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Abstract: Autonomous Unmanned Aerial Vehicles (UAV) for planetary exploration missions require
increased onboard mission-planning and decision-making capabilities to access full operational po-
tential in remote environments (e.g., Antarctica, Mars or Titan). However, the uncertainty introduced
by the environment and the limitation of available sensors has presented challenges for planning
such missions. Partially Observable Markov Decision Processes (POMDPs) are commonly used to
enable decision-making and mission-planning processes that account for environmental, perceptional
(extrinsic) and actuation (intrinsics) uncertainty. Here, we propose the UAV4PE framework, a testing
framework for autonomous UAV missions using POMDP formulations. This framework integrates
modular components for simulation, emulation, UAV guidance, navigation and mission planning.
State-of-the-art tools such as python, C++, ROS, PX4 and JuliaPOMDP are employed by the frame-
work, and we used python data-science libraries for the analysis of the experimental results. The
source code and the experiment data are included in the UAV4PE framework. The POMDP formula-
tion proposed here was able to plan and command a UAV-based planetary exploration mission in
simulation, emulation and real-world experiments. The experiments evaluated key indicators such as
the mission success rate, the surface area explored and the number of commands (actions) executed.
We also discuss future work aimed at improving the UAV4PE framework, and the autonomous UAV
mission planning formulation for planetary exploration.

Keywords: autonomous mission planning; planetary exploration; unmanned aerial vehicle (UAV);
partially observable Markov decision process (POMDP); reinforcement learning (RL); robot operating
system (ROS); PX4 autopilot

1. Introduction

The use of unmanned aerial vehicles (UAVs), or drones, continues to spread across
diverse fields such as ecology, geology, environmental protection and planetary explo-
ration [1–5]. Planetary exploration is also an area of growth, with the Mars Helicopter
Ingenuity (see Figure 1), exceeding remarkable performance goals. At the time of writ-
ing, Ingenuity has completed over 34 successful flights [6], providing key foundational
knowledge in using UAVs for planetary exploration.

Originally developed as a technology demonstration, Ingenuity has endured much
longer than baseline and increased the efficiency of the National Aeronautics and Space
Administration (NASA)’s flagship Perseverance rover mission. Perseverance was designed
to study habitability and biosignature preservation in rocks in Mars’ Jezero crater, to drill
core samples from them, and prepare the samples to be returned to Earth by future mis-
sions [7–9]. Ingenuity’s remarkable performance in scouting locations for Perseverance’s

Drones 2022, 6, 391. https://doi.org/10.3390/drones6120391 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6120391
https://doi.org/10.3390/drones6120391
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-0349-0880
https://orcid.org/0000-0003-1821-1263
https://orcid.org/0000-0002-6780-2425
https://orcid.org/0000-0001-8982-496X
https://orcid.org/0000-0002-4342-3682
https://doi.org/10.3390/drones6120391
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6120391?type=check_update&version=2


Drones 2022, 6, 391 2 of 26

main mission gave NASA the confidence to include two Ingenuity-like helicopters to sup-
port the Mars Sample Return (MSR) program in the years ahead [10], further consolidating
the importance of UAVs for planetary exploration tasks (See Figure 2).

Figure 1. Ingenuity helicopter on Mars during sol 46. Credits: NASA/JPL.

(a) (b) (c)

Figure 2. Future UAVs for planetary exploration. (a) Dragonfly, a UAV for Titan. Credits: NASA/APL.
(b) Mars Science Helicopter (MSH) concept. Credits: NASA/JPL-Caltech. (c) Mars sample return
helicopter proposal. Credits: NASA/JPL-Caltech.

One important objective of mission planning for Mars exploration is the search for
biosignatures. Biosignatures are morphological, mineral, chemical, or isotopic traces of
organisms preserved in the rock record [11]. UAVs can help accelerate the search for
biosignatures at different scales, with textural biosignatures being the most promising for
near-future UAV-based applications [12]. However, the literature on autonomous UAVs
capable of making real-time decisions towards the detection of biosignatures is scarce [5].

The need for higher levels of UAV autonomy for planetary exploration is increasing,
especially with the proliferation of more UAV missions in complex scenarios such as
NASA’s Dragonfly mission to Titan, with over 2 hours of communication delay. Tasks
such as autonomous waypoint surveying or navigation strategies that preserve safety
margins have the potential to accelerate the deployment of UAVs for planetary exploration
scenarios. But mission-planning and navigation strategies for remote planetary exploration
is an emerging field of research, with limited availability of frameworks with which to
perform studies.

Ingenuity validated the value and significance of UAV platforms for planetary ex-
ploration missions. The helicopter’s capability to accelerate planetary exploration was
demonstrated after moving from a technology demonstration phase to an operational
phase [13,14]. NASA Scientists reported multiple benefits of having the Ingenuity heli-
copter available to them, including the capability to acquire contextual data in the area
surrounding the rover’s workspace, which is critical to the interpretation of the geological
features studied in each location visited by the wheeled rover [15].

Scouting further afield is the main application of Ingenuity, and these scouting mis-
sions are strictly timed and overseen using state machines and waypoints [15]. Ingenuity
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has flight-level autonomy and can execute a mission autonomously with close monitoring
from Earth. In this scenario, the mission planners are humans on Earth that pick the
waypoints and commands that Ingenuity will execute autonomously, which is necessary
due to the long latency associated with communications between Earth and Mars (over
7 min).

Future UAV missions may be designed to scout or assist a Mars rover in different ways,
such as localisation enhancement by context images [16], target identification, and sample
collection [10]. Other UAV missions will aim to conduct scientific experiments without a
wheeled companion, for example, NASA’s Dragonfly mission to Titan [9]. All such UAV
applications will require successful autonomous mission planning, take-off, navigation,
and landing.

The science yield of UAV missions such as Dragonfly can be increased by imple-
menting uncertainty-tolerant methods to deal with environmental and internal system
uncertainty involved in UAV mission planning. Several techniques to deal with mission
planning have been proposed and are summarised in [17]. However, complete UAV mis-
sion planning implementations for planetary exploration are scarce, particularly those
focused on uncertainties. Additionally, the authors are not aware of implementations of
tools to test, validate and benchmark UAV autonomous mission planning formulations for
planetary exploration.

1.1. UAV Autonomous Mission Planning for Planetary Exploration

Through the advancement of autonomous mission planning for UAVs, we aim to
leverage the capabilities of UAVs and onboard sensors to accomplish more prolonged
and more complex missions. A wide range of applications, such as broader-scale terrain
exploration and more-targeted, faster and lower-cost data acquisition, are some of the
main prospects. Previous studies have focused on techniques to improve autonomy at
different levels in multiple areas such as the overall mission architecture [17–19], naviga-
tion [20,21], target identification [22,23], and flight [2,8]. Also of relevance are techniques
developed for mission planning and navigation in Global Positioning System (GPS)-denied
environments [24–26], as well as the use of Partially Observable Markov Decision Process
(POMDP) [27].

POMDP formulations help with decision-making under uncertainty in the system
behaviour (actions) and the environment (observations). UAV navigation [28] has benefited
from POMDP approaches. However, mission planning can also be addressed with this ap-
proach [29]. One of the main challenges of using POMDP techniques is the computational
resources required to generate an optimal solution that can be used online. To address
this problem, online solvers have been developed since the introduction of the method by
Kaelbling et al. [27] in 1998. Since then, POMDP has shown to be a robust approach for
modelling a system when there is uncertainty in the actions and observations [25]. Another
important challenge of using POMDP in real-world applications is the development of so-
lutions (called Policies) that adopt safe and conservative behaviours. The trade-off between
the exploration of actions and exploitation of rewards demands significant attention due to
its implications on the safe operation of a system [30].

Our previous work formulated a planetary exploration mission planning problem us-
ing POMDP [31]. The proposed formulation was initially implemented only by simulation
in [24]. The work presented in this paper extends and improves the previous implementa-
tion by introducing a realistic simulation scenario using Gazebo (http://gazebosim.org/
(accessed on 10 November 2022 )) and deployment on a real platform using the Robotic
Operating System (ROS) (https://www.ros.org/ (accessed on 10 November 2022)) and
PX4 Autopilot (https://px4.io/ (accessed on 10 November 2022 )). The POMDP prob-
lem formulation was also simplified, and further tests of the formulation parameters are
available. To address the paucity of widely available open-source frameworks to test and
experiment with different mission-planning and navigation strategy configurations, we
present here UAV4PE, an open-source framework that can be modified and extended. The

http://gazebosim.org/
https://www.ros.org/
https://px4.io/
https://github.com/qutas/UAV4PE
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proposed framework provides an option to abstract the complexity of the UAV systems
and simulation environments, combining efforts to consolidate and sustain a UAV plan-
etary exploration framework that closes the gap between simulation, emulation and the
real world.

1.2. Frameworks for UAV Autonomous Planetary Exploration

Multiple frameworks are proposed in the literature for relevant applications in the
planetary exploration domain. Vanegas et al. [20] presented a framework for UAV naviga-
tion in GPS-Denied environments, where a POMDP-based probabilistic motion planning
code is proposed and validated in simulation and with real experiments. Walker et al. [32]
proposed a framework that uses multiple UAV exploration for target-finding in GPS-denied
and partially observable environments. This framework focused on simulation and mod-
elling the exploration planning problem as a decentralised multi-agent graph search solved
using a modern POMDP solver. Sandino et al. [23] introduced a framework for navigation
and object detection in cluttered indoor environments, exposing the results in simulated
and real-world scenarios.

F-Prime (https://github.com/nasa/fprime (accessed on 10 November 2022)) is the
current open-source firmware used in Ingenuity [33]. This framework facilitates the im-
plementation of modular components, which are designed to be compact, reusable and
portable, and capable of being compiled and executed in diverse hardware architectures,
including ARM, X86, and others. The F-Prime framework also facilitates abstraction from
the operative system, providing options for dealing with threads, synchronization, files,
and time. The F-Prime firmware is implemented in C++, which places it close to the hard-
ware resources, facilitating efficient implementations and deployments on final hardware,
despite bearing complex and often slower development and testing procedures.

Maxim et al. [34] presented the POMDP.jl framework for sequential decision-making
under uncertainty. This framework uses the Julia (https://julialang.org/ (accessed on
10 November 2022)) programming language, which is growing in popularity due to its
fast, composable, general, dynamic, reproducible and open-source philosophy. POMDP.jl
aims to be a common programming vocabulary for expressing problems as MDPs and
POMDP, writing solver software, and running simulations efficiently (https://github.
com/JuliaPOMDP/POMDPs.jl (accessed on 10 November 2022)). Klimenko et al. [35]
prosed TAPIR (https://github.com/rdl-algorithm/tapir (accessed on 10 November 2022)),
a software toolkit for approximating and adapting POMDP solutions online [35]. This
solver has been widely used for online motion planning and target finding. It also includes
standard benchmark tests, including rock sampling, tag, homecare and others, that serve as
templates to be extended. However, the above-mentioned frameworks fail to address the
need for benchmarks and frameworks to understand UAV autonomous mission planning
for planetary exploration scenarios.

2. Background

The essential tools on which the UAV4PE framework rely are introduced and explained
in this section, including ROS, the UAV Flight stack used, and the POMDP.jl library.

2.1. ROS

The Robot Operating System (ROS) was chosen as the meta-operating system for the
UAV4PE Framework. ROS provides access to hardware abstractions, low-level device
control, packages, nodes and communication management. ROS also offers standard and
well know interfaces for the cameras, operating systems, and flight controller (Autopilot)
systems used in this work. Note that each version of ROS is matched with a version of
Ubuntu; in this work, we use ROS Noetic version, which was installed in Ubuntu Mate
20.04. Ubuntu MATE was installed in a Raspberry Pi 4 model B, using a microSD card. This
selection was performed based on multiple years of experience with previous embedded
onboard computers and versions of ROS and Ubuntu.

https://github.com/nasa/fprime
https://julialang.org/
https://github.com/JuliaPOMDP/POMDPs.jl
https://github.com/JuliaPOMDP/POMDPs.jl
https://github.com/rdl-algorithm/tapir
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ROS documentation is extensive and detailed; this section will introduce the main key
elements to clarify the architecture used in the UAV4PE framework. Further documentation
and tutorials about ROS can be extended on ROS’s official websites (https://wiki.ros.org/
(accessed on 1 Dex 2022 )).

The ROS concepts of packages and nodes are essential for the UAV4PE Framework.
These concepts provide modularity and interoperability across the framework and its
components. The framework philosophy separates simulation, emulation, mission plan-
ning, navigation, vision, experiments, sensing, and hardware scopes as the main packages.
Each package can include a set of nodes running a modular task programmed in Python
or C++. Additionally, each package is set as an independent code repository, allowing
individual module changes to be tracked independently. This folder structure follows the
ROS package architecture. Each package can contain various subfolders for source files or
scripts known as nodes, ROS launch files, models, custom ROS message type definitions
and configurations.

The executable scripts within the packages are called Nodes and benefit from the
ROS communication backend following the subscriber/publisher philosophy. Nodes can
publish messages to information channels called Topics in the ROS communication backend;
other nodes can access these messages when subscribing to topics. Note that each node can
subscribe to and publish various topics and message types.

2.2. UAV Flight Stack

The UAV is controlled by a Pixracer flight controller module using PX4, running
the firmware version FMUv4 1.11.3. The PX4 autopilot presents multiple benefits to the
framework. It provides a highly customisable flight controller stack, compatible with stan-
dard UAV communication interfaces such as MavLink (https://mavlink.io/en/ (accessed
on 10 November 2022)). PX4 firmware also supports a wide range of flight controllers
and sensor integrations. It can also be integrated with tools such as QGroundControl
(https://docs.qgroundcontrol.com/master/en/getting_started/quick_start.html (accessed
on 10 November 2022)), which is also open source and facilitates the visualisation of
telemetry information, images, parameter configuration, and sensor calibration; and is
available in most operative systems, including Android and iOS. The PX4-based autopilot
is commanded using its offboard functionality, where a companion computer is connected
through serial communication.

In this work, we also use the Queensland University of Technology Aerospace System
(QUTAS) GitHub (https://github.com/qutas (accessed on 10 November 2022)), which
hosts a collection of open-sourced projects. This work uses multiple QUTAS projects to
control the small UAV platform utilised in real-world experiments. It also provides tools to
simulate UAVs, providing quick testing in virtual cost-free environments with sufficient
proximity to real-world results.

2.3. POMDPs and the POMDP.jl Library

A POMDP is defined by the tuple 〈S, A, O, T,Z , R, b0, γ〉, where S, A, O are a finite
set of UAV states, actions, and observations, respectively [36]. Whenever the agent in
POMDP theory or UAV in this case, takes an action a ∈ A from a state s ∈ S, the transition
probability to a new state s′ ∈ S is defined by a transition function T(s, a, s′) = P(s′ | s, a).

With a taken action a ∈ A, the UAV receives an observation o ∈ O encoded by
the observation function Z(s′, a, o) = P(o | s′, a). Every decision chain is then costed
with a reward r, calculated using the reward function R(a, s). Considering that data
gathering by UAV systems is imperfect, partial observability about the state of the UAV
itself is always present in real-world applications. As a result, a POMDP uses probability
distributions over the system states to model the uncertainty of its observed states. This
modelling is denominated the belief b(H) = P[s1 | H], · · · ,P[sn | H], where H is the
history of actions, observations and rewards the UAV has accumulated until a time step
t, or H = a0, o1, r1, · · · , at−1, ot, rt. The planning policy π of the UAV is represented by

https://wiki.ros.org/
https://mavlink.io/en/
https://docs.qgroundcontrol.com/master/en/getting_started/quick_start.html
https://github.com/qutas
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mapping belief states to actions π : b→ A. The POMDP formulation solution is the optimal
policy π∗, calculated as follows:

π∗ := arg max
π

(
E
[

∞

∑
t=0

γtR(St, π(bt))

])
, (1)

where γ ∈ [0, 1] is the discount factor and defines the relative importance of immediate
rewards compared to long-term rewards. A given POMDP solver starts planning from an
initial belief b0, which is usually defined with the initial conditions (and assumptions) of
the flight mission using probabilistic distributions.

Multiple libraries and solver implementations of POMDP solvers are available in
the literature [5]. POMDP.jl is used in this framework due to its flexibility and active
community. Additionally, the library provides many MDP and POMDP offline and online
solvers. In this work, the POMCP solver [30], supplied as the basicPOMCP.jl (https:
//github.com/JuliaPOMDP/BasicPOMCP.jl (accessed on 10 November 2022)), was used
to generate a policy solution online. The policy was used to choose the following action
command, so the action maximises the mission planning expected reward.

In previous work, Serna et al. [31] formulated a high-level approach for the UAV
mission planning problem. The formulation in this work is a simplified version of the one
proposed by Serna et al. [31], as illustrated in Figure 3. The main differences include the
removal of the crashed state. Additionally, the consistency (externals related to surface
type and environment) and integrity (internals related to battery levels and system health)
components were omitted in this work to increase the framework’s simplicity. The pro-
posed simplification allowed for the study and integration of the framework components,
providing a concise starting point that can be scrutinised more manageably.

Figure 3. UAV4PE framework architecture, where the Consistency, Integrity, and Mission Planner
block were simplified.

3. Framework Implementation

The UAV4PE framework is based on commonly used tools, including Linux (Ubuntu
20.04), ROS, PX4 autopilot, and the Julia POMDP Library, POMDP.jl [34]. The combination
of these tools provides a promising framework for further investigation into the autonomy
of UAVs for planetary exploration. This work also validates the framework’s applicability
in real-world platforms using embedded computers such as Raspberry Pi. In addition, the
framework offers tools to automatically run and report experiments, contributing to the
quick and safe development of new navigation and mission planning formulations that
can be deployed quickly on real-world platforms based on PX4-compatible autopilots. The
UAV4PE framework includes standard metrics that can be used to evaluate, benchmark
and compare the performance of future formulations and scenarios.

https://github.com/JuliaPOMDP/BasicPOMCP.jl
https://github.com/JuliaPOMDP/BasicPOMCP.jl
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The POMDP model formulation introduced in this work reduces the observations
from the system proposed in [31] to the UAV state obtained by the navigation system.
Figure 3 presents the simplification, where the Integrity block is reduced to a battery
monitoring function inside the navigation module to command emergency landing if
the available power drops below 10%. However, this is not included in the POMDP
formulation observations.

The Consistency block reflects the system state and is the main and only observation
used on the POMDP solver at each timestep. The timestep was set to ten seconds, where
the POMDP solver optimizes the policy and informs the next action a ∈ A that maximises
the reward. This timestep value also ensures the navigation module has enough time to
execute the commanded actions.

The biosignatures detection module implemented in this work can detect ArUco
markers targets and surface types (colour) red and green. However, the surface type
detector is not included as an observation of the POMDP formulation. The mission planning
block results are visualised using Tmux (https://github.com/tmux/tmux/wiki (accessed
on 10 November 2022)) and SSH (https://www.ssh.com/academy/ssh/openssh (accessed
on 10 November 2022)), Rviz (http://wiki.ros.org/rviz (accessed on 10 November 2022))
and RQT (http://wiki.ros.org/rqt (accessed on 10 November 2022)) programs running
in the Ground Control System (GCS) using the ground control computer (Raspberry Pi).
The mission planning node implements the UAV planetary exploration mission planner
problem formulated as a POMDP, as presented in Section 3.1, and solved online using the
basicPOMCP solver from the POMDP.jl framework [35].

The Robot Operating System (ROS) was used to connect all the framework modules.
The ROS software architecture is illustrated in Figure 4, depicting the main nodes, packages
and launch files used to run experiments, either in real-world, emulation or simulation
scenarios. The items in red represent the hardware components required only in real-
world tests. This facilitates testing without the need for real hardware and facilitates the
integration of additional hardware and software elements.

Figure 4. ROS architecture implemented. Simulation components are in blue, emulation components
are in green, and hardware components are in red. Some components from the simulation can be
used in emulation and when real-world hardware tests are conducted. The black arrows indicate
connection dependency, while the blue arrow indicates that the pointed component is executed when
the source component is executed. Please check the GitHub repository (qutas/UAV4PE) for future
updates in this diagram.

https://github.com/tmux/tmux/wiki
https://www.ssh.com/academy/ssh/openssh
http://wiki.ros.org/rviz
http://wiki.ros.org/rqt
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3.1. UAV4PE_Mission_Planner

The UAV4PE_mission_planner package contains a high-level POMDP mission plan-
ning formulation and POMDP online solver. The formulation is solved online using the
BasicPOMCP solver from the POMDP.jl library, interfaced with ROS using RobotOS.jl
(https://jdlangs.github.io/RobotOS.jl/latest/ (accessed on 10 November 2022)). The ba-
sicPOMCP solver runs in a single thread of an AMD® Ryzen 5 2600 six-core processor CPU
with 16 GB of RAM and an NVIDIA GP1060 [GeForce GTX 1060 5GB] during simulations
and emulations. In real-world experiments, the solver runs using a single thread in a
Raspberry Pi 4 model B.

The POMDP formulation is designed to plan the essential UAV mission steps required
for a UAV planetary exploration and target detection mission, as illustrated in Figure 5.
The UAV’s essential mission steps are modelled as the system’s states to depict what tasks
the UAV is executing at any time. Each POMDP formulation element is presented and
described in detail in the following sections.

3.1.1. States (St)

In this work, each state st ∈ S of the UAV is modelled as a discrete number between
0 and 4 and is used as follows: (0) Landed, (1) Hovering, (2) Horizontal exploration,
(3) Vertical inspection, and (4) Landing. Figure 5 illustrates the states with the action with
the highest probability of moving the UAV to that state.

Figure 5. UAV in a planetary exploration mission. The formulated system States are (1) Landed;
(2) Hovering; (3) Horizontal exploration; (4) Vertical inspection, and (5) Landing. The arrows indicate
the action with the highest probability of moving the UAV to that state. Green areas are safe for
landing, while red areas are dangerous to land over.

3.1.2. Observations (O)

The main observation used for the POMDP formulation is the mission’s current State
(St), which is partially observable due to the intrinsic complexity of the tools involved in the
navigation and control of the UAV. The uncertainty in the observation was modelled using
a sparse categorical probability distribution. The distribution specifies the probabilities of
observing a state st ∈ S for a given action a(t) ∈ A. Table 1 present the probabilities used.

https://jdlangs.github.io/RobotOS.jl/latest/
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Table 1. Observation probabilities values for all the possible states Stt+1 after selecting an action at.

Observation Probability for State Stt+1

Action
(a(t) ∈ A)

Landed Hovering Exploring Inspecting Landing

Stay on ground 0.9 0.03 0.01 0.01 0.05
Hover 0.05 0.9 0.01 0.01 0.03

Explore 0.01 0.05 0.9 0.01 0.03
Inspect 0.01 0.05 0.01 0.9 0.03
Land 0.05 0.03 0.01 0.01 0.9

3.1.3. Actions (A)

The proposed actions model the minimum steps required to plan and perform a UAV
mission to explore a planetary surface while collecting detailed data on places of interest
during the exploration. The finite set of actions a ∈ A is defined as follows:

• Stay On the Ground (a = 0): If this action is commanded from a different state to
Landed, the navigation module performs a landing action. This action incorporates
charging, processing, and idle tasks.

• Hover (a = 1): It is a transition action between Take-off, Explore, Inspect and Landing
actions. If commanded from the Landed state, a take-off action is attempted; otherwise,
this action holds the position of the UAV.

• Horizontal search or Explore (a = 2): The Explore action commands the UAV to
explore, following which it will change its airborne horizontal position based on the
navigation strategy, with a preference for unexplored regions. By performing this
action, the UAV aims to explore the map cell by cell.

• Vertical descend or Inspect (a = 3): The Inspect action commands the UAV to descend
and collect surface data at a higher resolution.

• Land (a = 4): This action is the last step to satisfy a successful flight and commands
the UAV to navigate to the closest safe landing region and land there.

3.1.4. Transition Function (T)

The transition function generates a future state Stt+1 probability or belief based on
a previous state Stt and an action at using a sparse categorical probability distribution,
explicitly indicating the probability of transition between states after choosing an action
(see Figure 6). The transition probabilities are detailed in Table 2.

Figure 6. Transition function representation. The circles represent the modelled states, and the arrows
indicate actions. The actions connect the initial and potential subsequent states.
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Table 2. Transition probabilities values for all the possible states Stt+1 after selecting an action at.

Transition probability to State Stt+1

Action (a(t) ∈ A) Landed Hovering Exploring Inspecting Landing

Stay on ground 0.9 0.03 0.01 0.01 0.05
Hover 0.05 0.9 0.01 0.01 0.03

Explore 0.01 0.05 0.9 0.01 0.03
Inspect 0.01 0.05 0.01 0.9 0.03
Land 0.05 0.03 0.01 0.01 0.9

3.1.5. Reward Function (R)

The reward function is a parameter list that rewards each set (state Stt and action
at). The reward function uses conditional if statements based on the status of the state
Stt to apply the respective rewards, as presented in Algorithm 1. The reward function
intends to maximise the time spent inspecting or exploring and addresses the cost of
executing a mission, taxing the take-off, hovering, and landing actions. To accomplish
that maximisation, positive/big reward values were used for the inspection and explored
rewards, while negative/small values were used for other rewards.

Algorithm 1 Reward function R for each state during the UAV mission.

1: if StLanded then
2: if aStayOnGround then
3: return rLanded . UAV landed reward
4: else if aLand then
5: return rLanding . UAV landing reward
6: end if
7: else if sHovering then
8: return rHovering . UAV hovering reward
9: else if sExploring then

10: return rExploring . UAV exploring reward
11: else if sInspecting then
12: return rInspecting . UAV inspecting reward
13: else if sLanding then
14: return rLanding
15: else
16: return rillegalMovePenalty . Default reward
17: end if

3.2. UAV4PE_Environments

This package contains the 3D models required for the gazebo emulation environment.
Furthermore, the UAV4PE_environments package contains launch files to launch the
multiple components required in simulation and emulation, as illustrated in Figure 4.

3.3. Github.com/Qutas

Multiple packages from the Queensland University of Technology Aerospace Systems
(QUTAS) GitHub were used. The spar_uavasr.launch file from the qutas/spar package was
used to run the different nodes required for the simulation environment. The environ-
ment.launch file from the qutas/qutas_lab_450 package was used to activate the connection
with the motion tracking system in real-world tests and to activate reference frames and
safety areas for the UAV motion in simulation, emulation and real-world experiments.
Further details can be found in each package repository.

3.4. UAV4PE_Navigation

The UAV4PE_navigation package contains multiple scripts, including a navigation
node launched using load_navigation.launch integrated with the POMDP formulation, as dis-
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cussed in Section 3.1. This navigation node contains a navigation strategy that commands
the UAV to the next available and unexplored cell using the following steps: (1) north or
up, (2) west or left, (3) south or down, and (4) east or right. If none of the contiguous cells is
explorable due to obstacles or already explored cells, the same strategy is applied to n cells:
(1) n*cells up, (2) n*cells left, (3) n*cells down, and (4) n*cells right. Additionally, when
there are no unexplored cells in the surroundings of the UAV, a navigation action towards
the next closest valid cell is taken, moving the UAV towards the next available cell on the
map from left to right, and top to bottom. Each test starts with the UAV in the same safe
cell [8, 8], in the centre of the map. The navigation strategy node allows for the exploration
of adjacent cells while studying the POMDP formulation results, making the navigation
steps easily traceable.

3.5. UAV4PE_Vision

This package includes vision-processing scripts based on OpenCV that can be used
for emulation and simulation to detect the surface type (red or green) and ArUco markers.
During emulation experiments, the images are generated using the Gazebo camera plug-
ging, which creates a camera view attached to the drone. In real-world experiments, an
OAK-D lite camera was used.

3.6. UAV4PE_Experiments

This package contains multiple scripts to run experiments and plot the results gener-
ated. Simulation and emulation experiments can be run using the script run_experiments.py
contained in this package. Each experiment requires a configuration file that stores the
minimum details required to replicate the experiments, including POMDP formulation
parameters, solver parameters, and maps used. The configuration files are saved using a
unique configuration number incremented for each new configuration, e.g., conf1.

The results from each experiment include (1) the navigation logs generated by the
UAV4PE_navigation package and (2) the mission planning information in the form of
decision trees generated by the UAV4PE_mission_planner package. The results of each ex-
periment are stored using the local machine timestamp, which is stored using the following
convention: UAV4PE_experiments/data/configuration/timestamp/map_name. The experimental
results in the data folder facilitate the generation of multiple results plots, as presented
in the results in Section 6. Experiments using real-world hardware generated data using
the same folder conventions as simulation and emulation. However, the execution of the
experiments in real hardware required careful execution of the launch scripts presented in
Figure 4 to enhance safety.

3.7. UAV4PE_Hardware

This package lists and references compatible hardware components that can be used
with the framework. The components used in this work are detailed in Section 4.

4. System Architecture

The previous literature reviews several design concepts for space exploration using
UAVs [7]. However, this work selected a low-cost and commercially off-the-shelf platform
as the hardware platform. This facilitates real testing of the framework and UAV platform
without requiring sophisticated extraterrestrial testing facilities.

The selected system is a small (under 2 kg) UAV system, composed of an S300 frame,
with brushless motors (1400 kv) and 20 Amps Electronic Speed Controllers (ESC), piloted
by an mRo PixRacer R15 flight controller, and running PX4 firmware, as described in
Figure 7. A Luxonis OAK-D lite fixed-focus camera sensor is used to collect surface
images and detect targets and surface types. The fixed focus variation was selected for its
performance in high-vibration applications, removing the need for damping systems or
gimbals. A Raspberry Pi 4 model B running Ubuntu 20.04 and ROS Noetic is used as the
onboard computer. A motion tracking array is placed on top of the UAV to capture the
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position of the UAV, replacing the GPS system that works outdoors for an indoor UAV local
position system. A 3D scanned model of the UAV used in this work is available on Sketfab
(https://skfb.ly/oyKuM (accessed on 10 November 2022)).

(a)

(b)

Figure 7. UAV S300 system hosting the OAK-D lite camera and Pimoroni Enviro+ sensor as payload,
a Raspberry Pi 4 model B as an onboard computer, and a Pixracer R15 autopilot. (a) Frontal view of
the hardware system, showing main components. (b) Lateral view of the hardware system, showing
main components.

The system is powered by a 4000 mAh three-cell lithium polymer battery, which
provides between 10.5 and 12.6 V in normal operating conditions. The voltage supplied by
the battery is regulated to power the flight controller and the onboard computer, which

https://skfb.ly/oyKuM
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powers other submodules as illustrated in Figure 8 in red. The battery provides up to 10 min
of flight endurance while keeping the weight of the UAV under 2 kg. The UAV system
uses multiple communication interfaces between the components, including the Universal
Asynchronous Receiver-Transmitter serial communication or UART, the Inter-Integrated
Circuit synchronous communication or I2C, the Serial Peripheral Interface or SPI, the Pulse
Width Modulation or PMW, the Pulse Position Modulation for radio control or PPM, and
analog and digital signals, as detailed in Figure 8 in black.

Figure 8. UAV System architecture detailing power distribution from the battery to main components
and peripherals using red arrows. The signals are also illustrated with black arrows detailing signal
types between components. The components partially outside the X500 Frame box in grey represent
physical interaction with the environment.

The real UAV system experiments required extra hardware components, including a
Ground Control System (GCS), to visualize the results and command the UAV to start the
mission. Figure 9 illustrates the connections between the components in the real test case
using the Raspberry Pi 4 model B onboard and a Raspberry Pi 4 model B as a GCS.

Figure 9. System main components and remote data visualisation interfaces.
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5. Experiments

A simple experimental scenario was introduced to facilitate testing the framework.
The proposed scenario emulates a planetary exploration mission, including some of the
main elements that can be expected, such as surface types, targets, and UAV conditions.
Four maps were created to test the model under different conditions. The maps include the
following six types of surfaces: (1) target, (2) unexplored, (3) safe, (4) explored, (5) boundary
and (6) dangerous. The different surfaces introduce risks and potential targets (ArUco
marker), which emulate the presence of biosignatures. The map was designed to be easily
replicated and implemented virtually and in the real world. The maps implemented are
presented in Figure 10. The selected size is 16x16 cells, allowing the UAV to execute the
exploration mission. Once the UAV moves over a cell, it is marked as explored.

(a)

(b)

Figure 10. Maps proposed to compare the POMDP mission planning. ArUco markers represent
biosignatures, red areas are dangerous places to fly over, and green areas are safe places to land. The
UAV starts over the green area in the centre of the map. (a) Maps with different target locations.
(b) Maps with a slightly larger danger zone.
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5.1. Experimental Approaches

Three approaches were used to test the framework and scenario proposed in Section 3.1.
All the environments use the UAV4PE_mission_planner formulation with the BasicPOMCP
solver and the UAV4PE_navigation module, which interfaces with the UAV depending
on the scenario being tested, including the following: (1) Simulation using the QUTAS
uavasr_emulator that simulates the UAV flight dynamics inside ROS. (2) Emulation using
ROS Gazebo simulator and Software In The Loop (SITL) that emulates the UAV flight
controller software (PX4). (3) Real-world experiments using the UAV system described
in Section 4. The mission concept of operation that applies to the three experimental
approaches is presented in Figure 11. The goal is to explore the allocated map in search of
a target while avoiding dangerous areas. The target is detected using the ArUco marker
OpenCV library in the real test or when the UAV system flies above the ArUco marker
location in the simulation. The simulation and emulation experiments were executed using
an automated python script within UAV4PE_experiments.

Figure 11. Mission concept of operation, illustrating the test scenario, the expected mission steps,
and surface types.

5.1.1. Simulation Environment

The simulation environment facilitates testing of the POMDP formulation presented
in Section 3.1 and the basicPOMCP solver parameters. It also provides an ideal testing
environment that separates UAV flight controller-related issues, with a clean and simple
platform to execute experiments. A screenshot of the simulation environment using RViz is
shown in Figure 12.

The simulation includes all the simulation software components presented in Section 3
(ROS, RViz, UAV4PE and QUTAS packages) and the formulation parameters presented in
Section 3.1.
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Figure 12. Rviz simulation environment screenshot after exploring map 16. The exploration path
follows the navigation strategy presented and explained in Section 3.4. The traversed path is plotted
with orientation and position over time. Some traces of the mission phases are pointed out, including
the start position, the exploration path and the return to the home path.

5.1.2. Emulated Environment

The mission planner system was tested in an emulation environment using Gazebo
(http://gazebosim.org/ (accessed on 10 November 2022)) simulator. The gazebo simulator
provides a realistic 3D environment with photo-realistic textures of the real environment.
PX4 Software In The Loop (SITL) was used (https://docs.px4.io/master/en/simulation/
gazebo.html (accessed on 10 November 2022)), emulating software-level flight controller
(autopilot) communication and behaviour. With the flight controller emulation component,
this emulation approach drastically reduces the gap between the simulation and the real
scenario, granting access to faster system development and debugging. A screenshot of the
emulation environment is presented in Figure 13.

Figure 13. Gazebo simulation of proposed environment running Software In The Loop (SITL).
QgroundControl was used to visualize the UAV attitude, flight mode and battery percentage. The
UAV4PE console is a Tmux session where the UAV4PE launch files for simulation and emulation run.

http://gazebosim.org/
https://docs.px4.io/master/en/simulation/gazebo.html
https://docs.px4.io/master/en/simulation/gazebo.html
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5.1.3. Real Environment

The real test scenario consisted of a 4 m × 4 m flying area with a vision-based position
tracking system (Vicon) as the localisation source. The surface retains red and green carpets,
following the surface type colour convention for dangerous and safe areas across the testing
approaches. A picture of the setup is shown in Figure 14.

Figure 14. Indoor real-world environment using Vicon motion tracking system.

5.2. Experiments Setup

Due to the intrinsic probabilistic variations of each experiment, multiple experiments
were run for each map and configuration, including twelve experiments for simulation
and emulation and four for the real world. Multiple configurations were tested using
different parameters for the reward function of the POMDP formulation and the online
solver. The reward function presented in Section 3.1.5, Algorithm 1, was configured to
reward the exploration and inspection as the mission’s main goals while penalising other
states, depending on their impact on battery and mission safety.

The number of configurable parameters in the reward function is six, as defined in
Section 3.1. Tables A1 and A2 summarise the reward (R) values tested in simulation,
emulation and real experiments. The number of POMDP solver parameters that can be
configured in the basicPOMCP solver is nine. However, this work was limited to a single
parameter test for the solver, the discount factor (γ, see Section 2.3).

Multiple simulation experiments were performed to explore the POMDP solver dis-
count factor (γ) parameter influence on the mission planning formulation. This discount
factor investigation consists of ten experiments. The experiments used a sub-configuration
with identical configuration values and only changed the discount factor. The discount
factor was incrementally changed from 0.1 to 0.99, with 0.1 increments.

5.3. Data Extraction and Analysis

The data generated during experiments are stored in multiple formats as described
in Section 3.6. The data generated from the experiments are processed and stored in a
Comma-Separated Value (CSV) file.

The CSV file was loaded into the Jupyter notebook part of the UAV4PE_experiments
repository using Google Colab (https://colab.research.google.com/ (accessed on 10 Novem-
ber 2022)). The notebook uses multiple Python data science popular libraries, including

https://colab.research.google.com/
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Pandas, Matplotlib, seaborn and NumPy. The notebook was used to analyse the results
of the experiments, and some of the most relevant analyses are presented in Section 6.
However, a wider range of analyses can be found in the original notebook.

The data are stored in a Panda data frame using the structure presented in Table 3. The
type column describes the experimental approach of the experiment (simulation, emulation
or real). The conf column details the configuration used in the experiment; more details
about tested configurations can be found in Tables A1 and A2. The expFolder column retains
information about the experimental execution date and the folder name where the raw
data were stored. The map describes the map used in the experiments; the map options
were described in Section 5. The expNumber describes the experiment identification number
using a counter that starts from zero for each new experiment configuration.

Table 3. Data storage format and pandas data frame structure with column variable names defined.
Columns from 0 to 3 are used for indexing, while the numerical columns from 4 to 8 are used
for analysis.

# Column Non-Null Count Dtype

0 type 2123 non-null object
1 conf 2123 non-null object
2 expFolder 2123 non-null object
3 map 2123 non-null object
4 expNumber 2123 non-null int64
5 targetFound 2123 non-null int64
6 exploredArea 2123 non-null float64
7 takeoffsCount 2123 non-null int64
8 actionsTotal 2123 non-null int64
9 actionsCount 2123 non-null object
10 actionSequence 2123 non-null object

Finally, a new metric is introduced to identify the parameter configuration that max-
imises the exploration performance in terms of the total area explored, the number of
actions performed and if the target is found. The metric was called exploredRatio, and
Equation (2) presents how it was computed for each experiment using the variable names
introduced in Table 3.

exploredRatio = targetFound ∗ (exploredArea/actionsTotal) (2)

Data Filtering

Multiple filters were applied to the data to filter nullified experiments (due to tool
issues) and to extract the data from different perspectives. One of the first filters removed
the experiments where the area explored was equal to zero. Eleven experiments were found
in emulation with a zero area explored. This was attributed to communication issues with
the emulated UAV in Gazebo (UAV arming command rejected, avoiding UAV to take-off).

The experiments that successfully managed to explore 100% of the maps were also
extracted. This extracted data were used to compare the configurations that successfully
completed the mission and yielded the best performance (fewer action counts).

The data were also filtered to extract configurations tested in all three experimental
approaches, including simulation, emulation and real-world experiments, showing the
UAV4PE framework behaviour differences and similarities in those approaches.

6. Results

A total of 2112 experiments were used for analysis, distributed into 1659 experiments
in simulation, 409 experiments in emulation and 44 real flights. Of all the experiments for
the configurations tested, just 395 (18.7%) successfully completed the mission, exploring
100% of the map. Table 4 summarises the experiments, providing details about minimum
and maximum values, standard deviation (std), the mean and percentiles.
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Table 4. Experiments summary showing the total number of experiments used for analysis (see
count row). Descriptive statistics are shown for the numerical columns, including the dataset’s
distribution’s central tendency, percentiles, dispersion and shape.

Index Experiment
Number

Target
Found

Area
Explored

Takeoffs
Count

Actions
Count

count 2112.00 2112.00 2112.00 2112.00 2112.00
mean 4.89 0.63 66.45 5.29 49.29

std 3.45 0.48 25.69 3.61 14.43
min 0.00 0.00 1.22 0.00 8.00
25% 2.00 0.00 46.15 2.00 35.00
50% 5.00 1.00 61.56 4.00 53.00
75% 8.00 1.00 96.34 8.00 59.00
max 11.00 1.00 100.00 18.00 71.00

The overall results mean values grouped by map and configuration type are presented
in Table 5. The Experiment Number column shows an experimental number that reflects
the predominance of simulation and emulation experiments compared to the number of
real experiments. The Target Found column indicates that experiments using maps 16A and
16AD found the target more often than experiments using 16B and 16BD. This is attributed
to the navigation strategy that prioritizes exploring the top left side of the maps where
the target is located in 16A and 16AD. The Area Explored column indicates that more area
was explored in real experiments, followed by emulation experiments and simulation. The
main reason for this explored area difference is the limited configurations used in real
experiments (best configurations) compared to those tested on emulation and simulation.
The Takeoffs Count column shows that the experiments on emulation performed fewer
takeoffs. Finally, the Actions Count column indicates that simulation experiments executed
more actions than emulation and real experiments. This difference is attributed to the
relatively higher number of experiments and configurations tested on simulation. The
overall results from Table 5 show the mean dataset distribution and wide information
about the differences between the maps and experimental-type approaches. However,
it provides a narrow understanding of the POMDP formulation behaviour due to the
broader set of configurations presented. A further analysis in Section 6.1 provides detailed
information about the POMDP formulation behaviour and the configurations that yield the
most promising results.

Table 5. Summary of mean result over all configurations tested to date with the UAV4PE framework
grouped by the map and experimental type approach.

Map Type Experiment
Number

Target
Found

Area
Explored

Takeoffs
Count

Actions
Count

map-16A
emulation 4.63 0.84 66.65 2.92 37.14

real 0.9 1.0 82.68 5.0 42.0
simulation 5.07 0.95 62.82 6.0 53.15

map-16AD
emulation 4.61 0.89 69.68 2.55 35.9

real 0.7 1.0 86.8 5.3 44.3
simulation 5.07 0.93 67.97 5.95 52.11

map-16B
emulation 4.63 0.31 67.12 2.48 36.75

real 0.8 0.5 83.78 5.2 42.9
simulation 5.07 0.28 62.93 6.03 53.23

map-16BD
emulation 4.59 0.35 70.77 2.37 35.35

real 1.14 0.71 85.62 4.93 40.86
simulation 5.06 0.39 68.15 5.89 52.222
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6.1. Successful Missions Analysis

A successful mission was defined as a mission where the map explorable area is fully
explored, and the target is found. A partially successful mission was defined as a mission
where the target is found, but the map’s explorable area was not fully explored. Follow-
ing these definitions, 299 experiments were successful with 100% of the explorable area
explored, while the target was found in 946 experiments. Experiments with configuration
conf0 were excluded from this analysis as they were generated as a baseline metric and
are successful by definition. Figure 15 shows the average success distribution for all the
successful configurations tested grouped by the maps (see Figure 15a) and by experiment
type (see Figure 15b), indicating a higher percentage of successful missions for the maps
with increased dangerous area 16AD and 16BD compared to maps 16A and 16B. This
indicates that successful missions are more likely to occur on maps with fewer explorable
cells. Additionally, Figure 15b highlights the predominance of simulation and emulation
results within the experiments.

(a) (b)
Figure 15. Plots (a,b) show the average results for all the experiments that successfully completed the
mission, defined as exploring 100% of the total area explorable in the selected map. (a) Success missions
distribution grouped by map. (b) Success missions distribution grouped by experimental type.

Partially successful mission results indicate the target was found in higher ratios in
the maps 16A and m16AD, as presented in Figure 16a. This difference is attributed to the
navigation strategy prioritising the exploration of the top-left area of the maps, where the
target in 16A and 16AD is placed. This highlights the direct influence of navigation strategy
and mission planning. Additionally, keeping the navigation module simple during the
initial tuning and development of the mission planning formulation is important so the
results can be analysed.

The configurations that yielded successful missions are presented in Figure 17, where
the total number of actions to achieve the success is also illustrated. The configurations
with the smaller number of actions are more efficient, meaning they require fewer actions
to complete the mission.

The configurations conf1, conf2, conf7.1 and conf8, showed more efficient behaviours.
However, the number of experiments for each configuration presented in Table A3 indi-
cates that configurations conf1 and conf2 yield few successful missions, which, based on
the twelve experiments per map experimental setup, can be attributed to glitches in the
emulation approach. The next configuration with enough successful mission experiments
is conf7.1, which presents eleven successful cases in real experiments, 32 in emulation and
20 in simulation (see Table A3). Thus, configuration conf7.1 consistently yielded the most
successful mission experiments across experimental types.
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(a) (b)
Figure 16. Plots (a,b) show the average results for all the experiments that partially complete the
mission, where the target is found without exploring 100% of the total area explorable in the selected
map. (a) Mission where the target was found grouped by map. (b) Mission where the target was
found grouped by experimental type.

Figure 17. Total number of actions needed to complete the mission for all the configurations that
yielded successful missions.

The exploredRatio metric introduced in Section 5.2 was used to visualise and compare the
configurations responsible for successful missions. Figure 18 presents the exploredRatio metric
for each configuration and map. The higher the exploredRatio metric, the more efficient the
configuration. Baseline configuration conf0 shows the theoretical maximum exploration ratio
value, followed by configuration conf7.1. This metric provides a direct way to measure and
compare the UAV-based POMDP mission planning configuration performance.

Two configurations (conf 7.1 and conf8) were tested on all the experimental type ap-
proaches, including simulation, emulation and real-world. Figure 19 presents comparative
results showing that results for all maps and configurations in the real-world experiments
used fewer actions to complete the mission successfully. This is attributed to differences in
the maximum speed of the real UAV and the UAV model dynamics used in simulation and
emulation. The figure also shows that 16AD and 16DB were completed with the fewest
actions on average in the simulation and emulation experiments. In real experiments, maps
16AD and 16DB showed larger standard deviations than maps 16A and 16D due to the
higher number of successful experiments for maps 16AD and 16DB.
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Figure 18. ExploredRatio metric for all the configurations that yield successful missions.

Figure 19. Total number of actions required to complete the mission successfully for the configurations
conf7.1 and conf8 tested on all experimental types and grouped by map.

7. Conclusions and Future Work

The results presented here show an approach to modelling UAV mission planning
for planetary exploration using POMDP. The proposed POMDP formulation successfully
planned and commanded a UAV in simulation, emulation and real-world experiments,
exploring multiple maps and finding a target in different unknown locations. The low
percentage of successful experiments, of around 18.7% over the total configuration tests,
indicates that optimal configurations are not trivial. However, successful configurations,
such as conf7.1, show that POMDP formulations can successfully plan UAV missions for
planetary exploration. The results in this work condense the analysis provided in the
UAV4PE_experiments notebook, which can be further explored to find detailed relations
between configurations.

This work also introduces the main aspects of the UAV4PE framework, for which
source code can be accessed to be reused and extended, providing extra tools to develop
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more autonomous and more robust mission planning strategies transferable to real-world
applications. The result presented in this work can be used as a benchmark and baseline for
further UAV autonomous mission planning studies. The data analysis notebook provides a
powerful tool for using data science libraries to extract informative knowledge from the
UAV4PE framework experiments. Furthermore, the new metric introduced in Section 5.2
can be used as a configuration fitness metric, facilitating further studies, for example,
using genetic algorithms to search for optimal parameter configurations for the POMDP
formulation and solver.

Future work focusing on UAV platforms that resemble UAV concepts for space explo-
ration is encouraged. The development of systems for self-rescue in case of malfunctions
is recommended. For this work, the scope was limited to a compact setup that can be
replicated affordably, given the challenges related to testing UAV concepts in extrater-
restrial environments. Nevertheless, the simulation and emulation environment can be
modified to replicate extraterrestrial conditions using the Gazebo physics engine and the
simulator UAV motion equations. Safety guidelines for UAV operation must be followed
for real-world experiments. Moreover, additional safety features, such as netted flying
area facilities, propeller guards, and UAV motor arming safe checks, are recommended.
The experiments presented in this work can be extended in future work by adding, for
example, experiments with terrain variations and momentary environmental changes
such as wind gusts. Future work could focus on the inclusion of more realistic planetary
exploration environments such as Mars landscapes and 3D terrain models provided by
NASA (https://github.com/nasa/NASA-3D-Resources (accessed on 10 November 2022)).
Additionally, natural 3D surfaces digitised via photogrametry with realistic targets can be
added using Digital Elevation Models (DEM) or Meshes.

Further improvements can be achieved in the mission planning formulation. The
framework modularity allows for adding more detailed and precise models to describe
additional system observations and actions. Environment-aware observations such as the
sun and wind effects can be introduced. Mission planning formulations can benefit from the
inclusion of energy storage dynamics, power management and harvesting, supplementary
surface types, and uncertainty in emulating a GPS-denied environment such as Mars.
A UAV endurance analysis can also be performed in future work to identify its impact
on mission planning in different environments such as Mars or Antarctica. We used an
ArUco marker detector as the biosignature detector module; however, we also developed a
biosignature detection system separately [12].

Ongoing work aims to enhance the model definition and formulation, improve the
framework’s documentation, and explore the influence of broader solver configurations.
Future work also will involve migrating the packages in the framework to ROS2.
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Appendix A. Additonal Experiments

Table A1. Configurations 0 to 7.1 tested. S for simulation, E for emulation and R for the real world.

Parameters Configuration Number (Conf_#)

Configuration Number 0 1 2 3 4 5 6 7 7.1
Configuration used in: S S,E S,E S S S S S S,E,R

maxRunTime (secs) 720 360 360 360 360 360 360 360,600,720 360,600,720
discountFactor - 0.9 0.99 0.9 0.99 0.9 0.99 0.99 0.9

nSteps - 100 100 100 100 100 100 100 100
maxDepthTree - 20 20 20 20 20 20 20 20

inspectingReward - 20 20 1 1 2 2 20 20
exploringReward - 50 50 5 5 5 5 50 50

landedReward - 1 1 0 0 −2 −2 −10 −10
landingReward - −15 −15 −2 −2 −2 −2 −15 −15

hoveringReward - −10 −10 −2 −2 −2 −2 −10 −10
illegalMovePenalty - −2 −2 −2 −2 −2 −2 −2 −2

Table A2. Configurations 7.2 to 12 tested. S for simulation, E for emulation and R for the real world.

Parameters Configuration Number (Conf_#)

Configuration Number 7.2–7.9 8 8.1 9 10 11 12
Configuration used in: S S,E,R R S S S S

maxRunTime (secs) 720 360,600 600 600 600 600 600
discountFactor (0.8–0.1) 0.99 0.9 0.99 0.99 0.99 0.99

nSteps 100 100 100 100 100 100 100
maxDepthTree 20 20 20 20 20 20 20

inspectingReward 20 20 20 0 2 2 2
exploringReward 50 50 50 5 5 5 5

landedReward −10 −10 −10 0 1 1 1
landingReward −15 −10 −10 0 0 0 −1

hoveringReward −10 −10 −10 0 0 0 −1
illegalMovePenalty −2 −2 −2 −100 −10 −50 −50
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Table A3. Total number of actions analysis of the configurations that yielded successful mission.

Count Mean Std min 25% 50% 75% max
Conf Type

conf1 emulation 4.0 33.000000 0.816497 32.0 32.75 33.0 33.25 34.0
conf8 emulation 2.0 35.000000 2.828427 33.0 34.00 35.0 36.00 37.0

conf7.1 real 11.0 35.181818 6.539391 25.0 31.50 35.0 38.50 46.0
conf2 emulation 1.0 36.000000 NaN 36.0 36.00 36.0 36.00 36.0
conf8 real 2.0 42.000000 9.899495 35.0 38.50 42.0 45.50 49.0

conf7.1 emulation 32.0 48.500000 9.705336 29.0 40.75 50.5 55.00 67.0
conf8 simulation 10.0 55.400000 2.011080 51.0 54.25 56.0 56.75 58.0

conf7.3 simulation 41.0 60.560976 7.252754 41.0 56.00 63.0 66.00 69.0
conf7.6 simulation 28.0 60.571429 5.820962 42.0 57.75 61.0 64.25 69.0
conf7.2 simulation 32.0 60.812500 6.981254 46.0 56.00 62.0 67.00 70.0
conf7.5 simulation 37.0 61.081081 5.804110 52.0 55.00 62.0 66.00 71.0
conf7.4 simulation 37.0 61.729730 4.793796 49.0 58.00 62.0 66.00 69.0
conf7.1 simulation 20.0 62.900000 6.742637 47.0 57.50 65.5 67.50 71.0
conf7.7 simulation 22.0 63.000000 4.850135 54.0 60.25 64.0 66.75 70.0
conf7 simulation 2.0 64.500000 7.778175 59.0 61.75 64.5 67.25 70.0

conf7.8 simulation 15.0 64.533333 5.617151 49.0 63.00 65.0 68.50 70.0
conf7.9 simulation 3.0 67.666667 1.527525 66.0 67.00 68.0 68.50 69.0
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