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Abstract: Path planning with collision avoidance for unmanned aerial vehicles (UAVs) in environ-
ments with moving obstacles is a complex process of navigation, often considered a hard optimization
problem. Ordinary resolution algorithms may fail to provide flyable and collision-free paths under
the time-consumption constraints required by the dynamic 3D environment. In this paper, a new
parallel multiobjective multiverse optimizer (PMOMVO) is proposed and successfully applied to
deal with the increased computation time of the UAV path planning problem in dynamic 3D en-
vironments. Collision constraints with moving obstacles and narrow pass zones were established
based on a mathematical characterization of any intersection with lines connecting two consecutive
drones’ positions. For the implementation, a multicore central processing unit (CPU) architecture
was proposed according to the concept of master–slave processing parallelization. Each subswarm of
the entire PMOMVO population was granted to a corresponding slave, and representative solutions
were selected and shared with the master core. Slaves sent their local Pareto fronts to the CPU core
representing the master that merged the received set of nondominated solutions and built a global
Pareto front. Demonstrative results and nonparametric ANOVA statistical analyses were carried out
to show the effectiveness and superiority of the proposed PMOMVO algorithm compared to other
homologous, multiobjective metaheuristics.

Keywords: unmanned aerial vehicles; path planning; collision avoidance; moving obstacles; parallel
multiobjective multiverse optimizer; master–slave parallelization; multicore CPU architecture

1. Introduction

Nowadays, unmanned aerial vehicles (UAVs) have gained great potential in several
applications involving military and civilian fields due to their advantages in terms of
weight, size, mobility, and price [1,2]. In robotics, path planning is the part of navigation
that deals with collision avoidance of unmanned vehicles [3,4]. It is the most important
issue in a vehicle’s navigation that aims to find the shortest and collision-free path from
the current robot’s location to a given target. In many real-world navigation missions, a
UAV’s flight environment can be dynamic with obstacles and threats that change over time.
In these hard conditions, the collision-free path planning task becomes more and more
difficult and expensive, leading to a great challenge in the UAV’s control and autonomous
navigation framework [5–8]. In dynamic environments, a UAV drone operates regarding
the location and motion speed of the moving obstacles. The drone must respect these
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dynamic constraints and react quickly to these types of changes. Therefore, planning
algorithms used in this formalism must present high performance mainly in terms of
execution time and processing speediness.

In the literature, several research works on UAV path planning problems have been
proposed and continue to be developed and extended. In this framework, the aim of the
path planning techniques is not only to find the shortest flyable path but also to ensure
collision-free flight capability in complex environments. From this observation, the collision
avoidance issue remains the main objective in any path planning task. Various methods
and techniques have been investigated for collision avoidance in aviation. In [9], a dynamic
collision avoidance zone modeling approach was proposed based on the emergency col-
lision avoidance trajectory of UAVs in a 3D environment. In such a collision avoidance
strategy, a virtual cylinder static protection zone was constructed for flight conflict detection
and near-midair collision with intruders. In [10], the authors investigated the problem of
cognitive UAV collision avoidance based on impulse differential inclusions theory. Simu-
lation results were carried out to verify the stability of the computed collision avoidance
region. In [11], a new collision and detection avoidance (CDA) algorithm was proposed
to solve conflicts in flight scenarios with the simultaneous presence of aircrafts and other
path constraints, such as no-fly zones, bad weather areas, hard terrain with geofencing
limitations, and so on. The elaborated CDA approach leads to the detection of hazardous
situations and the generation of optimal maneuvers that avoid potential collisions without
causing secondary conflicts. Real-time simulations were made to show the effectiveness
of the collision avoidance algorithm in challenging conflict scenarios. In [12], a modified
artificial potential field (MAPF) approach was addressed for UAV collision avoidance in a
dynamic 3D space. To increase the reliability of collision avoidance, a cylindrical region
was assigned to each obstacle as an uncertain zone, and the planned path was checked
with updated forces of MAPF while being executed by the UAV. The MAPF algorithm
was designed and tested experimentally in a constraint reference frame to decouple the
decomposed forces with specific physical constraints. A corrected path was then created if
the forces disagreed with the physical constraints. In [13], a real-time collision avoidance
strategy based on an essential visibility graph (EVG) algorithm was developed and applied
for multiple unmanned aircrafts in environments with obstacles and no-fly zones. By
updating the proposed EVG over the prediction time interval, a replanning procedure
was carried out regarding the available multiple flying vehicles and movable obstacles.
Another popular class of path planning with collision avoidance methods based on rapidly
exploring random tree (RRT) techniques has been extensively used. In [14], an extended
RRT algorithm was deployed for fixed-wing UAVs flying in a complex 3D environment
with the avoidance of multiple obstacles. In [15], a dynamic variant of the RRT algorithm
was applied to fixed-wing UAVs in a dynamic 3D environment. The RRT structure was
expanded by considering the constraint equations of the vehicle’s dynamic constraints. The
collision avoidance was guaranteed by considering the locations of the dynamic obstacles at
the time of each step and interpolation based on the B-spline method. In [16], an improved
RRT-based cooperative path planning algorithm was designed to deal with the real-time
collision avoidance problem of multiple UAVs in the presence of unknown popup obstacles
and teammate vehicles.

Taken as a hard optimization problem with contradictory objectives and constraints,
the path planning problem with collision avoidance challenges requires many other ca-
pabilities of resolution algorithms in terms of search diversity, escape of local minima,
nonpremature convergence, and computation time fastness to deal with the complexity of
dynamic navigation environments. In recent years, interesting metaheuristics approaches
have been proposed to solve a wide range of multicriteria path planning problems for
UAVs in static and dynamic environments [17]. In [18], an algorithm based on both ant
colony optimization and artificial potential field technique was proposed to solve UAV
path planning problems in an environment with dynamic threats. The authors in [19]
used an improved pigeon-inspired optimization algorithm for UAV path planning in a



Drones 2022, 6, 385 3 of 34

dynamic oilfield 3D environment. In [20], a novel optimization-based planner inspired by
the concept of predator-prey pigeons was investigated to find the optimal trajectory for an
unmanned combat aerial vehicle in a dynamic environment. In [21], an improved artificial
bee colony algorithm was proposed for path planning problems in a complex dynamic
environment. Although these works were developed to solve multiobjective path planning
problems, they used weighted sum functions that converted the multiobjective problem
into a single objective one [22]. In this case, it is difficult to determine the best weights
for different conflicting goals. In order to overcome these limitations, multiobjective meta-
heuristics have been proposed to address multiple conflicting objectives simultaneously.
In [23], a multiobjective particle swarm optimizer was applied for path planning in an
uncertain environment. In [24–26], the authors proposed an interesting UAV collision-free
path planning approach based on the multiverse multiobjective optimization concept. The
comparisons carried out with other homologous algorithms have shown the effectiveness
and superiority of the proposed planner in 3D environments with moving obstacles and
threats. Other bioinspired metaheuristics algorithms have been used to handle the path
planning problems of UAVs in dynamic environments and can be found in [27–31].

In a dynamic environment, the locations of moving obstacles change over time and
the drone should be able to react quickly to these environmental changes. Therefore, the
execution time of any path planning algorithm plays an important role in ensuring the
feasibility of a real-world UAV’s navigation mission. Thus, there is a need to improve
the classical optimization-based path planning methods by either modifying the search
mechanism of algorithms or using advanced computational technologies to better solve
these hard and large-scale planning problems. Recently, the parallelization of algorithms
has been extensively developed and presents a promising and encouraging solution in this
regard [32]. Architectures using graphics processing units (GPUs) and central processing
units (CPUs) are the most extensively proposed parallelization techniques. With the
growing development of computer technology, microprocessors currently used in almost
all embedded computers have become multicore, providing the essential hardware bases
for the implementation of parallel algorithms [33]. Nowadays, the computing technology of
multicore CPU has enjoyed great success in the fields of scientific research and engineering
practices and has become an active research area. Parallel computing in multicore CPUs
is done by dividing a large computational task into several reduced subtasks that are
executed simultaneously in the different cores. This parallelization technique can speed up
computation time and further improve the efficiency of using hardware resources [34]. In
our previous work [32], a parallel cooperative co-evolutionary grey wolf optimizer was
proposed to solve the path planning problem using a multicore CPU architecture but in a
static environment with single objective optimization formulation. Other works dealing
with the parallelization of some classical and old metaheuristics algorithms can be found
in the literature.

So far, no remarkable research work on the parallelization of recent and multiobjective
metaheuristics algorithms for the dynamic path planning problems of UAVs is worth men-
tioning. In this paper, a new parallel multiobjective multiverse optimization (PMOMVO)
algorithm is proposed and successfully applied to solve the path planning problem of UAVs
flying in hard 3D environments with moving obstacles and threats. By using a multicore
CPU architecture, a master–slave parallelization was implemented to lead to efficient and
more suitable PMOMVO algorithms for the considered path planning problem compared
with the normal MOMVO one. A modified technique for order of preference by similarity
to ideal solution (TOPSIS) was used to select the best compromise solutions among all
the nondominated ones in the sense of Pareto [35]. The research mechanism behind the
MOMVO’s parallelization is explained and tested over a large benchmark of hard planning
scenarios. To assess the usefulness of the proposed planning approach, several comparisons
and statistical analyses were carried out and discussed. The main contributions of this
work are summarized as follows: (1) an efficient path planning strategy is proposed to
find flyable and collision-free paths in dynamic environments with moving obstacles and
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narrow pass zones. (2) A new parallel variant of the multiobjective multiverse optimizer
based on a multicore CPU master–slave architecture is proposed and successfully applied
for such a multicriteria path planning problem. (3) Nonparametric statistical analyses were
carried out to show the efficiency and superiority of the proposed PMOMVO algorithm for
path planning problems with moving obstacles.

The remainder of this paper is organized as follows. In Section 2, a bibliographic
survey of the main methods and works on UAV path planning and collision avoidance
in dynamic environments is summarized. In Section 3, the UAV path planning problem
in a dynamic 3D environment with moving obstacles is formulated as a multiobjective
optimization problem under operational dynamic constraints. Section 4 presents the
main components of the proposed parallel processing multiobjective multiverse algorithm
based on a master–slave multicore CPU architecture. In Section 5, demonstrative results,
comparisons, and nonparametric statistical analyses are carried out to show the superiority
and effectiveness of the proposed PMOMVO-based dynamic path planning approach.
Section 6 concludes this paper.

2. Related Work

The path planning problem with collision avoidance in dynamic environments has
attracted growing attention since the end of the last century. As a hard issue in UAV
navigation, the main idea is to find flyable paths that can drive a vehicle safely from
a start station to a target destination without colliding with moving obstacles. In the
literature, many approaches using various kinds of algorithms have been proposed to tackle
such a problem. Because of this broad range, many researchers have proposed different
classification models to more easily identify trends and research directions. In this study,
a chronological classification of the main and recent path planning methods is addressed
in a horizon that ends in 2022. As summarized in Table 1, these approaches are grouped
under five main classes, namely the sampling-, node-, mathematical-, machine-learning-
and bioinspired metaheuristics-based algorithms. As shown from the related literature, the
sampling-based algorithms are built around a required prerequisite of the knowledge of the
working environment. In this case, collision-free environment information can be sampled
and interpreted by a planning algorithm. The node-based techniques are used for finding
flyable routes in a graph structure. In these algorithms, the predefined nature of the graph
influences the applicability for unknown dynamic scenarios. For the mathematical-model-
based approaches, the main idea consists of the resolution of the path planning task by a
reformulation as a typical mixed-integer linear programming problem. Machine learning,
i.e., reinforcement and deep learning, and bioinspired metaheuristics-based, techniques
are the most extensively used approaches in recent decades. These approaches based on
artificial intelligence concepts mimic the cognitive behaviors of neural networks, swarm
intelligence, and biology.

Table 1. Summary of the main UAV path planning approaches in dynamic environments.

Classes Year Literature Description of the Main Topic and Used Technique

Sampling-based
algorithms

2014 [36] A Voronoï-diagram-based algorithm proposed for UAV path planning
in a dynamic environment.

2015 [37]
An Artificial Potential Field (APF) algorithm using the attractive

potential field to achieve goals and the repulsive potential field to
avoid both static and dynamic obstacles.

2016 [14] A Rapidly exploring Random Tree (RRT) algorithm employed for
fixed-wing UAV path planning in a dynamic environment.

2016 [15] A Dynamic RRT (DRRT) technique applied to solve fixed-wing UAV
path planning problems in dynamic 3D environments.
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Table 1. Cont.

Classes Year Literature Description of the Main Topic and Used Technique

2017 [38] An Improved APF (IAPF)-based method proposed to solve UAV
trajectory planning problems in a dynamic environment.

2018 [16]
An Improved RRT (IRRT)-based technique investigated to generate
paths for multiple UAVs in real-time scenarios with the presence of

unknown pop-up obstacles.

Node-based algorithms

2014 [39] An A-star (A*) algorithm used to obtain the shortest feasible flying
path for a UAV.

2017 [40] A D-star (D*) algorithm proposed to find the shortest path for mobile
robots in highly dynamic environments.

2019 [41] A variant D* Lite of D* algorithm applied to solve the 3D path
planning problem for quadrotor-types of UAVs.

2022 [42] A Matrix Alignment Dijkstra (MAD)-based technique proposed to
make drones safely move in dynamic environments.

Mathematical-based
algorithms 2019 [43]

A planning strategy based on a nonlinear control system using an
optimization-based avoidance strategy with account of sensor

characteristics and an emergency evaluation policy.

Machine learning-based
algorithms

2019 [44] A Reinforcement Learning (RL)-based technique proposed to solve the
UAV path planning problem based on global situation information.

2021 [45]
A Deep Reinforcement Learning (DRL) approach investigated path

planning problems in complex and dynamic environments using local
information and relative distance.

2021 [46]
A Multilayer Reinforcement Learning (MRL) algorithm using a neural

network with two layers proposed to collect both global and local
information for navigation in dynamic environments.

Metaheuristics-based
algorithms

2021 [24–26]
A Multicriteria Multiverse Optimizer (MOMVO) associated with the

TOPSIS technique proposed for path planning problems in a 3D
environment with moving obstacles and threats.

2022 [27]
An Improved Particle Swarm Optimization (IPSO) and Arithmetic
Optimization Algorithm (AOA)-based hybrid planner for the path

planning of multiple robots in a dynamic environment.

2022 [28]
A Resilient UAV Path Optimization Algorithm (RUPOA) as a new

planning algorithm proposed to achieve safe path planning for UAVs
under uncertain dynamic environments.

2022 [29] An Evolutionary PSO (EPSO) algorithm used to solve the drone path
planning problem in a dynamic environment.

2022 [30]
An Improved PSO (IPSO)-based algorithm employed for a

visual-SLAM-based planning strategy to optimize the paths for
multi-UAVs in a dynamic environment.

3. Path Planning Problem Formulation
3.1. Dynamic Environment Modeling

In robotics, the path planning procedure consists of guiding the unmanned vehicle
from a starting point S : (x1, y1, z1) to a destination point T : (xn, yn, zn) in the coordinate
system XOY, as shown in Figure 1. The X-axis range that connects these two points is
divided into (n− 1) ∈ N equal subsegments denoted as [Li, Li+1], i = 1, 2, . . . , n− 1. To
carry out this navigation mission, two key tasks must be determined, namely the 3D
environment modeling (waypoints, obstacles, flyable paths, etc.) and the planning problem
often formulated as a constrained multiobjective optimization problem [24–26,32].
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Figure 1. Environment modeling for path planning with moving obstacles.

In this work and without loss of generality, a moving obstacle is modeled as a sphere
or ball of radius rj ∈ R+ and center Cj :

(
xj

c, yj
c, zj

c

)
, as shown in Figure 2. Indeed, the idea

behind the use of spherical shapes of threats aims to provide a more generalized collision-
free navigation for a wide range of threat forms, for example, missiles, teammate drones in
the case of multi-UAV swarms, raptors attacking the flying objects, and so on. In geometry,
cubes, pyramids, and even more generally polygonal forms can be approximated as spheres
(or as circles in 2D environments) circumscribed to various shapes of rigid objects. They are
circumscribed spheres containing the polygonal object where all its vertices are still inside
of the ball. The dynamic constraints of traversing areas in spherical shapes remain virtually
the same. Moreover, several literature works on the 3D path planning of UAVs continue to
use spherical shapes for a wide range of 3D obstacles and threats as well as circular forms
in the case of planning in 2D environments. Thus, whatever the shape of the object that
is considered an obstacle, the collision avoidance constraints manipulate analytical and
nonlinear constraints analogous to those later developed in this same section.
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On the other hand, a UAV drone as a rigid body moving in a 3D space is modeled
thanks to the well-known Newton–Euler approach that describes the motion dynamics in
the body-fixed coordinate frame as follows [26,31,32]:

muav
..
Xuav = muav

.
Vuav = Fuav (1)

where Xuav = (xuav, yuav, zuav) and Vuav = (vuav, uuav, wuav) denote the position and linear
velocity of the drone for the translational motion, respectively, muav is the mass of the
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vehicle, and Fuav is the sum of external forces. These motion equations are sampled
according to the adequate time step ∆t.

3.2. Multiobjective Optimization Problem Formulation

Considering that the actual position of the aerial vehicle is wi = (xi, yi, zi) and
the time t ≥ 0 is incremented by one unit, the drone must move to the next position
wi+1 = (xi+1, yi+1, zi+1) where the coordinate {xi+1}1≤i≤n−1 is selected and the way-
point coordinates W = {yi+1, zi+1}1≤i≤n−1 are considered as the decision variables for
the path-planning-based optimization problem. The aim of the path planning problem
in a dynamic 3D environment is to calculate the vehicle’s next positions while meeting
certain objectives and avoiding collision with moving obstacles. Starting from its current
position and heading towards its destination, the UAV drone is placed at the time t ≥ 0
in the spatial coordinate wi = (xi, yi, zi). As the processing time is incremented ∆t, the
quadrotor would pass to the next position wi+1 = (xi+1, yi+1, zi+1) at the time (t + ∆t).
The length of the flyable, collision-free path is therefore an essential objective. The mini-
mization of the lines joining the consecutive waypoints {(xi, yi, zi),(xi+1, yi+1, zi+1)} and
{(xi+1, yi+1, zi+1),(xn, yn, zn)} leads to minimizing the total length of flyable paths. Thus,
the first proposed objective function is defined as follows [24]:

f1(W) =

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 + (zi+1 − zi)

2 +

√
(xi+1 − xn)

2 + (yi+1 − yn)
2 + (zi+1 − zn)

2 (2)

The consideration of the dynamic characteristics of UAVs is another essential objec-
tive [24,31,32]. The straighter the UAV drone’s flyable path, the more the control system
complexity and fuel cost of the flight process decrease. However, in a real-world situation,
a UAV should arbitrarily change its direction around waypoints and moving obstacles.
Therefore, the candidate flyable path will present curvatures at any direction change and
sharp corners. To handle such dynamic constraints of UAVs, the idea to use the concepts of
steering angle and the corresponding turning radius was considered [31,32]. Such turning
angles define the angles between two adjacent segments along the generated sequence
of flyable waypoints, as depicted in Figure 3. The steering angle is then introduced to
limit the straightness of the path and constrain the motion of the vehicle. Considering
this dynamic behavior around waypoints, a second objective function that models such
planning dynamic constraints can be chosen as follows [32]:

f2(W) = |ϕs,s+1| − ϕmax (3)

where ϕs,s+1 =
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that models such planning dynamic constraints can be chosen as follows [32]: 

( )2 , 1 maxs sf ϕ ϕ+= −W  (3)

where ( )
, 1 1 1,s s i i i iϕ + − += w w w w  is the angle between two adjacent sth and (s+1)th 

segments connecting three consecutive waypoints, and maxϕ  denotes the constraint value 
of this steering angle, as shown in Figure 3. 

is the angle between two adjacent sth and (s+1)th segments
connecting three consecutive waypoints, and ϕmax denotes the constraint value of this
steering angle, as shown in Figure 3.
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In dynamic environments, avoiding collision with moving obstacles is more complex
and harder than in the case of static ones. Indeed, the drone must be able to coordinate
its movement by avoiding any possible collision with a set of obstacles evolving in the



Drones 2022, 6, 385 8 of 34

navigation environment with position and speed variables in time [24]. In a real-world
navigation environment, the geometric coordinates of dynamic obstacles are difficult to
define. The main characteristics of obstacles, such as the center, the radius, the initial
position, and the motion speed, are assumed to be known at the start of the planning
process. At each time step, the position and speed motion equations of the jth given
dynamic obstacle are updated as follows:

vj
obs(t + ∆t) = vj

obs(t) + aj
obs∆t (4)

xj
obs(t + ∆t) = xj

obs(t) + vj
obs(t + ∆t)∆t +

1
2

aj
obs∆t2 (5)

yj
obs(t + ∆t) = yj

obs(t) + vj
obs(t + ∆t)∆t +

1
2

aj
obs∆t2 (6)

zj
obs(t + ∆t) = zj

obs(t) + vj
obs(t + ∆t)∆t +

1
2

aj
obs∆t2 (7)

where vj
obs and aj

obs are the motion speed and acceleration of the jth moving obstacle,
respectively, j = 1, 2, . . . , q, q ∈ N, and ∆t ≥ 0 denotes the incremental time step size.

In such modeling, the UAV drone moves from the actual position wi = (xi, yi, zi) to
the next one wi+1 = (xi+1, yi+1, zi+1) when the time is incremented by one unit. To avoid
any collision, the line connecting these two waypoints should not be crossed by a moving
obstacle, as shown in Figure 4. Starting from a current instantaneous position and assuming
that the UAV drone should not perform backward movements, the coordinates of the next
consecutive waypoint can be expressed as follows:

xi+1 = xi + t∆x
yi+1 = yi + t∆y
zi+1 = zi + t∆z

(8)

where ∆x = |xi+1 − xi|, ∆y = |yi+1 − yi|, and ∆z = |zi+1 − zi| denote the increments on
the drone’s positions according to X-, Y-, and Z-axes, respectively.
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Any waypoint on the surface of the sphere has the coordinates (xi, yi, zi) that verify
the following characteristic equation:(

xi − xj
c

)2
+
(

yi − yj
c

)2
+
(

zi − zj
c

)2
= r2

j (9)

where
(

xj
c, yj

c, zj
c

)
and rj represent the center’s coordinates and radius of the jth sphere-

based modeled obstacle, respectively.
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By substituting Equation (8) in Equation (9), one can obtain the following second-order
polynomial equation:

Ajt2 + Bjt + Cj = 0 (10)

where the terms Aj, Bj, and Cj are defined as follows:

Aj = ∆x2 + ∆y2 + ∆z2 (11)

Bj = 2
(

∆x
(

xi−1 − xj
c

)
+ ∆y

(
yi−1 − yj

c

)
+ ∆z

(
zi−1 − zj

c

))
(12)

Cj =
(

xi−1 − xj
c

)2
+
(

yi−1 − yj
c

)2
+
(

zi−1 − zj
c

)2
− rj

2 (13)

When the discriminant of such a second-order equation is negative, there are no
intersections between the line connecting two consecutive drones’ positions and the moving
obstacle modeled as a sphere. Such an operational constraint is defined as follows:

∆ij(yi, zi) = B2
j − 4AjCj (14)

where j = 1, 2, . . . , q is the index of the jth moving obstacle, i = 1, 2, . . . , n − 1 is the
number of waypoints, and Aj, Bj, and Cj are analytical terms given by Equations (11)–(13),
respectively.

In addition, another type of collision situation can occur in the case of narrow passage
between two moving obstacles located at the same altitude. In this case, i.e., generation
of no feasible waypoint between two obstacles’ positions, the distance separating such
two circumscribed spheres is insufficient to make a safe flight of the drone regarding its
geometric dimensions. In such particular planning scenarios, a virtual sphere of radius
rv = luav/2 ∈ R+ and Cv : (xv

c , yv
c , zv

c ) centered midway between two nearby obstacles is
considered, as shown in Figure 5, where luav denotes the vehicle’s length and δnarrow is a
predefined safety distance of a narrow pass.
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So, novel collision-free constraints of the same type as (14) can be defined by consid-
ering the intersection avoidance of the planned path segments with such virtual spheres,
i.e., circumscribed to the narrow zone between obstacles. The waypoint assumed was
generated when the drone passing between two nearby obstacles should be panelized. The
UAV thus changes direction along the Z-axis, i.e., can fly above these obstacles or below
them while respecting the safe distance from a possible collision with the ground. Another
tolerated, feasible move consists of targeting the new waypoint of the next hyperplane, i.e.,
changing the direction along the Y-axis with a constant altitude, as depicted in Figure 5.
From the optimization point of view, such a constraint for path planning regarding narrow
passes between moving obstacles can be modeled as follows:

∆ij
v (yi, zi) = B2

v − 4AvCv (15)

where the terms Av, Bv, and Cv can be computed using the same Formulas (11)–(13) but
by replacing the radius rj with rv and the center coordinates

(
xj

c, yj
c, zj

c

)
with those of the

defined virtual sphere (xv
c , yv

c , zv
c ).

Based on these modeling specifications and for the generation of the ith waypoint,
the UAV’s path planning process in a dynamic environment with moving obstacles can be
formulated as the following constrained multiobjective optimization problem:

Minimize
W∈D⊆R2

ϕ(W) = { f1(W), f2(W)}

s.t :
gij(W) < 0
hij(W) < 0

(16)

where f1(.) and f2(.) are the cost functions of the biobjective optimization problem given by
Equations (2) and (3), gij(.) = ∆j(.) and hij(.) = ∆ij

v (.) are the collision-free constraints of the
moving obstacles defined by Equations (14) and (15), W = {yi, zi}1≤i≤n−1 are the decision
variables of the problem, and D = {W ∈ R2|Wmin ≤W ≤Wmax, gij(W) < 0, hij(W) < 0,
i = 1, 2, . . . , n; j = 1, 2, . . . , q} denotes the bounded search space.

To handle the inequality constraints of the formulated multiobjective optimization
problem (16), the external, static type of penalty functions are used as follows [47]:

φk(W) = fk(W) +
n

∑
i=1

p

∑
j=1

λijmax
{

0, gij(W) + hij(W)
}2 (17)

where λij ∈ R+ is the jth penalty parameter associated with the jth constraint, p ≤ q is
the number of obstacles in the ith waypoint’s neighborhood that denotes the number of
considered inequality constraints in the optimization, and k ∈ {1, 2}.

3.3. Proposed Path Planning Strategy

Obstacle collision avoidance is fundamental within any dynamic path planning prob-
lem with UAVs. Based on the assumptions that the number, initial positions, and range
of velocity of the moving obstacles are known, the proposed UAV path planning strategy
consists of determining appropriate collision-free waypoint sequences in 3D environments
with moving threats. Allowing for safe navigation from a starting point to a destination
station, the designed path planning technique is based on the first step of the collection
of the environment’s information, i.e., start and target points, number and dimension of
moving obstacles, initial positions of obstacles, etc. As shown in the flowchart of Figure 6,
the modeling of the 3D flight environment regarding the workspace partition, UAV dy-
namic constraints, and the geometry of moving obstacles should be investigated. At each
increment of the computation time, the generation of collision-free waypoints is then per-
formed using the proposed parallel processing PMOMVO planner (see the corresponding
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Algorithm 2 and the flowchart of Figure 6). Such an improved PMOMVO algorithm, asso-
ciated with a TOPSIS type of multicriteria decision-making approach, aims to increase the
performance of the dynamic planner in terms of computation time and trapping avoidance
in local minima. A geometric technique to formulate moving obstacle avoidance is pro-
posed based on the intersection of the segments connecting the generated waypoints with
any obstacle assumed to be circumscribed in a 3D sphere with known centers and radii,
as illustrated in Figures 4 and 5. The generated collision-free waypoints are then targeted
by the UAV drone while respecting the defined dynamic constraints, i.e., steering angles,
straightness limitation, and narrow passage constraints, as shown in Figures 3–5.
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4. Parallel Optimization Algorithm
4.1. Multiobjective Multiverse Optimizer

The standard Multiverse Optimizer (MVO) is a population-based metaheuristic in-
spired by physical theories of the existence of the multiverse [48]. This swarm-intelligence-
based algorithm models the interaction between different universes based on the notion
of black/white holes and wormholes [48,49]. The sending and receiving of objects in a
universe (decision variables) through wormholes are done according to their inflation rates
(fitness values) to improve the process of exploration/exploitation and to avoid entrapment
in local optima. The main motion equations of such an algorithm are defined as follows:

W j
i =


{

Wj + TDR +
(
ubj − lbj × rand3 + lbj

)
rand2 < 0.5

Wj + TDR−
(
ubj − lbj × rand3 + lbj

)
rand2 < 0.5

if rand1 < WEP

W j
i if rand1 ≥WEP

(18)

where W j
i denotes the jth component in the ith solution, Wj indicates the jth variable of the

best universe, lbj and ubj are the lower and upper bounds, respectively, rand1,2,3 ∈ U (0, 1)
are random numbers uniformly distributed in the interval [0, 1].

In Equation (18), the terms WEP and TDR that present the wormhole existence
probability and traveling distance rate, respectively, are defined as follows:

WEP = ρmin + iter(ρmax − ρmin)/niter (19)

TDR = 1− iter1/γ/niter (20)

where ρmin and ρmax are the min and max values of the wormhole existence probability,
respectively, iter = 1, 2, . . . , niter ∈ N denotes the current algorithm’s iteration, and γ ∈ R+

defines the exploitation accuracy.
In this paper, a multiobjective variant of the multiverse optimizer (MOMVO) is devel-

oped by adding the concepts of archiving to store the nondominant solutions in the sense
of Pareto. The leader selection and roulette techniques are implemented to select the best
solutions from the Pareto archive. Since an archive can accommodate a limited number
of nondominant solutions, a probabilistic mechanism is used to remove unsatisfactory
solutions [49]:

δi = Ni/α (21)

where Ni defines the number of the vicinity solutions and α > 1 is a constant.
Based on the above updating equations, a pseudocode of the proposed MOMVO can

be summarized as follows (Algorithm 1):

Algorithm 1: MOMVO

1. Set the control parameters of MOMVO.
2. Randomly initialize the population, i.e., positions of the universes.
3. While (iter < niter + 1) do
4. Update WEP and TDR by applying Equations (19) and (20), “See Section 4.1”.
5. For each universe do

Boundary checking for the universes inside the search space.
Calculate the inflation rate (fitness) of universes.
End For

6. Sort the fitness values.
7. Find the nondominated solutions.
8. Normalize the inflation rates of each universe.
9. Update the archive regarding the obtained nondominated solutions.
10. If the archive is full do

Delete some solutions from the archive to hold the new.
End if
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Algorithm 1 Cont.

11. Update the positions of universes according to Equation (18), “See Section 4.1”.
12. If any newly added solutions to the archive are outside boundaries do

Update the boundaries to cover the new solution(s).
End if

13. Increment iter
14. Stop the algorithm’s execution when it reaches niter.

On the other hand, a decision-making approach is required to select the best compro-
mise solution among all the nondominated Pareto ones. For the formulated multicriteria
path planning problem (16), an improved technique for order of preference by similarity to
ideal solution (TOPSIS) is adopted as in our previous works [35].

4.2. Parallelization of the MOMVO Algorithm

In this paper, a master–slave model is proposed for the MOMVO algorithm paral-
lelization as shown in Figure 7. In this proposed shared memory model, one of the CPU
cores is selected as the master and the other ones are defined as the slaves [32].
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The master processor will be responsible for initializing the population with cardinality
npop ∈ N and breaking it down into m ∈ N subpopulations denoted as S1, S2, . . . , Sm. Each
subswarm of the entire MOMVO population is granted to a corresponding slave and a
representative of each of them is selected by the roulette technique and sent to the master
core, as shown in Figure 7.

In this work, the parallelization mechanism is introduced to simultaneously evolve all
the subpopulations in the different cores, which can minimize the execution time. Each
slave is designed to evolve the allocated subpopulation by applying a MOMVO code,
as described in Algorithm 1, and independently search for the set of Pareto solutions.
After an evolution cycle, each slave sends to the master the best solution retained by the
roulette technique [49]. The master receives the solutions from all slaves and returns
the nondominated ones to each for a new cycle. After that, each slave replaces its worst
solutions with the solutions received from the master which are considered as best ones.
The master checks the stopping condition; if it is reached, this process stops, and the slaves
send their local Pareto fronts to the core representing the master. Such a master merges the
received Pareto fronts and removes the repeated solutions to make a set of nondominated
solutions and, therefore, a global Pareto front. Algorithm 2 provides a pseudocode for the
proposed parallel processing PMOMVO algorithm.

Algorithm 2: PMOMVO

Master process

1. Randomly initialize npop agents of the population.
2. Decompose the population into m subswarms denoted as S1, S2, . . . , Sm.
3. Randomly choose a representative solution from each subswarm.
4. Send each subswarm to a corresponding slave.
5. Cycle = 0.
6. While termination criterion = false do

Parallel for j = 1 to m slaves
Find the nondominated solutions among the representatives of the slaves.
Send to the slaves the nondominant solutions.
Waiting for slaves.
Receive all representatives of subswarms from the slaves.
End Parallel for
Cycle = Cycle+1.
End While

7. Merge all subpopulations’ Pareto fronts in a single one.
8. Use the multicriteria decision making TOPSIS method to find the optimal solution.

Slave [j] process

9. While true do
Receive the solutions from the master process.
Update the worst solutions with those received from the master.
Execute the MOMVO algorithm on each subswarm Sj.
Select and send the representative of each subswarm Sj to the master process.
End While

5. Simulation Results and Discussion
5.1. Software Environment for Parallel Computing

For a practical implementation of the parallel MOMVO algorithm, the hardware archi-
tecture on which the program will be executed and the software environment associated
with such architecture are key elements. In this work, a multicore CPU architecture was
adopted for parallelization. A computer with a Core i5 processor with 12 cores at 2.90 GHz
and 8.00 GB of RAM was used. In such a parallel architecture, the multiple CPU cores of a
shared memory machine can operate in parallel and share the same memory space. The
“Parallel Computing Toolbox” of the MATLAB environment was investigated to provide
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the easiest parallel programming avenue [50]. In this paper, the simplest “Parfor” structure
of the MATLAB software tool was used to illustrate this functionality. The number of
iterations of the “Parfor” loop was equal to the number of workers who performed the
iterations independently of each other and evolved in parallel, i.e., one per subpopulation.

5.2. Numerical Experimentations and ANOVA Tests

In order to illustrate the effectiveness of the proposed PMOMVO algorithm for the
formulated path planning problem, six variants of such an algorithm were executed under
various flight scenarios with an increased number of moving obstacles, as shown in Table 2.
These PMOMVO variants implement parallel algorithms with different subpopulations
equal to 2, 4, 6, 8, 10, and 12 according to the available cores of the used CPU-based master–
slave architecture. For the rest of the paper, these variants are denoted as PMOMVO-2,
PMOMVO-4, PMOMVO-6, PMOMVO-8, PMOMVO-10, and PMOMVO-12. The control
parameters of the reported algorithms are set as ρmin = 0.2, ρmax = 1, npop = 50 and
niter = 100.

Table 2. Flight scenarios with moving obstacles for the path planning process.

Scenarios

1 2 3 4 5

Moving obstacles 5 9 12 15 20

Starting point [m] [0, 0, 0] [1, 2, 0] [1, 2, 0] [2, 4, 0] [0, 0, 0]

Target point [m] [9, 8, 0] [10, 10, 0] [13, 10, 0] [16, 13, 0] [16, 15, 0]

Initial positions [m]
[5 5 2], [3 3 2],
[5 3 1], [2 1 1],

[6 2 2]

[1 3 1], [3 5 1],
[4 4 3], [5 5 4],
[7 3 4], [8 2 1],

[9 5 2], [10 8 1],
[9 9 1]

[2 3 1], [2 4 1],
[4 3 2], [5 3 3],
[5 5 2], [6 4 1],
[7 7 2], [7 3 4],

[8 6 3], [10 8 2],
[9 2 1], [12 9 2]

[1 3 1], [2 5 2],
[2 4 3], [2 7 1],
[3 2 1], [3 3 3],
[4 1 2], [4 5 4],
[6 7 1], [7 2 2],

[8 5 2], [10 8 3],
[6 12 2], [13 1 2],

[15 11 3]

[2 5 1], [15 13 1],
[4 2 1], [13 9 4],

[10 7 2], [14 12 1],
[6 2 3], [4 12 1],

[14 2 4], [9 10 2],
[7 12 1], [12 10 5],

[8 1 2], [8 8 1],
[9 14 2] [5 3 1],

[10 3 2], [8 14 1],
[14 2 3], [12 8 2]

Motion speeds [m/s]

[4 −2 1],
[2 −2 −2],

[4 2 2], [2 2 2],
[−2 2 −2]

[2 1 1], [3- 3 1],
[4 1 −2], [2 1 1],

[−1 −2 2],
[0.5 1 −1],

[1 −1 2], [1 −1 1],
[1 2 1]

[−1 3 −1], [−1 1 1],
[2 2 1], [1 2 4], [0.2

1 3], [1 −1 1],
[2 1 2], [−1 2 2],
[1 2 1], [3 0.5 2],
[2 −1 1], [3 1 1]

[1 2 1], [−2 1 1],
[3 −1 3], [2 1 2],

[−1 3 1], [1 2 −2],
[2 −1 2], [4 1 2],

[3 2 1], [0.5 2 −2],
[1 −2 1], [1 2 3],

[1 2 0.5], [0.5 −1 1],
[−1 2 2]

[1 3 1], [3 −1 1],
[4 1 3], [2 2 4],

[−1 3 1], [2 1 1],
[3 1 2], [1 3 −2],

[1 1 1], [2 −0.5 2],
[1 1 2], [1 2 1],

[2 2 −2], [1 −2 1],
[1 1 2], [1 −2 −1],

[1 2 −1], [2 1 1],
[1 −1 2], [−1 1 2]

All PMOMVO variants were run 20 independent times on the formulated path plan-
ning problem (16). For all experimentations, the PMOMVO variants were compared to the
normal MOMVO as described by Algorithm 1. The effects of the main design parameters,
i.e., the number of times that slaves shared their best solutions l ∈ {0, 1, 3, 7, 9}, called the
sharing rate of better solutions, and the number of slaves in the parallel CPU architecture
m ∈ {2, 4, 6, 8, 10, 12}were analyzed and discussed. In order to evaluate the performance of
the PMOMVO algorithms in terms of convergence capability and Pareto nondominated so-
lutions diversity, the metrics hyper volume (HV) [51], maximum spread (MS) [52], and hole
relative size (HRS) [53] were considered. The results of these performance measurements
are summarized in Tables 3–5, respectively.
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Table 3. Optimization results of problem (16) regarding the HV metric.

Algorithms
Sharing Rates of Better Pareto Solutions

l = 0 l = 1 l = 3 l = 4 l = 9

MOMVO
(m = 0)

Best 0.0915 - - - -
Mean 0.0838 - - - -
Worst 0.0654 - - - -
STD 0.0153 - - - -

PMOMVO-2

Best 0.0956 0.0964 0.0974 0.0987 0.0991
Mean 0.0803 0.0848 0.0860 0.0883 0.0912
Worst 0.0687 0.0689 0.0715 0.0754 0.0853
STD 0.0131 0.0135 0.0129 0.0115 0.0069

PMOMVO-4

Best 0.0964 0.0973 0.0989 0.0993 0.0995
Mean 0.0810 0.0869 0.0879 0.0898 0.0923
Worst 0.0691 0.0695 0.0725 0.0758 0.0864
STD 0.0138 0.0137 0.0131 0.0119 0.0066

PMOMVO-6

Best 0.0976 0.0986 0.0991 0.0997 0.1003
Mean 0.0816 0.0870 0.0889 0.0904 0.0950
Worst 0.0721 0.0736 0.0754 0.0810 0.0839
STD 0.0130 0.0124 0.0117 0.0093 0.0082

PMOMVO-8

Best 0.0981 0.0989 0.0992 0.0999 0.1014
Mean 0.0821 0.0880 0.0897 0.0929 0.0961
Worst 0.0732 0.0740 0.0714 0.0823 0.0845
STD 0.0128 0.0120 0.0140 0.0088 0.0082

PMOMVO-10

Best 0.0991 0.0994 0.0997 0.1045 0.1063
Mean 0.0933 0.0908 0.0942 0.0964 0.0989
Worst 0.0756 0.0784 0.0792 0.0841 0.0859
STD 0.0120 0.0103 0.0105 0.0102 0.0101

PMOMVO-12

Best 0.0995 0.0996 0.0998 0.1054 0.1084
Mean 0.0966 0.0946 0.0961 0.0978 0.0996
Worst 0.0755 0.0786 0.0806 0.0845 0.0862
STD 0.0130 0.0112 0.0103 0.0105 0.0110

Table 4. Optimization results of problem (16) regarding the MS metric.

Algorithms
Sharing Rates of Better Pareto Solutions

l = 0 l = 1 l = 3 l = 4 l = 9

MOMVO
(m = 0)

Best 0.9685 - - - -
Mean 0.9482 - - - -
Worst 0.9041 - - - -
STD 0.0336 - - - -

PMOMVO-2

Best 0.9710 0.9796 0.9886 0.9891 0.9943
Mean 0.9550 0.9751 0.9874 0.9883 0.9886
Worst 0.9413 0.9614 0.9712 0.9745 0.9813
STD 0.0148 0.0099 0.0098 0.0080 0.0065

PMOMVO-4

Best 0.9723 0.9822 0.9889 0.9894 0.9954
Mean 0.9628 0.9765 0.9882 0.9884 0.9887
Worst 0.9465 0.9652 0.9723 0.9765 0.9824
STD 0.0135 0.0089 0.0094 0.0071 0.0062

PMOMVO-6

Best 0.9821 0.9836 0.9891 0.9926 0.9969
Mean 0.9708 0.9787 0.9885 0.9894 0.9897
Worst 0.9563 0.9663 0.9754 0.9782 0.9839
STD 0.0130 0.0089 0.0076 0.0075 0.0064
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Table 4. Cont.

Algorithms
Sharing Rates of Better Pareto Solutions

l = 0 l = 1 l = 3 l = 4 l = 9

PMOMVO-8

Best 0.9841 0.9856 0.9894 0.9952 0.9986
Mean 0.9735 0.9793 0.9887 0.9912 0.9933
Worst 0.9587 0.9681 0.9768 0.9863 0.9881
STD 0.0129 0.0088 0.0072 0.0046 0.0053

PMOMVO-10

Best 0.9863 0.9874 0.9897 0.9965 1.0034
Mean 0.9812 0.9796 0.9895 0.9931 0.9957
Worst 0.9621 0.9685 0.9771 0.9881 0.9892
STD 0.0127 0.0094 0.0071 0.0045 0.0067

PMOMVO-12

Best 0.9876 0.9886 0.9902 1.0005 1.0123
Mean 0.9845 0.9804 0.9898 0.9957 0.9989
Worst 0.9665 0.9714 0.9785 0.9898 0.9901
STD 0.0113 0.0087 0.0067 0.0053 0.0110

Table 5. Optimization results of problem (16) regarding the HRS metric.

Algorithms
Sharing Rates of Better Pareto Solutions

l = 0 l = 1 l = 3 l = 4 l = 9

MOMVO
(m = 0)

Best 9.6741 - - - -
Mean 14.7315 - - - -
Worst 20.3641 - - - -
STD 5.8492 - - - -

PMOMVO-2

Best 9.9874 8.9631 6.9654 6.1234 4.1231
Mean 16.7786 12.5560 9.5141 7.2783 5.6696
Worst 21.6521 15.8652 12.4264 11.3698 7.2541
STD 5.8589 3.4520 2.7825 2.7552 1.5695

PMOMVO-4

Best 9.8841 8.7431 6.7412 5.8419 3.9841
Mean 14.0749 11.3203 8.7722 7.4904 4.1613
Worst 18.3652 15.5874 11.3210 10.2143 6.1432
STD 4.2452 3.4582 2.2923 2.2023 1.1974

PMOMVO-6

Best 9.7436 8.5961 6.6321 5.1231 3.4561
Mean 13.3927 10.9666 8.1799 6.1541 3.9961
Worst 17.6354 13.8741 11.0362 9.4563 5.8741
STD 3.9485 2.6423 2.2353 2.2614 1.2682

PMOMVO-8

Best 9.5896 8.2541 6.1536 4.8236 3.3987
Mean 13.1597 9.8244 7.0997 5.8765 3.8388
Worst 16.5413 12.8741 10.8413 8.1243 5.3243
STD 3.4723 2.3482 2.4723 1.6856 1.0088

PMOMVO-10

Best 9.4132 7.1245 5.4563 4.6874 3.1716
Mean 12.0952 8.8336 6.7727 5.2175 3.7988
Worst 14.1452 10.2365 8.8741 7.6584 5.1413
STD 2.3728 1.5569 1.7241 1.5823 1.0068

PMOMVO-12

Best 8.7413 6.5741 5.2416 4.2478 2.6746
Mean 11.7824 7.6079 6.1369 5.0861 3.7444
Worst 13.4713 9.9541 8.5542 7.2365 5.0321
STD 2.3968 1.7319 1.7136 1.5402 1.1804

By observing these experimentations, one can note that for the HV and MS perfor-
mance metrics, increasing the number of slaves and Pareto best solution sharing rates leads
to a clear superiority of the PMOMVO algorithms in terms of obtained nondominated
solution diversity. Moreover, since the HRS metric calculates the largest spacing of non-
dominated solutions on a Pareto front, the obtained low values of such a performance
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measurement for the proposed PMOMVO solvers lead to better uniformity of the com-
promise surfaces. As shown in Table 5, the numerical results show that for all reported
PMOMVO variants, the HRS values are decreased by increasing the sharing rates of the
better solutions.

Figure 8 illustrates the set of Pareto solutions obtained by the MOMVO and PMOMVO
algorithms corresponding to the mean case of the optimization. Looking at these results,
one can observe the large gaps in the topology distribution of Pareto fronts for the low
values of the sharing rates l = 0,l = 1, and l = 3. However, for the high solution sharing
rate l = 9, the distribution of the nondominated solutions along the compromise surface is
more uniform. According to these demonstrative results, the number of times that slaves
share information with each other clearly influences the uniformity of the obtained Pareto
front. The higher the l ∈ N value, the more the distribution of Pareto solutions approximates
a uniform distribution. In addition, the performance of the PMOMVO variants, especially
those with the highest number of slaves, surpasses the standard MOMVO in terms of
solution distribution uniformity.

Let us consider the evaluation and analysis of the generated UAV global paths. To
discuss the performance of the PMOMVO algorithm in solving the dynamic path planning
problem, experimentations were performed considering the commonly used performance
criteria flight time (FT) and straight-line rate (SLR) [32]. The ability to avoid collisions with
moving obstacles in the considered dynamic environment was also investigated. Numerical
experimentations carried out for 20 independent executions led to the optimization results
of Tables 6 and 7. In terms of the traveled path length, the smaller the SLR metric, the better
the PMOMVO-based planner efficiency. Similarly for the FT performance criterion, the
lower the elapsed time, the better the optimization algorithm in terms of navigation speed
and planning time management.

In order to statistically analyze these results, nonparametric ANOVA statistics in the
sense of Friedman and Fisher’s LSD posthoc tests were carried out while considering the
two performance criteria SLR and FT [54]. The related statistical results are summarized in
Tables 8–11. The performance of the reported parallel PMOMVO algorithms was analyzed
through the considered flight scenarios of Table 2. The Iman–Davenport extension of the
Friedman test provides the statistics FF1 = 38.424 and FF2 = 83.500 for the SLR and FT
criteria, respectively. For the seven algorithms (µ = 7) and five path planning scenarios
(σ = 5), the critical F-statistics value at 95% of significance and with µ− 1 and (µ− 1)(σ− 1)
degrees of freedom is equal to F6,24,0.05 = 2.5082 < FF1 < FF2. Therefore, the null hypothesis
is rejected and there are significant differences between the competing PMOMVO solvers.
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Table 6. Optimization results regarding the SLR criterion.

Algorithms
Scenarios

1 2 3 4 5

MOMVO

Best 1.0204 1.0271 1.0163 1.0069 1.0206
Mean 1.0321 1.0301 1.0273 1.0119 1.0378
Worst 1.0898 1.0710 1.0354 1.0175 1.0422
STD 0.3352 0.2982 0.1376 0.0893 0.2447

PMOMVO-2

Best 1.0094 1.0100 1.0164 1.0046 1.0205
Mean 1.0225 1.0214 1.0230 1.0085 1.0344
Worst 1.0344 1.0338 1.0293 1.0129 1.0376
STD 0.1423 0.1485 0.0913 0.0673 0.1985

PMOMVO-4

Best 1.0086 1.0081 1.0105 1.0033 1.0148
Mean 1.0180 1.0162 1.0153 1.0059 1.0205
Worst 1.0253 1.0254 1.0232 1.0099 1.0251
STD 0.1002 0.1042 0.0910 0.0563 0.1125
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Table 6. Cont.

Algorithms
Scenarios

1 2 3 4 5

PMOMVO-6

Best 1.0079 1.0072 1.0101 1.0027 1.0146
Mean 1.0160 1.0144 1.0162 1.0054 1.0202
Worst 1.0236 1.0223 1.0211 1.0086 1.0241
STD 0.0913 0.0912 0.0781 0.0496 0.1046

PMOMVO-8

Best 1.0074 1.0065 1.0084 1.0024 1.0145
Mean 1.0144 1.0131 1.0140 1.0045 1.0203
Worst 1.0219 1.0204 1.0175 1.0076 1.0240
STD 0.0858 0.0825 0.0661 0.0426 0.1036

PMOMVO-10

Best 1.0071 1.0065 1.0078 1.0022 1.0143
Mean 1.0149 1.0110 1.0128 1.0048 1.0199
Worst 1.0205 1.0191 1.0155 1.0070 1.0236
STD 0.0832 0.0759 0.0549 0.0414 0.1029

PMOMVO-12

Best 1.0065 1.0057 1.0067 1.0015 1.0141
Mean 1.0137 1.0121 1.0112 1.0051 1.0203
Worst 1.0197 1.0190 1.0141 1.0063 1.0235
STD 0.0765 0.0783 0.0526 0.0401 0.1032

Table 7. Optimization results regarding the FT (sec) criterion.

Algorithms
Scenarios

1 2 3 4 5

MOMVO

Best 451.6952 491.3265 736.3214 828.9541 898.2541
Mean 462.8974 504.5230 745.9852 839.8741 915.5800
Worst 471.2563 515.6932 752.6541 847.9852 930.6589
STD 8.7587 11.1254 8.2263 9.5062 10.2123

PMOMVO-2

Best 404.3652 435.6523 668.3621 748.8741 794.2654
Mean 412.6981 441.6321 674.9852 756.9612 801.5542
Worst 420.1234 447.6521 680.6311 761.6325 810.5461
STD 6.7824 5.9524 6.1874 6.4525 7.1256

PMOMVO-4

Best 398.8741 417.8541 642.9874 708.2145 751.2541
Mean 406.8741 425.6952 648.7412 714.8963 757.2601
Worst 411.6541 430.6541 654.6512 721.3241 765.2541
STD 6.3685 5.9214 5.8326 6.5552 6.0395

PMOMVO-6

Best 391.5231 413.1782 638.6321 704.6411 748.9852
Mean 397.8214 419.8523 643.9852 709.8521 753.9252
Worst 404.5241 424.3251 648.1243 714.9874 760.4123
STD 5.5208 5.0833 4.7214 5.1732 5.0820

PMOMVO-8

Best 398.8741 420.8745 643.6521 711.9881 757.1635
Mean 406.7741 426.8741 649.8521 717.9852 763.5603
Worst 412.8562 432.6523 656.3214 725.6521 771.2143
STD 6.0185 5.8742 6.1524 6.8701 5.5258

PMOMVO-10

Best 403.5241 425.8541 644.3251 714.9663 763.1423
Mean 414.6892 431.6541 651.6598 722.5871 768.6741
Worst 421.9852 438.5241 657.9874 729.9631 776.4512
STD 7.1979 6.3512 6.3576 7.1254 5.6589

PMOMVO-12

Best 407.6352 428.2441 649.8741 722.8810 778.5412
Mean 418.4756 435.9874 656.9871 729.8741 784.3506
Worst 425.7412 443.3652 662.8741 738.6954 792.1423
STD 8.1256 7.5287 6.5586 7.5253 6.5266
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Table 8. Friedman ranking of the mean performance: SLR criterion.

Scenarios
Ranks’ Sum.

Algorithms 1 2 3 4 5

MOMVO 7 7 7 7 7 35

PMOMVO-2 6 6 6 6 6 30

PMOMVO-4 5 5 4 5 5 24

PMOMVO-6 4 4 5 4 3 20

PMOMVO-8 2 3 3 1 4 13

PMOMVO-10 3 1 2 2 2 10

PMOMVO-12 1 2 1 3 1 8

Table 9. Friedman ranking of the mean performance: FT criterion.

Scenarios
Ranks’ Sum.

Algorithms 1 2 3 4 5

MOMVO 7 7 7 7 7 35

PMOMVO-2 4 6 6 6 6 28

PMOMVO-4 3 2 2 2 2 11

PMOMVO-6 1 1 1 1 1 5

PMOMVO-8 2 3 3 3 3 14

PMOMVO-10 5 4 4 4 4 21

PMOMVO-12 6 5 5 5 5 26

Table 10. Paired comparison of the PMOMVO algorithms: SLR criterion.

PMOMVO-2 PMOMVO-4 PMOMVO-6 PMOMVO-8 PMOMVO-10 PMOMVO-12

MOMVO 5 11 15 22 25 27
PMOMVO-2 - 6 10 17 20 22
PMOMVO-4 - - 4 11 14 16
PMOMVO-6 - - - 7 10 12
PMOMVO-8 - - - - 3 5
PMOMVO-10 - - - - - 2

Table 11. Paired comparison of the PMOMVO algorithms: FT criterion.

PMOMVO-2 PMOMVO-4 PMOMVO-6 PMOMVO-8 PMOMVO-10 PMOMVO-12

MOMVO 7 24 30 21 14 9
PMOMVO-2 - 17 23 14 7 2
PMOMVO-4 - - 6 3 10 15
PMOMVO-6 - - - 9 16 21
PMOMVO-8 - - - - 7 12
PMOMVO-10 - - - - - 5

Fisher’s LSD posthoc test was applied to find out which PMOMVO-based planning
algorithms differ from others [54]. Tables 10 and 11 summarize the paired comparisons of
all reported algorithms for the SLR and FT performance indices, respectively. The critical
values computed for the absolute difference of the rank sums of the two algorithms are
equal to 4.0124 for the SLR criterion and 2.7939 for the FT criterion, respectively. The bold
and underlined values indicate significant differences between the performances of the
competing PMOMVO algorithms. From these performed statistical tests and analyses as
well as the Friedman ranking of the proposed PMOMVO-based planners, one can observe
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that the variants with the highest number of CPU multicores slaves, i.e., PMOMVO-10 and
PMOMVO-12, outperform the standard MOMVO one as well as the other PMOMVO
algorithms with the lower number of slaves. However, in terms of processing time, one
can observe, according to the results of Table 7, that the PMOMVO-6 algorithm is the best
variant regarding the obtained low values of the FT metrics. Such a variant of the PMOMVO
algorithm can be retained for the rest of developments as the faster and more efficient
solution to the UAV path planning problem in the considered dynamic 3D environment
with moving obstacles.

Regarding the ability of the proposed technique to avoid collisions with moving obsta-
cles, other experiments were conducted. The usefulness of the proposed parallel processing
PMOMVO-based path planning approach was tested through three flight instances with
the same starting and destination positions and moving obstacle number but with different
positions and motion speeds of the dynamic threats, as shown in Table 12. The case of
design using the best compromise of computation time and low slaves in the multicore CPU
architecture, i.e., the PMOMVO-6 variant, was considered for the demonstrative results.

Table 12. Scenarios for the moving obstacle avoidance illustration.

Instance Starting Destination Moving Obstacles’ Position [m] Moving Obstacles’ Speed [m/s]

1 [0, 0, 0] [8, 8, 0] [5 5 1], [3 3 2], [5 3 1],
[1.5 2.5 1], [1 1 1.5]

[4 −2 1], [2 −2 −2], [4 2 2],
[1 1 1.5], [1 1 1]

2 [0, 0, 0] [8, 8, 0] [5 6 1], [3 3 1], [6 2 1],
[2 2 1], [1 2 1]

[1 2 1], [1 −1 −1], [1 2 2],
[1 1 1], [1 2 1]

3 [0, 0, 0] [8, 8, 0] [5 2 1], [3 1 1], [7 5 1],
[1.5 1.5 1], [1 3 1]

[2 −1 1], [1 2 −1], [1 −2 1],
[1 1 1], [1 −1 1]

Figures 9–11 present the simulation results of the planned paths over the different sce-
narios. Each situation gives the result of dynamic path planning where the UAV positions
are captured relatively at different times of the navigation process. These demonstrative
results show the collision-free abilities facing moving obstacles with different initial posi-
tions and motion speeds. Changing the position and motion speed of the moving obstacles
affects the 3D planned path, which further improves the effectiveness and superiority of
the proposed PMOMVO-based planning approach under moving obstacles.

To discuss the quality of the obtained solutions, additional simulation results were
carried out, as shown in Figure 12. The same flight scenario was considered, and four runs
of the PMOMVO-based planner were made. Based on this illustration, one can observe
that with the same conditions of a path planning scenario, i.e., same number of obstacles,
same start and destination positions, etc., the proposed PMOMVO-based planner as a
metaheuristics-based design approach gives a nonreproducible result but still a good
feasible solution for the addressed optimization problem. Among all these results, one
can choose the best in terms of the shortness of the flyable path and collision avoidance
capability regarding the moving obstacles. Through these comparable results and the high
reproducibility behavior of the proposed PMOMVO algorithm, argued by the obtained
small values of STD metrics, one can observe the minor and negligible deviations between
all these obtained results. So, the optimality of the obtained solution can neither be affirmed
nor checked theoretically, but such a solution remains quite feasible and of good quality.
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5.3. Computation Tims Analysis and Comparison

The performance of the proposed PMOMVO variants is discussed in terms of com-
putation time consumption. The algorithm’s execution time presents a key element for
any efficient collision-free path planner in a real-world application of UAV navigation.
First, it is important to note that the two main design parameters of the proposed parallel-
processing-based algorithm are the solution sharing rate and the number of slaves. Nu-
merical experimentations were carried out to show the effect of increasing the solution
sharing rate of slaves in each variant of the PMOMVO algorithm. Figures 13 and 14 show
the evolution of the computation time metric over the sharing rate configuration and slave
number variation, respectively. These demonstrative results highlight the superiority of
the proposed PMOMVO algorithms compared to the MOMVO standard one. Based on
these results, one can observe clearly the influence of the sharing rates and slave numbers
on the performance of the proposed planning strategy in terms of computation times and
execution fastness. As the number of slaves increases, the execution time decreases up to
a certain number of slaves and then gradually increases. The reason for the increase in
computation time for a high number of slaves is that the processing time related to the
affected computations is not enough, and the master–slave communications require more
time. In this study, one can conclude that the variant of the PMOMVO algorithm that
runs with a six-slave-based multicore CPU architecture remains the best solver in terms of
computing speed.

On the other hand, in order to further show the superiority of the proposed parallel
PMOMVO algorithm, a comparative study of the computation times was carried out, as de-
picted in Figure 15. Other extensively used multiobjective optimization algorithms, namely
the salp swarm algorithm (MSSA) [55], grey wolf optimizer (MOGWO) [56], nondominated
sorting genetic algorithm II (NSGA-II) [57], and particle swarm optimization (MOPSO) [58]
were considered for such a comparison. Retained as the most powerful variant of the
PMOMVO algorithm in terms of computation time, the PMOMVO-6 optimizer largely
outperformed all reported MSSA, MOGWO, MOPSO, and NSGA-II algorithms.
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5.4. Parameters Sensitivity Analysis

As for any path planning approach using unconventional and nonreproducible algo-
rithms, the influence of main control parameters should be analyzed and discussed. The
algorithm sensitivity is investigated through numerical experimentations performed with
randomly chosen sets of population size npop and iterations niter. The solution sharing rate
of PMOMVO slaves is set as l = 9. Tables 13 and 14 summarize the optimization results
obtained in Scenario 5 of Table 2 while considering path length (m) and flight time (s) as
performance metrics. From these demonstrative results, increasing the population cardinal-
ity and iterations does not have a significant effect on planning performance in terms of
obtained collision-free path lengths, unlike the flight time which is further increased.

Table 13. Path length variation under iterations and population size of problem (16).

Max-Iter. Pop. Size
Variants of PMOMVO Algorithm

MOMVO PMOMVO
-2

PMOMVO
-4

PMOMVO
-6

PMOMVO
-8

PMOMVO
-10

PMOMVO
-12

100
50 22.7612 22.6852 22.3812 22.3755 22.3712 22.3674 22.3665

100 22.7521 22.5720 22.3805 22.3721 22.3645 22.3514 22.3465
200 22.7132 22.5123 22.3751 22.3698 22.3612 22.3475 22.3308

200
50 22.7574 22.6584 22.3798 22.3562 22.3478 22.3452 22.3398

100 22.7414 22.4652 22.3674 22.3462 22.3365 22.3325 22.3274
200 22.6852 22.4036 22.3433 22.3241 22.3054 22.2974 22.2912

300
50 22.7354 22.6136 22.3569 22.3287 22.3165 22.3126 22.2975

100 22.7058 22.4352 22.3171 22.3084 22.2987 22.2841 22.2798
200 22.6123 22.3852 22.2893 22.2871 22.2846 22.2785 22.2672

Table 14. Flight time variation under iterations and population size of problem (16).

Max-Iter. Pop. Size
Variants of PMOMVO Algorithm

MOMVO PMOMVO
-2

PMOMVO
-4

PMOMVO
-6

PMOMVO
-8

PMOMVO
-10

PMOMVO
-12

100
50 915.5800 801.5542 757.2601 753.9252 763.5603 768.6741 784.3506

100 1178.8686 1049.3154 860.4351 836.8540 844.4646 852.6669 866.7345
200 1772.3200 1214.5412 889.7868 856.2145 849.5713 857.1243 871.3265

200
50 1230.2829 963.9214 837.9456 808.5869 819.6385 825.8947 830.4514

100 1849.4532 1322.0424 1024.7202 972.8741 958.6206 961.8273 977.5868
200 3031.1316 1765.5321 1187.2541 1056.4123 1016.5471 992.2146 1031.2314

300
50 1456.9254 1134.0631 938.2590 882.8192 870.1821 881.6050 892.7623

100 2286.0306 1572.8265 1181.4831 1098.2651 1077.8859 989.3251 998.2514
200 3937.7016 2394.2541 1611.0361 1388.4576 1280.5775 1262.2143 1154.2651

Roughly, the superiority of the improved MOMVO algorithms over the classical
MOMVO one is demonstrated with a larger population size and higher number of iterations.
Obviously, with the increase in the computation time, which is due to the increase in the
number of iterations and size of the population, an increase in the number of slaves is
necessary to better manage the complexity of the dynamic path planning task. The effects of
these two main control parameters of PMOMVO algorithms are further illustrated as shown
in Figures 16 and 17. Based on these experimentations and results, one can consider that the
proposed parallelization-based improvements of the classical MOMVO algorithm perform
better for complex path planning problems that require significant computation time.
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5.5. Comparison with Other Metaheuristics Algorithms

To analyze the performance of the proposed PMOMVO algorithms, mainly the
PMOMVO-6 variant, in terms of path length (SLR) and flight time (FT) performance,
the multiobjective metaheuristics algorithms MSSA, MOGWO, NSGA-II, and MOPSO
already retained for the comparison of computation times were reconsidered again. These
optimizers run with the following control parameters:

− MSSA [55]: without control parameters (parameters-free algorithm).
− MOGWO [56]: grid inflation 0.1, number of grids per dimension 10, leader selection

pressure 4, and extra repository member selection pressure 2.
− NSGA-II [57]: crossover probability 0.7, mutation probability 0.4, and mutation rate 0.02.
− MOPSO [58]: social and cognitive parameters 2, grid inflation 0.1, leader selection

pressure parameter 2, and number of grids per dimension 7.

The common control parameters of the compared multiobjective algorithms were set
as niter = 100 and npop = 50. All optimizers were run independently 20 times according to
Scenario 5 of the path planning with moving obstacles given in Table 2. The experimentation
results of the comparison are summarized in Table 15. Based on these demonstrative results,
one can observe that the proposed parallel processing PMOMVO-6 variant outperformed
all reported algorithms with lower values for SLR (m) and FT (sec) metrics. The STD
statistics were minimal in the case of optimization with the PMOMVO-6 algorithm. The
superiority of such a parallel optimizer is further improved in terms of solution quality,
reproducibility capacity, and computational time fastness.

Table 15. Performance comparison of PMOMVO algorithm with other metaheuristics.

Algorithms
Performance Criteria

Path Length SLR (m) Flight Time FT (s)

MSSA

Best 22.721 837.40

Mean 23.391 844.29

Worst 24.414 856.35

STD 0.1587 6.7255

MOGWO

Best 23.654 1154.2

Mean 24.980 1248.7

Worst 25.547 1549.7

STD 0.2342 7.4924

NSGA-II

Best 21.204 8150.1

Mean 22.865 8247.3

Worst 23.481 8892.2

STD 0.2871 8.2456

MOPSO

Best 32.987 3194.7

Mean 35.281 3398.5

Worst 37.242 4009.2

STD 0.3733 6.62

PMOMVO-6

Best 22.251 748.9852

Mean 22.374 753.9252

Worst 22.4602 760.4123

STD 0.1046 5.0820



Drones 2022, 6, 385 31 of 34

6. Conclusions

In this paper, a new parallel processing variant of the multiobjective multiverse op-
timizer (PMOMVO) based on a master–slave multi-core CPU model has been proposed
and successfully applied to solve the UAV path planning problem in a dynamic envi-
ronment with moving obstacles. To overcome the limits and drawbacks of the standard
MOMVO algorithms, particularly in terms of prohibitive computation time consumption,
an efficient processing parallelization based on a master–slave CPU multicore architecture
was introduced and successfully implemented. The reduction in computation time of
the parallel PMOMVO algorithm contributed to the effectiveness of the proposed path
planning strategy in terms of avoiding collisions with moving obstacles and narrow pass
zones. Such a dynamic path planning problem was reformulated based on new ideas of
collision avoidance with a moving body in a 3D space. The drone became able to respect
the resulting dynamic constraints of navigation and processing time consumption and,
consequently, reacted quickly to such changes in the environment.

According to the available cores of a given hardware CPU architecture and the number
of partitioned MOMVO subpopulations, six variants of the parallel algorithm denoted
as PMOMVO-2, PMOMVO-4, PMOMVO-6, PMOMVO-8, PMOMVO-10, and PMOMVO-
12 were designed. Each slave of the proposed multicore CPU architecture was implemented
to evolve the allocated subpopulation by applying a MOMVO algorithm and seding the
best-selected solutions after each cycle of evolution to the master. The master received the
solutions and sent to each slave the Pareto nondominated ones for a new cycle. A modified
TOPSIS technique was used to select solutions in the sense of Pareto. In this study, one can
observe that the variant of the PMOMVO algorithm running with six slaves, i.e., PMOMVO-
6, outperformed all other compared algorithms in terms of computation time performance
and solution quality. Demonstrative results and nonparametric ANOVA statistical analyses
based on Friedman’s and Fisher’s LSD posthoc tests show the effectiveness and superiority
of the proposed parallel processing PMOMVO algorithms for UAV path planning with
collision avoidance problems in dynamic 3D environments.

Future work will focus firstly on the comparison of the proposed parallel processing
PMOMVO-based path planning approach with introduced enhancements in terms of com-
putation time reduction and moving threats collision avoidance with other popular path
planning techniques, such as those using the concepts of rapidly exploding random tree
(RRT). Secondly, the real-world implementation of the proposed metaheuristics-based path
planning algorithm will be investigated within an indoor application using the laboratory-
available Parrot AR. Drone 2.0 prototype.
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