU (All Images) 0.832 0.422

6. Conclusions

In this study, an improved Efficient Graph-Based image segmentation algorithm
applied to road extraction from post-disaster aerial footage is presented. The modifications
proposed to EGS in this study led to significant improvements in the segmentation quality
and Intersection over Union (IoU) scores. Although less size reduction seems to yield
higher-quality segmentations, it is important to factor in the running time required to
process more pixels. From the experiments conducted, a 75% reduction in image size yields
high-quality segmentation results and also allows the algorithm to run efficiently for large
images. The Von Neumann pixel neighborhood coupled with integer Manhattan distance
edge weights led to the highest quality segmentation results. The Moore neighborhood
showed strong performance, and it is worth noting that the change in IoU as minSize
changed was less extreme. The introduction of the new adaptive isoperimetric quotient
threshold function showed great promise for the application of road extraction and showed
a significant improvement in the IoU score when compared to the standard threshold
function. Recursively calling the algorithm and incrementing the parameters k and minSize
resulted in progressively better IoU scores. One issue that can be seen with the IoU measure
is that it does impose a strict enough penalty on the dissolution of non-road segments.
For the application of traversability, a non-road segment being labeled road should be far
costlier than a road segment labeled non-road. The comparison between K-means and the
developed algorithm in this paper shows that the algorithm has significantly better IoU
scores than the K-means method. Additionally, the major issue in the K-means method
is the large number of non-road segments being labeled as roads. It is conceivable to
think that a more rigorous post-processing method could yield even better results with the
developed algorithm. As a future work, the novel pre-processing, image segmentation,
and MCQ combination presented in this research will be used to generate superpixels
which could then be used as input to a state-of-the-art neural network architecture such as
a U-net. The comparison of our developed framework with other methods in the literature,
robustness analysis, and computational time analysis is not included in the scope of the
originally intended contribution in this article, and they are left for a future work.
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