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Abstract: A team of non-holonomic constant-speed under-actuated unmanned aerial vehicles (UAVs)
with lower-limited turning radii travel in 3D. The space hosts an unknown and unpredictably varying
scalar environmental field. A space direction is given; this direction and the coordinate along it are
conditionally termed as the “vertical” and “altitude”, respectively. All UAVs should arrive at the
moving and deforming isosurface where the field assumes a given value. They also should evenly
distribute themselves over a pre-specified range of the “altitudes” and repeatedly encircle the entirety
of the isosurface while remaining on it, each at its own altitude. Every UAV measures only the
field intensity at the current location and both the Euclidean and altitudinal distances to the objects
(including the top and bottom of the altitudinal range) within a finite range of visibility and has
access to its own speed and the vertical direction. The UAVs carry no communication facilities, are
anonymous to one another, and cannot play distinct roles in the team. A distributed control law is
presented that solves this mission under minimal and partly inevitable assumptions. This law is
justified by a mathematically rigorous global convergence result; computer simulation tests confirm
its performance.

Keywords: unmanned aerial vehicles; multiagent; distributed control law; environmental boundary;
moving and deforming boundary; localization and tracking

1. Introduction

The need to explore various environmental boundaries has motivated extensive re-
search on using mobile robotic platforms for such a purpose; see, e.g., Refs. [1–13] and
the literature therein. A typical mission is to find and arrive at the level set where an
unknown environmental field assumes a specific value and then sweep the entirety of this
set, thus exhibiting and putting under control the border of the region with the greater field
values. Examples include finding the flows of air pollutants or contaminant clouds [14] and
tracking zones of turbulence or high radioactivity level, to name just a few. In such missions,
typical challenges include a paucity of a priori information about the field, obsolescence of
the data collected online due to the field changes, and the capacity of the available sensors
to measure only the field value at the current location via immediate contact with the
sensed entity, e.g., with a transparent gas.

Recently, much attention has been given to navigation algorithms that enable mobile
robots to localize, approach, and cover the environmental boundary of interest. A large
group of the algorithms relies on access to the field’s gradient [8,12,15–18]. This group is
exemplified by, e.g., the methods based on multi-agent estimation of the gradient [17], coop-
erative contour estimation [2,16], and gradient-based artificial potentials [18]. However, the
possibility to directly measure the field’s gradient is uncommon, whereas reliable gradient
estimation from noisy measurements of the field value is still an intricate challenge in a
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practical setting [19,20]. Also, such estimation calls for measurements in neighboring loca-
tions distributed across all dimensions, whereas exploration of an environmental boundary
motivates to place the sensors on this lower-dimensional structure. Finally, communication
constraints may hinder transfers of field measurements to the gradient estimator, wherever
it may be built.

The alternative, gradient-free methods do not attempt to assess the gradient and
are well fitted to the situation of pointwise measurement of the field value only. Some
such methods (exemplified by [4,21]) implement oscillations around a profitable path,
thus enabling the robot to collect field data from a whole corridor hosting this path. This
approach raises concerns about a waste of resources due to systematic and mutually
nullifying shifts sideways. Common image segmentation techniques are used in [1] to
monitor a forest fire-front by a team of UAVs. However, these findings are not rigorously
and completely justified. A PID controller empowered by an extended Kalman filter
and adaptive crossing angle correction scheme is justified in [22] for a holonomic planar
mobile robot. To drive a Dubins car-like robot along an isoline of a planar field, a PD
controller is presented in [23], and its local convergence in radial harmonic fields are proven,
whereas [24,25] offer sliding mode controllers whose global convergence is rigorously
justified for generic smooth steady [24] and time-varying [25] fields. The findings of [24] are
extended to the case of multiple robots in [26], where the algorithm also ensures effective
self-deployment of the robots over the environmental boundary.

The expansion of drone technology motivates the interest to navigate drones using
all three dimensions. However, the literature on the sensor-based robotic tracking envi-
ronmental boundaries has focused so far on the case of 2D or those reducible to 2D. Few
exceptions [12,27] deal with a single tracking robot; it is supported by a sensing robot in
the context of [12]. The controller from [12] assumes communicating robots modeled as
simple integrators and also that the field evolves subject to an advection-diffusion equation
with the fully known constant parameters; these assumptions about the field are generally
challenged in practice. The control algorithm from [12] requires a computationally expen-
sive online solution of a partial differential equation, and the completeness of the coverage
of the level set is not addressed. In [27], a gradient-free control law is presented that drives
a non-holonomic underactuated mobile robot to an unknown and unsteady environmental
boundary in 3D and then ensures its exhaustively sweeping.

Contrary to the scenario of a single robot, the strength of drone technology greatly
stems from the use of large teams of simple and low-cost devices. Reaping this benefit
requires multi-agent control strategies that are robust, fault-tolerant, distributed, and
homogeneous in the sense of identical roles of the teammates. Other requirements include
low consumption of energy, computational, and communication resources, as well as
rigorous guarantees for global convergence. Among the survey of papers on sensor-based
robotic tracking environmental boundaries in 3D, the authors, however, failed to come
across one addressing these issues.

This paper seeks to fill this gap while combining the above issues with that of con-
straints due to non-holonomy, under-actuation, and a limited control range of the robots.
Whether the plenty of the identified factors and requirements allows solving the mission
by a computationally inexpensive, low-level controller that directly converts the current
observation into the current control and is, nevertheless, justified by a rigorous global
convergence result? The paper answers in the affirmative and offers respective details,
including the techniques and concepts of justification.

Specifically, we consider a swarm of UAVs whose kinematics are described by the
Dubins vehicle model [28,29]. Every UAV moves in 3D with a constant speed in the
longitudinal direction and is steered by the yawing and pitching rates, which are limited in
magnitude. This model applies to, e.g., fixed-wing UAVs, torpedo-like underwater drones,
surface vessels, and various rotorcraft [28,29].

The UAVs cannot distinguish among their peers and cannot play distinct roles in the
team; they are unaware of the team’s size. Any UAV has access to the vertical direction, is
aware of its own speed, can assess the altitudinal and Euclidean distances to the objects
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within a finite visibility range, and measures the value of an unsteady and unpredictable
scalar field at the current location. All UAVs should find and reach the moving and
deforming level set (isosurface) where the field assumes a given value. They should also
distribute themselves into the densest net across a pre-specified altitudinal range (this
may be, e.g., the range of particularly important altitudes or those at which the UAVs can
operate). After this, every UAV should repeatedly circumnavigate the isosurface at its
own altitude selected in a distributed fashion, thus forming an altitudinally densest and
horizontally complete dynamic barrier around the isosurface for exposition, surveillance,
processing, or protection. All these goals should be achieved via independent decisions of
the UAVs according to a common rule and with no communication among them.

The paper presents a gradient-free navigation law that meets the above requirements.
Moreover, we first disclose conditions necessary for the mission to be achievable. Then we
show that the proposed law solves the mission under only a slight and somewhat inevitable
enhancement of these conditions. This is done by means of a mathematically rigorous
global convergence result. Basic theoretical findings are confirmed and complemented by
computer simulation tests.

This paper develops some ideas reported in [25,27]. However, Ref. [25] deals with
a planar workspace so that its findings are insufficient to cope with special challenges
inherent in 3D environments. Meanwhile, [27] considers a single-robot scenario and so
contributes nothing to the issue of inter-UAV cooperation, which is the major focus of the
current paper. Moreover, despite some similarity in processing the field measurements,
analysis of the entailed behavior with respect to isosurface finding and tracking aspects
must be fully updated as compared with [27] due to the critical coupling of the concerned
control loop with that of regulating the inter-UAV altitudinal gaps.

The body of the paper is organized as follows. Sections 2 and 3 introduce the problem
setup and the control law, respectively. Section 4 is devoted to necessary conditions for the
mission feasibility and the assumptions of our theoretical analysis. The main results are
stated in Section 6. Section 7 reports on computer simulations, and Section 8 offers brief
conclusions. All proofs are placed in Appendices A–D.

The following general notations are used in the paper: := means “is defined to be”,
“is used to denote”; the dot · in notations like f (·) is the placeholder of the argument of the
function f ; the symbols 〈·; ·〉, ‖ · ‖, and × stand for the standard inner product, Euclidean
norm, and cross product in R3, respectively.

2. Problem of Sweep Coverage of an Isosurface

A team of N UAVs travels in 3D. Every UAV moves with a constant speed in the
longitudinal direction over paths of bounded curvatures, driven by pitching and yawing
rates limited in absolute value. There is an unknown and unsteady environmental field
described by a scalar function F(t, r) ∈ R of time t and space location r ∈ R3. All UAVs
should arrive at the locus of points (called isosurface) St( f?) := {r : F(t, r) = f?} with
the pre-specified field value f?. Then they should sweep this isosurface while uniformly
distributing themselves over it. The UAVs are not equipped with communication facilities.
So coordination of their motions should be based on only individual sensory data and be
achieved in a fully distributed fashion.

Further specification of the targeted distribution assumes that a certain space direc-
tion is given by a unit vector h ∈ R3; the associated coordinate h(r) of point r ∈ R3

is loosely referred to as altitude. The mission is confined to a certain altitudinal range
Hal = [h−, h+], h− < h+; for example, this may be the range of particularly important
altitudes or altitudes at which the UAVs are able to operate. Self-distribution of the UAVs
into the densest net across the range Hal should be achieved, whereas each of them should
fully circumnavigate the isosurface at its own altitude.

The ith UAV has access only to the field value fi(t) := F[t, ri(t)] at its own current
location ri = ri(t), and has no idea about the distance to or bearing of the targeted isosurface
St( f?). The ith UAV also has access to h in its frame of reference, is aware of its own speed
vi, and can assess both the altitudinal and Euclidean distances to the objects, including
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the top/bottom h± of the altitudinal range Hal , that lie within a given “visibility” range
dvis > 0. The UAVs do not know their total number and cannot distinguish between their
peers or play different roles in the team. The last circumstance implies that all UAVs should
be driven by a common control rule and cannot be assigned individual serial numbers that
influence the control input.

To unveil the structure of the densest net across Hal , we denote by

mesh[H] := max
h∈Hal

min
h′∈H
|h− h′|

the worst-case distance from a point of Hal to a finite setH ⊂ Hal . It is easy to see that the
minimum of mesh[H] over all setsH ⊂ Hal with N elements is attained at the set

H := {hi := h− + ∆h + 2i∆h , i ∈ [0 : N − 1]}, where ∆h := [h+ − h−]/(2N). (1)

Now we flesh out the targeted collective behavior of the considered team of UAVs.

Definition 1. The team is said to form the densest horizontally sweeping net on the isosurface
St( f?) in the range from h− to h+ if the UAVs can be labeled with i from 0 to N − 1 so that
hi(t)→ hi, fi(t)→ f? as t→ ∞, where hi(t) := h[ri(t)] is the altitude of the ith UAV.

The imposed information constraints mean that any UAV is unaware of the altitude hi
assigned to this UAV in Definition 1, may have no access to the end-points of the altitudinal
range since they are beyond its range of visibility, and cannot receive these data from more
informed teammates (if they exist) due to the lack of communication facilities.

It is required to design a common control rule by executing which every UAV individu-
ally builds its own control based on the available data, whereas the entire team acquires the
property described in Definition 1. Given an ever-growing use of mass-produced, cheap,
relatively small-sized, and, as a result, energy and computationally constrained drones, this
rule is welcome to be computationally inexpensive and exhibit a regular energy-efficient
behavior. Whether the entire range of the above rather diverse and partly contradictory
wishes and goals may be compromised and attained?

For theoretical analysis, we employ a truncated model of the kinematics of a rigid-body
robot moving with a constant speed in the longitudinal direction [30–33]. This model
disregards the roll motion and is used in vector form borrowed from [31,32]:

ṙi = viei, ėi = ui ∈ R3, 〈ui; ei〉 = 0, ‖ui‖ ≤ ûi. (2)

Here ui is the control, the upper bound ûi > 0 on its magnitude is given, vi > 0 is
the constant speed of the UAV, ei is the unit vector along the centerline of the ith UAV
(see Figure 1), and the third equation in (2) “keeps” the length of ei constant. The model
(2) captures the robot’s capacity to travel over space paths whose curvature radii ≥ vi/ûi.
The scope of applicability of this model is discussed at length in Remark 2.1 in [31] and
includes fixed-wing UAVs, various rotorcraft, and torpedo-like underwater drones. Due to
a one-to-one correspondence ui ↔ (qi, ri) in Remark 2.1 in [31], the vector control input ui
can be replaced by the pitching qi and yawing ri rates. In fact, (2) is a 3D extension of the
standard Dubins-vehicle model of an aircraft or boat in a plane [34–37].

roll

yaw

pitch

unit v
ector

Figure 1. Unmanned Aerial Vehicle.
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3. Proposed Hybrid Controller

It uses the following tunable free parameters

dvis
− ∈ (0, dvis), Ttr > 0, ∆h > 0, δ f > 0, γ > 0, û h > 0, û f

i > 0 (3)

and two functions χ and ð, where χ maps R to R and ð maps [0, ∞) to [0, 1]. The choice of
these parameters and functions is discussed in Section 6.

For any i, the ith UAV builds and updates the set Ei = Ei(t) of its essential neighbors by
executing the following instructions:

Ei(0−) := ∅,

whenever ‖rj − ri‖ ≤ dvis
− for some j 6∈ Ei, add this j to the set Ei,

whenever ‖rj − ri‖ ≥ dvis for some j ∈ Ei, remove this j from Ei. (4)

The set Ei(0−) can be immediately replenished due to the second line in (4). The use
of not equal but different parameters dvis

− < dvis in the second and third lines, respectively,
is aimed at suppressing excessive sliding-mode phenomena via preventing the situations
where a just enrolled peer j should be immediately excluded and vice-versa. The sets E+

i
and E−i of essential higher and lower neighbors, respectively, are defined as

E+
i :=

{
j ∈ Ei : hj − hi > 0

}
, E−i :=

{
j ∈ Ei : hj − hi < 0

}
. (5)

The ith UAV can compute these sets from the available sensory data since the defini-
tions of these sets use only the relative altitudes and the distances to the teammates within
the visibility range, which data are accessible to the ith UAV. The scaled higher h̊+i and lower
h̊−i altitudinal gaps near the ith UAV are defined to be

h̊±i :=


min
j∈E±i
±(hj − hi) if E±i 6= ∅, otherwise

2|h± − hi| if dvis > |hi − h±|,
∆h otherwise.

(6)

Here either + should be put in place of ± everywhere, or the same should be per-
formed with− instead of +. If E±i = ∅ and dvis > |hi− h±|, there are no essential neighbors
between the UAV at hands and the top/bottom of the altitudinal range Hal ; then h̊±i is twice
the altitudinal distance to the top/bottom. Given a UAV, the gaps h̊±i do not depend on
the enumeration of the UAVs and so are computable in the current situation where the
teammates are anonymous to one another; see Remark 1 for more details.

By the third equation in (2), the control input ui must lie in the plane e⊥i normal to
the centerline vector ei (the pitch-yaw plane). We define ui in a special orthonormal basis
hpy

i , hpy
i × ei of e⊥i , where hpy

i is the orthogonal projection of the vertical vector h onto the
pitch-yaw plane e⊥i , which projection is then normalized to the unit length:

hpy
i := (h− ei cos θi)/ sin θi. (7)

Here θi is the angle between the centerline ei and the vertical h. As will be shown in
(i) of Theorem 1, our controller ensures that any UAV is always non-vertical, so both the
vector hpy

i and the considered basis are well-defined.
Our control law is hybrid with two modes: A (approaching the isosurface) and M

(main mode). Any UAV i starts in A and then switches to M. The role of mode A is to find
the targeted isosurface and to arrive at its close vicinity defined as the locus of points where
the field value differs from f? by not more than a pre-specified and nominally small δ f
from (3). Vertical distribution of the team is the task of the next mode M so that the global
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search of the isosurface during mode A is not disturbed by control signals aimed for other
purposes. The switching rule is as follows:

A 7→M whenever | fi − f?| ≤ δ f and t ≥ Ttr. (8)

The control rule invokes (like (8) does) parameters from (3) and is as follows:

ui = û f
i · sgn

[
ḟi + χ( fi − f?)

]
hpy

i × ei −
û h

vi sin θi
· sgn

[
ḣi − vi

]
hpy

i , (9)

where

vi :=

{
0 in mode A,
ð(t− Tsw

i ) ·
[
Ξ(h̊+i )− Ξ(h̊−i )

]
in mode M.

(10)

Here χ and ð are functions that are to be chosen by the designer of the controller (see
(20)–(29) for details), Tsw

i is the time of the transition A 7→M in (8), and

Ξ(L) = γ min{∆h; L} (11)

is a linear function of L ≥ 0 with saturation at the threshold ∆h > 0 mentioned in (3).
The ith UAV can compute the derivative ḣi = vi〈h; ei〉 since it is aware of its own

speed vi and has access to the vertical vector h in its local frame illustrated in Figure 1.
Numerical differentiation can be used to assess the time-derivative ḟi of the sensor readings
fi(t). Estimating the derivatives from noisy data is a well-researched discipline offering
many methods; any of them is acceptable and welcome to implement the controller. Among
these methods are, e.g., optimal schemes based on stochastic models, observers with sliding
modes, difference methods; see [19,38,39] for a survey.

The proposed design of the control system is illustrated in Figure 2. The block con-
ditionally entitled “inclinometer” is responsible for access to the vertical vector h in the
local frame of reference of the UAV at hand. It thus provides access to the angle θi between
h and the centerline ei of the UAV and the vector (7). The block in the lower right corner
of the diagram illustrates the procedure (4) of forming the set of essential neighbors. The
lower and upper positions of the switch in the diagram correspond to modes M and A,
respectively.

Horizontal position controller
Field

measurement

Differentiator

Altitude controller

Output

and

Inclinometer

           UAV's 
    are registered
as essential neighbors

 UAV's are unregistered as essential neighbors

      UAVs retain 
            their 
       registration 
            status

Timer

and

Generator of the desired
       vertical speed

are the minimal 

altitudinal distances 
to the essential neighbors

above and below the UAV,
respectively,

Yes

No

   - time of the first
affirmative answer

if these neighbors do exist.
In general, formula (6) is used.

Figure 2. Block-diagram of the control system for the ith UAV.

Except for the coefficient û f
i , the control rule (9) is common for all robots. Remark 2

discusses when complete uniformity can be achieved by picking û f
i common for all i.
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Remark 1. To facilitate understanding the procedure for determining h̊±i , its first step was pictured
as building the sets Ei, E±i of labels j. However, the robots cannot figure out these labels. So actually,
these “absolute” labels are not involved: on its own choice, robot i labels the available relative
distances hj − hi, uses time-invariant labels for continuously changing distances, and processes
exactly these labels. All of that is performable based on the available data.

Since the control law (9) and (10) is discontinuous, the solution of the closed-loop
system is meant as that of the differential inclusion obtained via Filippov’s convexification
method [40]. Given an initial state, a solution exists and does not blow up in a finite time
due to the boundedness of the controls.

4. Mission Feasibility and Assumptions

To avoid overly restrictive assumptions in our theoretical analysis, we first disclose
conditions necessary for the mission feasibility. They display the necessary balance between
the level of maneuverability of the UAVs and the challenges from the contortions and
motion of the targeted isosurface. Our assumptions will be only slight and partly inevitable
enhancements of these necessary conditions. To disclose them, we need the following
characteristics of the unsteady environmental field:

• ∇F, spatial gradient of the field;

• N(t, r) = ∇F(t,r)
‖∇F(t,r)‖ , unit vector normal to the associated isosurface (AI) that passes

through location r at time t;
• αh = arcsin〈N; h〉, angle from this vector N to the horizontal planes;
• Nhor = (N − h sin αh)/ cos αh, projection of this vector N onto the horizontal plane

normalized to the unit length;
• htan = (h− N sin αh)/ cos αh, normalized projection of the unit vertical vector h onto

the plane tangent to the associated isosurface;
• Shor

t ( f?|h) := {r ∈ St( f?) : h(r) = h}, horizontal section (of the f?-isosurface) at the
altitude h ;

• ~τ = h× N/ cos αh, unit vector tangential to the horizontal section that passes through
location r at time t;

• I I[V], second fundamental (quadratic) form of AI, i.e., the signed curvature of the
intersection of AI with the span of a unit tangent vector V and N; see Section 4 in [41];

• κ, maximal (in absolute value) eigenvalue of this quadratic form;
• λ(t, r), front velocity of the associated isosurface;
• α(t, r), front acceleration of the associated isosurface;
• ~ω(t, r), angular velocity of rotation of the associated isosurface;
• ρ(t, r), density of isosurfaces, which evaluates their number (assessed by the range of

the field values) within the unit distance from the associated isosurface;
• gρ(t, r), proportional growth rate of the density ρ with time;
• ∇∇ρ(t, r), proportional tangential gradient of the density ρ,
• nρ(t, r), proportional growth rate of the density ρ under the normal shift.

The last seven quantities are rigorously defined in Appendix A in [27].
By Definition 1, ideally carrying out the mission includes moving over the horizontal

section Shor
t ( f?|h) = {r ∈ St( f?) : h(r) = h} at a fixed altitude h = hi ∈ Hal . Since the size

N of the team and so the altitudes hi’s are unknown to the team members and no UAV
is assigned its own altitude hi a priori, it is fair to require that any UAV be able to trace
the whole of Shor

t ( f?|h) within the operational zone OZ at any altitude h ∈ Hal in the given
altitudinal range Hal . If this requirement is met, the isosurface is said to be trackable by this
UAV. For the sake of convenience, we define the zone OZ in terms of the extreme values
f− < f+ ( f? ∈ ( f−, f+)) achievable by the field F in this zone:

OZ := {(t, r) : f− ≤ F(t, r) ≤ f+, h(r) ∈ Hal}. (12)
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Since any UAV (2) can trace only regular (i.e., differentiable with a nonzero derivative)
curves, the above trackability may hold only if any curve Shor

t ( f?|h), h ∈ Hal is regular. This
may be violated not only because of the non-smoothness of the field but also due to the
zero spatial gradient. Hence the following is compelled by necessity.

Assumption 1. In an open vicinity of the operational zone (12), the field F is twice continuously
differentiable, is not singular ∇F 6= 0, and the horizontal section Shor

t ( f?|h) of the f?-isosurface at
any altitude h ∈ Hal is not empty.

Conditions necessary for the mission feasibility are as follows.

Lemma 1. Let the isosurface St( f?) be trackable by the ith UAV. Then at any temporal-spatial
point of St( f?) ∩OZ , the following inequality holds:

vi cos αh ≥ |λ|. (13)

If, in addition, the normal N to the associated isosurface is not vertical cos αh 6= 0, then

ûi

√
v2

i cos2 αh − λ2 ≥
∣∣∣I I
[
V±i
]
+ α + 2

〈
~ω; V±i

〉∣∣∣, (14)

where V±i := λ tan αhhtan ±~τ
√

v2
i − λ2 cos−2 αh (15)

and the inequality holds with any sign in ±.

This lemma is immediate from Proposition 4.1 in [27].
Inequality (13) means that projected onto the normal to AI, the speed of the ith UAV is

enough to compensate for the normal displacement of AI in order to remain on the moving
AI. Meanwhile, (14) means that while keeping its altitude unchanged, the UAV can remain
on AI by meeting the challenges from the translational acceleration of AI and the Coriolis
and centrifugal accelerations caused by the motion of the UAV over AI. We slightly enhance
inequalities (13) and (14) by assuming that they hold with > put in place of ≥ and do not
regress as t→ ∞ or (if applicable) ‖r‖ → ∞.

Assumption 2. In the operational zone OZ, Assumption 1 and inequalities (13) and (14) hold in
an enhanced form: there exist ∆λ, ∆u, bρ > 0 such that ‖∇F(t, r)‖ ≥ b−1

ρ , and for all i,

vi cos αh ≥ |λ|+ ∆λ, (16)

ûi

√
v2

i cos2 αh − λ2 ≥
∣∣∣I I
[
V±i
]
+ α + 2

〈
~ω; V±i

〉∣∣∣+ ∆u. (17)

Here (16) guarantees that cos αh > 0 and so the normal N is not vertical, i.e., the
prerequisite for (14) is met.

In the real world, the next assumption is typically satisfied.

Assumption 3. In the operational zone, the basic characteristics of the field stay bounded:

|gρ| ≤ bg < ∞, |nρ| ≤ bn < ∞, ‖∇∇ρ‖ ≤ b∇ < ∞, |λ| ≤ bλ < ∞,

‖~ω‖ ≤ bω < ∞, |κ| ≤ bκ < ∞ ∀(t, r) ∈ OZ . (18)

The control objective pursued in this paper tacitly assumes that the isosurface St( f?) can
be horizontally circumnavigated and so is “horizontally” bounded. However, Assumptions 1–3
do not guarantee this. So we need another assumption.

Assumption 4. There exists a constant dhor ∈ (0, ∞) such that for any t, the distance between
the horizontal projections of any two points from St( f?) ∩OZ does not exceed dhor.
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Before applying the control law (9) and (10), the UAVs are to be driven to or put in
special postures. Since this is trivially performable, we do not come into implementation
details and merely describe those postures.

Assumption 5. Initially, all UAVs are oriented horizontally and are in the interior of the opera-
tional zone OZ at distinct altitudes.

The requirement to the altitudes can be met with probability 1 if, for example, every
teammate is instructed to preliminarily reach its own altitude that is independently drawn
for any of them from a common continuous probability distribution.

If Assumption 5 holds and 〈ui; h〉 = 0 ∀t, then the ith UAV does not leave its initial
horizontal plane. Let, in addition, the control input ui continuously depends on time and

‖ui(t)‖ = ûi ∀t, (19)

where ûi is the upper bound from (2). Then the ith UAV moves over the boundary of one of
two horizontal discs D̊±i , making a full turn for 2π/ûi units of time. We assume that these
discs lie in OZ and that the UAV’s turning rate exceeds the mean rate (over some initial
period of time) at which the isosurface rotates about the vertical axis.

Assumption 6. For any UAV i, there exists a natural number ni such that the following statements
hold for the time interval Ii = [0, 2πni/ûi]:

(i) During this interval, the horizontal projection Nhor[t, ri(0)] of the unit vector N[t, ri(0)]
normal to the associated isosurface rotates through an angle that does not exceed 2π(ni − 1);

(ii) The initial discs lie inside the operational zone (12) during the time interval Ii:

f− < F(t, r) < f+ ∀t ∈ Ii, r ∈ D̊±i .

By (16), the normal N is not vertical. Hence its horizontal projection is nonzero,
so the vector Nhor[t, ri(0)] and its rotation angle are well-defined. If the field is steady
F(r, t) = F(r), this angle is zero, and (i) does hold with ni := 1.

5. Chimerical Solutions

Under the control law (9) and (10), the closed-loop system is described by an ordinary
differential equation (ODE) with a discontinuous right-hand side (RHS). In the theory of
such ODE’s, studies on the phenomenon of sliding have been primarily confined to the
case of attractive discontinuity surfaces up to now. Only the slightest attention has been
paid to non-attractive ones. For them, the discussion has been typically brief and limited to
a reference to the very possibility of sliding, with a two-side repelling surface S exemplified
in Figure 3a being the most popular subject of focus.

(a)

S
A

B

C
D

(b) (c)

Figure 3. (a) Classic example of a repelling surface S; (b,c) Examples of surfaces that cause both
attraction and repulsion

However, there is much more diversity in sliding surfaces than mentioned above.
Figure 3b,c presents two examples, where the surface of interest S contains a single (green)



Drones 2022, 6, 33 10 of 34

point and has the zero dimension. This surface hosts a sliding solution ss (“staying still
at S”), whereas some other solutions reach S in a finite time and can be continued by ss .
These are those starting in the pink domain, which has a nonzero area in Figure 3c. In
Figure 3a,b, the sliding solution is non-viable and can be treated as nonexistent in reality
since it is catastrophically sensitive to arbitrarily small disturbances. Specifically, almost
all (for a continuous probability) of them bring the state in the white domain, after which
the state essentially deviates from the sliding solution on any finite time interval. This
deviation is not small for small disturbances, and a nonzero lower bound on the deviation
is determined by the interval. Moreover, disturbance causes an immediate repulsion from
the sliding solution in Figure 3a, which also holds in Figure 3b if the state is brought to the
angles A or C. If it is brought to the angles B or D, repulsion still occurs with probability
1. Still, it commences after a transient, whose duration is proportional to the disturbance
magnitude. Meanwhile, Figure 3c shows that the overall diversity of repulsive behaviors
is richer than those just discussed. For example, suppose all directions of disturbance
are equiprobable. In that case, the disturbance brings the state to the pink domain in
Figure 3c with a nonzero probability, and then the solution returns to ss in a finite time.
Simultaneously, the disturbance brings the state in the white domain with a nonzero
probability, and then the solution diverges far away from ss .

The apathy of the classic theory to the detailed classification of the entire range of
behaviors possible near sliding solutions partly stems from being aimed at building a
controller that imparts a useful feature to the system, e.g., reduced dimension, robustness
against disturbances, etc., which objective calls for an attractive sliding surface. With no
intention to fill the identified gap, we offer a general concept of sliding solutions that “do
not exist in reality” in the fashion similar to ss in Figure 3a,b. The rationale for this selection
is that such solutions can be formally found in our closed-loop system, whereas they can
be ignored in a practical setting and so in the results.

With these in mind, we consider a differential inclusion (DI) ẋ ∈ R(t, x) on a Rie-
mannian manifold M, where the RHS is a convex, compact, and nonempty subset of the
tangential (to M at x) space and the map R(·) is upper-semicontinuous; these properties
imply local solvability of the initial value problem by Theorem 6.2 in [42]. (For the swarm
of the UAVs (2) driven by (9) and (10), the points of M are the team’s states x = {ri, ei}N−1

i=0
with ri ∈ R3 and ei from the unit sphere in R3 centered at the origin, and R(t, x) is obtained
via the Fillipov’s covexification procedure [40]).

Let T be a (maybe infinite) time interval. A solution x(t), t ∈ T of the DI is said to be
fully chimerical if for any finite subinterval T∗ = [τ−, τ+] ⊂ T, τ− < τ+, there is δ > 0 such
that almost all (with respect to the Lebesgue measure or, equivalently, with respect to any
continuous probability distribution) initial states xin from a sufficiently small ball centered
at x(τ−) give rise to a solution x(t), t ∈ T∗ whose maximal deviation from x(·) on T∗ is no
less than δ, irrespective of how close xin is to x(τ−). The solution is said to be chimerical if
it is fully chimerical on some subinterval of T. In Figure 3b, the sliding solution ss is fully
chimerical, whereas examples of chimerical solutions are given by those that start on the
pink line, then arrive at S, then stay at S, and then (possibly) depart from ss either to the left
or to the right. Fully chimerical and so chimerical solutions are nonexistent in practice since
they are not stable against inevitable disturbances and errors in sensors, computational
units, and actuators, including quantization errors.

With no intention to fully categorize the converse case, we say that the solution x(·) is
firmly corporeal if, for any closed finite subinterval T∗ ⊂ T, that maximum deviation goes
to zero whenever x(τ−) → x(τ−), and corporeal if there exists a finite set F such that the
solution is firmly corporeal on every connected component of T \ F. If T = [0, ∞), the latter
means existence of times τ1 < τ2 < . . . < τs ∈ T such that the solution is firmly corporeal
on [0, τ1), (τ1, τ2), . . . , (τs−1, τs), and (τs, ∞). Figure 3b shows that the solutions starting in
the white domain are firmly corporeal. Any initial state from the pink line gives rise to
exactly two corporeal solutions: they go over this line to point S and then immediately
leave it either to the left or right. The set F consists of a single time when the trajectory
passes through S; at this time, the solution branches in two directions.
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6. Main Results

We first skip tedious tuning details and show that the proposed navigation scheme is
enough to solve the mission under minimal and partly inevitable assumptions.

Theorem 1. Let Assumptions 1–6 hold, and the visibility range be not overly small:
dvis > h+−h−

N + dhor. Then the parameters (3) of the control law and the maps χ and ð in (9)
and (10) can be chosen so that the closed-loop system has a corporeal solution defined on [0, ∞), and
for any such solution and moreover, for any non-chimerical one the following claims are true:

(i) Any UAV is never vertically oriented: sin θi(t) 6= 0 ∀t, i;
(ii) The output of the control law (9) is feasible, i.e., the third and fourth relations in (2) do hold;
(iii) The team members do not collide with one another;
(iv) They are always in the pre-specified altitudinal range Hal and the operational zone (12);
(v) The team forms the densest horizontally sweeping net on the targeted isosurface St( f?) in the

range from h− to h+, as is specified by Definition 1.

Moreover, let a compact set Qin of initial states be given such that any its element satisfies
Assumptions 5 and 6. Then common values of the controller parameters (including the functions χ
and ð) can be chosen so that (i)–(v) hold whenever the initial state of the team is in Qin.

The proofs of all theoretical results are given in Appendices B–D.
Theorem 1 means that our control law ensures the attainment of the posed objective.
By Assumption 4, the requirement dvis > h+−h−

N + dhor means that if the UAVs are
close to the targeted isosurface St( f?) and the even distribution over the altitudinal range
Hal is nearly attained, the “altitudinally adjacent” robots “see” each other. Meanwhile,
at the initial time the UAVs are permitted to be arbitrarily distributed over the range
Hal (modulo that different UAVs should be at distinct altitudes by Assumption 5) so
that some “altitudinally adjacent” robots may not “see” each other since the distance
between them exceeds dvis. However, (v) in Theorem 1 and the first sentence in the current
paragraph imply that this unwanted situation is eventually eliminated under the action of
the proposed algorithm.

Theorem 1 neglects chimerical trajectories. According to Appendices B–D (see
Lemmas A8, A18 and A19), such trajectories possess at least one of the following two fea-
tures. (1) On some time interval [0, τ], τ > 0, the state remains on a two-side repelling (like
in Figure 3a) surface described by ḟi = −χ( fi − f?) with some i. (2) There exist T ≥ 0 and
i 6= j such that the UAVs i and j constantly remain at a common and constant altitude for
t ≥ T. Chimericality means that both features are unrealizable in the closed-loop due to
instability against arbitrarily small perturbations, errors, and noises.

When discussing controller tuning, we have in mind the situation of multiple initial
states from Qin. (The case of a single initial state is that of a singleton set Qin.)

Preparatory choice of û f
i from (9). In (19), we put some û f

i < ûi in place of ûi and

thus acquire larger disks D̊±i (û
f

i ) ⊃ D̊±i . If û f
i ≈ ûi, they are close to D̊±i (uniformly over

all initial states from Qin) and so lie inside the operational zone for t ∈ [0, 2πni/ûi] by (ii) of
Assumption 6, which thus remains true if ûi is replaced by û f

i < ûi, û f
i ≈ ûi. We pick such

û f
i ∈ (0, ûi), with a view to possibly push it closer to ûi afterward.

General requirements to the functions χ and ððð from (9) and (10). We use continuous
and piecewise smooth functions that map R to R and [0, ∞) to R, respectively, and are
such that

χ(0) = 0, χ(z) < 0 ∀z < 0, χ(z) > 0 ∀z > 0, (20)

χ := sup
z∈R
|χ(z)| < ∞, χ′ := sup

z∈R
|χ′(z±)| < ∞, (21)

ð(0) = 0, ð′(t±) > 0 ∀t, ð(t)→ 1 as t→ ∞, ð′ := sup
t≥0

ð′(t±) < ∞. (22)
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Examples include ð(t) = 1− e−kt(k > 0) and

χ(z) = a arctan(bz),
az

1 + b|z| , max{−a; min{a; bz}} (a, b > 0).

Switching δf and saturation ∆h thresholds from (8) and (10), respectively, and the
parameter dvis

− from (4) are chosen so that:

0 < δ f < min{ f+ − f?; f? − f−}, ∆h >
h+ − h−

N
, (23)[

dhor + 2
δ f bρv2

i

∆2
λ

]2

+ ∆2
h < (dvis

− )2, dvis
− < dvis. (24)

Here bρ and ∆λ are taken from Assumption 2, and dhor from Assumption 4. In (23),
min{ f+ − f?; f? − f−} assesses the remoteness of the targeted isosurface St( f?) from the
borders of the operational zone (12). Thanks to the assumption introduced in the body
of Theorem 1, the conditions (23) and (24) are feasible: they can be satisfied by picking
∆h > h+−h−

N , dvis
− and δ f > 0 close enough to h+−h−

N , dvis and 0, respectively.
An auxiliary parameter η ∈ (0, 1) is recommended to be picked at this tuning stage

to simplify the subsequent choice of the basic parameters.
The slope γ of Ξ(·) in (10), the parameters û f

i , û h in (9), the upper bounds χ, χ ′

in (21), and the upper bound ð′ in (22) are subjected to the following constraints:

γ∆h < vi ∀i, χρ := bρχ < ∆λ, (25)

ξ := (γ∆h + χρ + bλ)
2 − b2

λ < (1− η2)∆2
λ; (26)

viû h√
v2

i − (γ∆h)2
+ vi[ûi − û f

i ] + 2[vibκ + bω ]
vi
∆λ

√
ξ2

4η2∆2
λ

+ (χρ + γ∆h)2

+χρ(χρbn + 2vib∇ + 2bg + χ ′/bρ) +
ξûi

2η∆λ
< ∆u, (27)

(û f
i )

2 +
(û h)2

v2
i − γ2∆2

h
≤ (ûi)

2 ∀i, (28)

4γ2∆h + 2ð′γ∆h < û h ∀i. (29)

Here ∆λ, ∆u, bρ are taken from Assumption 2, bκ , bω, bn, bg, b∇ from Assumption 3,
and vi, ûi from (2). At least, the requirement (26) to γ and χρ means that its left-hand side is
less than ∆2

λ. If this is satisfied, (26) gives an upper bound on the choice of the auxiliary
parameter η. Putting this bound to (27) in place of η results in an “η-free” form of the
conditions on the controller parameters, whose format is, however, rather cumbersome
and so is not user-friendly. This is the rationale for using η.

Inequalities (25)–(29) are feasible. Indeed, it suffices to note that the left-hand sides of
(25)–(27) go to 0 as γ → 0+, χ → 0+, χ ′ → 0+, û f

i → ûi−, û h → 0+, whereas the RHS’s
are positive constants. So to meet (25)–(27), it suffices to pick γ, χ, χ ′, ûh small enough
and û f

i close enough to ûi. Then (28) can be ensured by further decreasing uh. After this,
(29) can be satisfied (while not violating (25)–(28)) by further decreasing γ.

These considerations give guidelines for experimentally tuning the control law.
The final choice of the functions χ and ððð from (9) and (10): They are chosen subject

to the above general requirements and the already chosen upper bounds χ, χ ′,ð ′.
The time Ttr from (8) is chosen so that Ttr > 2πni/û f

i ∀i, where ni is taken from
Assumption 6.

Theorem 2. The statement of Theorem 1 is true if the parameters (3) of the control law and the
maps χ(·) and ð(·) in (9) and (10) are chosen based on the above recommendations.
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So these recommendations can be used for analytically tuning the controller if the
involved bounds on the parameters of the field or their estimates are available.

Remark 2. Implementing the above recommendations results in controller parameters common for
all robots, with the only exception of û f

i . For homogeneous robotic teams (but not only for them),

û f
i ’s can also be chosen common since vi and ûi do not depend on i.

Remark 3. Under the assumptions of Theorem 2, the statement (i) of Theorem 1 can be specified:
the pitch angle of the ith UAV never exceeds arcsin γ∆h

vi
in absolute value. (Here arcsin γ∆h

vi
is

well-defined due to the first inequality in (25).) Meanwhile, the above recommendations on the
choice of the controller parameters are not violated by decreasing the coefficient γ > 0. By using
this, the controller can be tuned so that not only the statement of Theorem 1 is true but also the pitch
angle of every UAV is always within a given bound, which can be chosen as small as desired. This
observation is of interest whenever large pitch angles are unwelcome, unacceptable, or challenge the
employed model (2).

7. Computer Simulation Tests

The numerical values of the basic parameters used in the tests are as follows:

N = 10 vi = 10.0 m
s ûi = 1.0 rad

s2 ūh = 0.01 rad
s2 ū f

i =
√

û2
i − (û h)2,

δ f = 0.1 ¢ Ttr = 10.0 s γ = 0.05 1
s ∆h = 40.0 m f? = 10 ¢

dvis = 70 m dvis
− = 69 m χ( f ) =

{
µ f /δ if | f | ≤ δ,
sgn( f )µ otherwise

δ = 5.0 ¢ µ = 0.4 ¢
s ð(t) = 1− e−10.0t

Here ¢ is the unit of measurement of the field value f . Zero-mean Gaussian additive
noises corrupt the measurements of this value and the altitude h with the standard deviation
of 0.1 ¢ and 0.1 m, respectively. No noise reduction techniques were applied, and the
simplest two-point Newton’s quotient [ f (t) − f (t − τ)]/τ was employed to assess the
time derivative ḟ (t) in (9). The simulations were performed in MATLAB. In Figures 4–7,
the robots, their paths, and the targeted isosurface are depicted in green, blue, and gray,
respectively; obsolete parts of the paths are erased; the targeted isosurface is treated as
opaque. In fact, what is depicted is not the targeted isosurface but a close one; otherwise,
the UAV’s path would seem overly dashed due to invisible portions that appear whenever
the UAV dives, even slightly, behind the isosurface. Multimedia of all tests are available at
https://cutt.ly/fTZsmjC, (accessed on 6 January 2022).

Figure 4 illustrates an experiment where an environmental field slowly translates
along the x-axis so that its isosurfaces retain their form and size. Among the purposes of
this experiment, there is complementing Theorems 1 and 2 via testing the capacity of the
control law to cope with the non-smoothness of the field and isosurface. Specifically, the
cross-like isosurface from Figure 4a is not smooth (and so Assumption 1 violates) on the
red curves, where (except for the yellow point) the field gradient abruptly changes when
crossing the curve. Initially, ten UAVs are organized into two groups of five; each group is
aligned vertically and evenly distributed. Meanwhile, their vertical spacing is far from the
desired one (which is associated with the even deployment from h− = 10 m to h− = 190 m),
and the groups are out of “eye contact” with each other.

By Figure 4a, the moment of t = 20 s can be viewed as when all UAVs localize the
isosurface, though with a small degree of approximation, as can be seen in Figure 4h.
Figure 4i shows that at this moment, the UAVs over-populate the altitudinal range from
40 m to 60 m, which condition is far from the targeted even distribution from 10 m to 190 m.
Approximately at this time, all UAVs pass to mode M and so regulation of the altitudes
towards the even distribution is commenced according to (10). By Figure 4d,i, this goal is
attained from t = 150 s. The outbursts of the field value errors for two UAVs at≈ 40 s occur
when these UAVs have to pass from encircling the horizontal “beam” of the cross to dealing

https://cutt.ly/fTZsmjC
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with the vertical one, as can be seen in Figure 4c. The height regulation module initially
drives them upwards so intensively that they find themselves far enough from the targeted
isosurface represented by its vertical beam, which is fairly distant from the just traced tip
of the horizontal beam. These outbursts are promptly fixed and never repeated, as shown
by Figure 4h. So the discussed episode can be related to the fact that by t = 40 s, an even
distribution of the altitudes has not yet been achieved, as shown in Figure 4i. Overall, the
control law ensures the attainment of the control objective despite sensor errors and the
non-smoothness of the field.
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Figure 4. Locating and sweep coverage of a slowly translating isosurface with singularities.

The experiment in Figure 5 complements Theorems 1 and 2 from another standpoint:
the field gradient is not vertical at the red points in Figure 5a and their antipodes with
respect to the centers of the holes. This means violation of (16) in Assumption 2 and implies
that the number K of the connected components of the horizontal section varies as the
cutting horizontal plane runs over the altitudinal range of interest (from 30 m to 170 m);
four sample sections A, B, C, and D with different K’s are depicted in light blue in Figure 5a.
The field and the targeted isosurface rotate about the pink axis. As a result, the number
K varies over time for some fixed altitudes, as illustrated in Figure 5h,i. For example,
the red section in Figure 5i has three components, unlike Figure 5a, with no more than
two components. When keeping both the field value and the altitude constant, any UAV
can trace only a single connected component and so has to “select” it from a variety of those
(if applicable), e.g., has to select one of the two loops constituting B in Figure 5a. From
time to time, the UAVs are forced to “reselect” because of changes in circumstances, e.g.,
alterations in K. Another trouble is highlighted by considering the horizontal cutting plane
that gives rise to B in Figure 5a. As this plane approaches the upper red point from above,
the curvature of both B-loops near that point increases without limits. It so exceeds, sooner
or later, the maximal turning capacity of the UAVs. Hence, there are horizontal sections
that can be traced by no means due to the limited turning radius of the UAVs. Though
the proposed algorithm is not intended to handle the described troublesome issues, the
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experiment in Figure 5 is aimed to form an initial pre-judgment on the intrinsic potential of
this algorithm for reasonably treating them.
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Figure 5. Locating and sweep coverage of a slowly rotating isosurface.

Figure 5j,k show that the above extra challenges do not visibly worsen the perfor-
mance of the control law with respect to the primary goals of finding and sweeping the
isosurface and even self-distribution of the team over the altitudinal range. Moreover,
Figure 5b–g provides evidence that the algorithm manages to attend all “simple” compo-
nents of the topologically complex surface: two UAVs circumnavigate the “half-donut”
B1 from Figure 5f, one UAV encircles B2, another UAV encircles C1, and two more UAVs
circumnavigate the “half-donut” C2, whereas the remaining four UAVs go around the
central part of the eight-shaped surface. This trait of “attending all parts” may also be
identified at the other stages of the experiment, albeit to various degrees. In Figure 5j, the
splash of the field error for a UAV at ≈550 s is due to being too close to a point with an
excessive “curvature demand”, as is described in the previous paragraph. However, this
splash is promptly fixed and never repeats within the duration of the experiment. Overall,
this experiment shows that the algorithm more or less satisfactorily copes with the above
extra challenges.

Figure 6 is concerned with an experiment whose purpose is to test the algorithm’s
robustness against failures of the team members and its performance when dealing with a
deforming isosurface. This isosurface has the form of a curved tube. The tube performs
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oscillatory displacements along the x-axis, alternates increasing and decreasing in size,
and reshapes, e.g., changes the number of the “waves on the surface”, becomes a right
cylinder or a “bottle” at some times, etc. The number of the UAVs is increased up to 20;
the targeted altitudinal range is from 0 m to 200 m. Starting from the initial deployment
shown in Figure 6a, all UAVs individually reach the targeted isosurface as early as at
≈20 s, according to Figure 6b,i. By Figure 6c,j, an even self-distribution over the altitudes
is achieved later at ≈220 s. Then at t = 250 s and t = 500 s, a group of five UAVs is
withdrawn from the mission (and their color is changed from green to red), whereas
the remaining peers continue to run the algorithm “as usual” with ignoring the missed
members. As can be inferred from Figure 6d,e,j, these peers need only ≈50 s to rebuild the
even distribution with lesser team size. For the missing episode at t = 500 s, this entails a
slight temporal impairment in the field tracking performance, which is fixed for ≈40 s, as
shown in Figure 6i.
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Figure 6. Sweep coverage of a moving and deforming isosurface with a dropout of team members.
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Figure 7. Sweep coverage of a deforming isosurface with an admission of extra team members.

Overall, the algorithm exhibits robustness to failures of the team members in a sophis-
ticated scenario with a deforming and moving isosurface.
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The last experiment tests the capacity of the algorithm to automatically manage the
admission of new team members (newcomers). The deforming isosurface from the previous
test is handled, though without displacement along the x-axis. The team consists of
10 members initially. Five extra members appear on stage at t = 250 s and then another
five at t = 500 s, as shown in Figure 7. Meanwhile, the algorithm is run “as usual” at both
newcomers and “oldies”, taking into account the UAVs currently present at the stage.

As follows from Figure 7f, the UAVs autonomously rebuild an even distribution over
the altitudes for ≈ 45 s in both events of admission. By Figure 7e, the second admission
implies detrimental effects in terms of the field value. However, they are minor in value
and are overcome for ≈ 150 s. This demonstrates the algorithm’s capacity to incorporate
extra UAVs in the team on the fly.

8. Conclusions and Future Work

This study aimed to design and analyze a distributed navigation and collision avoid-
ance strategy for a team of UAVs traveling in a 3D environment. The strategy enables the
team to first find the isosurface where an unknown and unpredictably varying scalar field
assumes a given value and then form the vertically densest net-like barrier horizontally
sweeping the isosurface. Among the complicating factors was the lack of access to the field
gradient, absence of communication facilities, non-holonomy, under-actuation, and a finite
control range of the UAVs. It was shown that even in such circumstances, the mission could
be solved by a computationally inexpensive strategy justified by a mathematically rigorous
global convergence theorem. Computer simulation tests confirmed the convergence and
performance of the algorithm.

The algorithm is individually executed by each UAV and consists of two stages
(operating modes). The main objective of the first and second stages is to find and arrive
at the isosurface and, respectively, to track and circumnavigate it while distributing the
team into the vertically densest net. The proposed regulation rule conforms to the sliding
mode control paradigm at any stage. This paradigm has attracted significant interest
from industry and academia thanks to well-known benefits such as high insensitivity to
disturbances and noises, robustness against uncertainties, good dynamic response, and
simple implementation (we refer the reader to [43–49] for a survey). The major problem
with the practical implementation of sliding-mode controllers is identified as the possibility
of a chattering phenomenon. The ever-increasing popularity of the sliding-mode approach
to motion control is partly due to the development of rather effective general techniques
of chattering elimination and suppression; see, e.g., [45,50,51] for a survey. Among them,
there is a smooth approximation of the discontinuous controller using low-pass filters,
adaptive controllers, and higher-order sliding modes. Whether the harmful chattering is
encountered when implementing the proposed controller, it can be subjected to treatment
via these methods. Their practical effectiveness has been widely reported, whereas the
phenomenon does not necessarily occur in experiments with real mobile robots. Some
examples are reported in, e.g., [46,52], where control laws that are similar in some respects
to the law proposed in this paper are considered.

A fairly common approach to the design of control systems implements the idea of a
two-level hierarchical structure, where a kinematic-level controller generates a reference
signal to be tracked by low-level controllers. The findings of this paper are concerned with
the first stage and are based on a model of the UAV’s kinematics. Implementation issues
concerned with the second stage and controllers somewhat similar to that from this paper
are addressed in, e.g., [46,53].

Future work includes an extension of the findings of this paper to the case where along
with all the previous control goals, the UAVs should be “horizontally synchronized” in
some sense, e.g., should all be ultimately contained by a common vertical moving plane.
Consideration of more sophisticated isosurfaces and models of UAVs is also on the agenda.
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The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
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ODE Ordinary Differential Equation
RHS Right-Hand Side
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Appendix A. Characteristics of the Field

This section offers rigorous definitions of field characteristics used in the theoretical results and
technical facts underlying the proofs of these results. We start with the former.

• r+(∆t|t, r) and r+, f (∆ f |t, r), nearest (to r) point where the axis drawn from r in the direction
of the normal N to the AI intersects the time- and space-displaced St+∆t[ f†] and St( f† + ∆ f )
isosurface, respectively, where f† := F(t, r);

• p(∆t|t, r) and q(∆ f |t, r), coordinates of these respective points along that axis;
• λ(t, r), front velocity of the isosurface, i.e., lim

∆t→0
∆t−1 p(∆t|t, r);

• α(t, r), front acceleration of the isosurface:

α(t, r) := lim
∆t→0

λ[t + ∆t, r+(∆t|t, r)]− λ[t, r]
∆t

; (A1)

• ~ω(t, r), angular velocity of rotation of the isosurface:

~ω(t, r) := lim
∆t→0

N[t + ∆t, r+(∆t|t, r)]− N[t, r]
∆t

; (A2)

• ρ(t, r), density of the isosurfaces: ρ(t, r) := lim∆ f→0 ∆ f /q(∆ f |t, r);
• gρ(t, r), proportional growth rate of this density with time:

gρ(t, r) :=
1

ρ(t, r)
lim

∆t→0

ρ[t + ∆t, r+(∆t|t, r)]− ρ(t, r)
∆t

; (A3)

• nρ(t, r), normal proportional growth rate of the density:

nρ(t, r) :=
1

ρ(t, r)
lim

∆s→0

ρ(t, r + N∆s)− ρ(t, r)
∆s

. (A4)

• ∇∇ρ(t, r), tangential proportional gradient of the density, i.e., the tangential (to the AI) vector
such that for any tangential vector V,

〈∇∇ρ; V〉 = 1
ρ(t, r)

lim
∆s→0

ρ(t, r + V∆s)− ρ(t, r)
∆s

; (A5)

https://cutt.ly/fTZsmjC
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• Sr(V) = −DV N, shape operator, where DV N is the derivative of the vector-field N in the
direction V tangential to the isosurface in Section 4 in [41].

Informal comments on these definitions are available in [54]. In this section, we adopt
Assumptions 1 and 2. Then the above quantities are well-defined in the operational zone [54].

From now on, the notation A C
= B means that the equation holds by the fact stated or referenced

above =; here = can be replaced by the symbol of any binary relation, e.g., >,≤, etc. The symbol⇒
means “implies that”; |S| stands for the number of elements in the set S. The arguments of the form
(t), (t, r), and [t, ri(t)] are omitted whenever this does not confuse.

The first two lemmas offer technical formulas concerned with the mechanics of environmental
fields and the motion of UAVs in them.

Lemma A1 ([54]). The following relations hold in the operational zone: ρ(t, r) = ‖∇F(t, r)‖,
N = ∇F(t, r)/‖∇F(t, r)‖, λ(t, r) = −F′t (t, r)‖∇F(t, r)‖. For any vector V tangent to the isosurface,
we have

λ(t, r + Vds) = λ− 〈~ω; V〉ds + O(ds), λ(t, r + Nds) = λ− gρds + O(ds); (A6)

N(t, r + Nds) = N +∇∇ρds + O(ds), r+(dt|t, r) = r + λNdt + O(dt). (A7)

Lemma A2. Whenever the ith UAV moves in the operational zone, the following relations hold:

ḣi = vi〈ei; h〉, ḧi = vi〈ui; h〉, ḟi = ρ[vi〈N; ei〉 − λ]; (A8)

viei = λ̂i N −Vi, where λ̂i = ḟ ρ
i + λ, ḟ ρ

i := ḟi/ρ and (A9)

Vi := ∓~τ
Vτ

i
cos αh

+
λ̂i sin αh − ḣi

cos αh
htan, where (A10)

Vτ
i :=

√
v2

i cos2 αh − (ḣ2
i + λ̂2

i − 2ḣiλ̂i sin αh), (A11)

ρ̇ = ḟinρ − ρ〈∇∇ρ; Vi〉+ ρgρ, Ṅ = ḟ ρ
i ∇∇ρ + SVi + ~ω, λ̇ = 〈~ω; Vi〉 − ḟ ρ

i gρ + α, (A12)

f̈i = vi〈N; ui〉 − II [Vi]− 2〈~ω; Vi〉 − α + ḟ ρ
i
[

ḟ ρ
i nρ − 2〈∇∇ρ; Vi〉+ 2gρ

]
. (A13)

Proof. The first two formulas in (A8) hold by (2); the third one is true since

ḟi = F′t + 〈∇F; ṙi〉
(2)
== F′t + vi〈∇F; ei〉

Lemma A1
===== ρ[−λ + vi〈N; ei〉].

As is noted after Assumption 2, the vectors h and N are not co-linear. Hence h, N and
~τ = h× N/ cos αh form a basis in R3 and so ei = xh + yN + z~τ. By finding x, y, z from the first
and third formulas in (A8), with using the equations ‖ei‖ = 1, 〈h; N〉 = sin αh, we arrive at (A9) since

x =
ḣi − λ̂i sin αh

vi cos2 αh
, y =

λ̂i − ḣi sin αh
vi cos2 αh

, z = ±

√√√√1−
ḣ2

i + λ̂2
i − 2ḣiλ̂i sin αh

v2
i cos2 αh

.

To prove (A12), we observe that by (2) and (A9),

ri(t + dt) = ri(t) + vieidt + O(dt) = ri(t) + λNdt + [ ḟi N/ρ−Vi]dt + O(dt)
(A7)
== r+[dt|t, ri(t)] + [ ḟi N/ρ−Vi]dt + O(dt); (A14)

ρ̇dt + O(dt) = ρ[t + dt, ri(t + dt)]− ρ[t, ri(t)] = ρ{t + dt, ri(t + dt)} − ρ{t + dt, r+[dt|t, ri(t)]}

+ρ{t + dt, r+[dt|t, ri(t)]} − ρ[t, ri(t)]
(A3)
== ρ[t, ri(t) + ( ḟi N/ρ−Vi)dt]− ρ[t, ri(t)] + ρgρdt + O(dt)

(A4),(A5)
==== ḟinρdt− ρ〈∇∇ρ; Vi〉dt + ρgρdt + O(dt)⇒ the first equation in (A12);

Ṅdt + O(dt) = N(t + dt)− N(t)
(A14)
== N{t + dt, r+[dt|t, ri(t)] + ( ḟi N/ρ−Vi)dt}

−N{t + dt, r+[dt|t, ri(t)]}+ N{t + dt, r+[dt|t, ri(t)]} − N{t, ri(t)}+ O(dt)
(A2),(A7)
====== ḟi/ρ∇∇ρdt + SVidt + ~ωdt + O(dt)⇒ the second equation in (A12);

λ̇dt + O(dt) = λ(t + dt)− λ(t)
(A14)
== λ{t, ri(t) + ( ḟi N/ρ−Vi)dt}

−λ{t + dt, r+[dt|t, ri(t)]}+ λ{t + dt, r+[dt|t, ri(t)]} − λ{t, ri(t)}+ O(dt)
(A1),(A6)

======= 〈~ω; Vi〉dt− ḟi/ρgρdt + αdt + O(dt)⇒ the third equation in (A12).
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Since ‖N‖ = 1 everywhere, the derivatives (A2) and S(Vi) = −DVi N are perpendicular to N;
so is (A10) by the definition of ~τ and htan, and ∇∇ρ by its own definition. By combining this with
(2), (A12), the third equation from (A8), and the formula II [V] = 〈S(V); V〉 in Section 4 in [41], we
infer that

f̈i/ρ = ρ̇/ρ[vi〈N; ei〉 − λ] + vi
〈

Ṅ; ei
〉
+ vi〈N; ui〉 − λ̇ =

[
ḟ ρ
i nρ − 〈∇∇ρ; Vi〉+ gρ

]
[〈N; viei〉 − λ]

+
〈

ḟ ρ
i ∇∇ρ + SVi + ~ω; viei

〉
+ vi〈N; ui〉 − 〈~ω; Vi〉+ ḟ ρ

i gρ − α
(A9)
== ḟ ρ

i gρ − α− 〈~ω; Vi〉+ vi〈N; ui〉

+
[

ḟ ρ
i nρ − 〈∇∇ρ; Vi〉+ gρ

]
[
〈

N; λ̂i N −Vi

〉
− λ] +

〈
ḟ ρ
i ∇∇ρ + S(Vi) + ~ω; λ̂i N −Vi

〉
= ḟ ρ

i gρ − α

−〈~ω; Vi〉+
[

ḟ ρ
i nρ − 〈∇∇ρ; Vi〉+ gρ

]
[λ̂i − λ]︸ ︷︷ ︸
= ḟ ρ

i by (A9)

−
〈

ḟ ρ
i ∇∇ρ + S(Vi) + ~ω; Vi

〉
+ vi〈N; ui〉 ⇒ (A13) .

The next lemma offers useful facts about the unit vectors (7), ~τ, and htan.

Lemma A3. If the ith UAV moves in the operational zone and is not vertical, the following formulas hold:〈
hpy

i × ei; h
〉
= 0,

〈
hpy

i ; h
〉
= sin θi,

〈
N; hpy

i × ei

〉
= ∓

Vτ
i

vi sin θi
, 〈~τ; htan〉 = 0, (A15)

where the sign in ∓ is borrowed from (A10).

Proof. By (7), hpy
i × ei =

h×ei
sin θi

, so the first formula in (A15) is true, and also
〈

hpy
i ; h

〉
=
〈

h−ei cos θi
sin θi

; h
〉
=

1−cos2 θi
sin θi

= sin θi, hence the second formula is valid as well. By using the triple product [A, B, C] =
〈A; B× C〉 ∀A, B, C ∈ R3, we see that〈

N; hpy
i × ei

〉 (7)
=

[N, h− ei cos θi, ei]

sin θi
=

[N, h, ei]

sin θi
= − [ei, h, N]

sin θi

= −〈ei; h× N〉
sin θi

(a)
= − cos αh

sin θi
〈ei;~τ〉

(A9)
= − cos αh

vi sin θi

〈
λ̂i N −Vi;~τ

〉 (b)
=

cos αh
vi sin θi

〈Vi;~τ〉

(A10)
=

cos αh
vi sin θi

〈
∓~τ

Vτ
i

cos αh
+

λ̂i sin αh − ḣi
cos αh

htan;~τ

〉
(c)
= ∓

Vτ
i

vi sin θi
.

Here (a) and (b) use the definition ~τ = h× N/ cos αh of ~τ, and (c) uses the definition htan =
(h− N sin αh)/ cos αh of htan, by which 〈~τ; htan〉 = 0. Thus the third formula in (A15) is true.

The last lemma in this appendix displays a technical property of special systems of ODEs.

Lemma A4. Suppose that the functions y−1(·), yn+1(·), and yi(·), ϑi(·), i = 0, . . . , n are defined on
T := [0, τ+] (where τ+ > 0), are of class C1 and meet the following requirements:

(i) ẏi(t) = ϑi(t)
[
yi+1(t) + yi−1(t)− 2yi(t)

]
, ϑi(t) > 0 t ∈ (0, τ+], ∀i = 0, . . . , n ;

(ii) yn+1(0) > 0 or yn+1(0) = 0 and ẏn+1(t) > 0 for all t > 0, t ≈ 0;
(iii) y−1(0) < 0 or y−1(0) = 0 and ẏ−1(t) ≤ 0 for all t > 0, t ≈ 0;
(iv) y0(0) = · · · = yn(0) = 0.

Then
y−1(t) < . . . < yn+1(t) for t > 0, t ≈ 0. (A16)

Proof. Due to (ii) and (iii), properly decreasing τ+ > 0 ensures that for all t ∈ (0, τ+],

yn+1(t) > 0, y−1(t)
{
≤ 0 if y−1(0) = 0
< 0 if y−1(0) < 0

,
ẏn+1(t) > 0 if yn+1(0) = 0
ẏ−1(t) ≤ 0 if y−1(0) = 0

. (A17)

We introduce a small parameter ε > 0, ε ≈ 0 and consider the solution yε
i of the ODE’s from

(i) with the perturbed data yε
−1(t) := y−1(t)− ε, yε

n+1(t) := yn+1(t) + ε and yε
i (0), i = 0, . . . , n such

that yε
−1(0) < . . . < yε

n+1(0) and yε
i (0)→ 0, i = 0, . . . , n as ε→ 0+. Then the open (in T) set

{t ∈ T : yε
−1(t) < . . . < yε

n+1(t)} (A18)

contains 0. Suppose that this set is not equal to T and consider its leftmost connected component
[0, τ). Then 0 < τ ≤ τ+ and there exist at least two indices i with a common value yε

i (τ) =: y∗. Let
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i+/i− stand for the maximal/minimal index i such that yε
i (τ) = y∗. Then i+ > i−, whereas (A17)

implies that either i− ≥ 0 or i+ ≤ n. Thanks to Thm. 2.1 and Ch. 5 in [55],

yε
i (t)→ yi(t) as ε→ 0 + uniformly over T. (A19)

Hence due to (iv), yn+1(0) > 0⇒ i+ 6= n + 1 and y−1(0) < 0⇒ i− 6= −1 if ε ≈ 0.
In the case where i+ ≤ n, we see that for i := i+, first, i ≥ 0 and second,

ẏε
i (τ) = ϑi(τ)[yε

i+1(τ) + yε
i−1(τ)− 2yε

i (τ)] = ϑi(τ)[yε
i+1(τ)− y∗] > 0,

i ≥ 1⇒ ẏε
i−1(τ) = ϑi−1(τ)[yε

i (τ) + yε
i−2(τ)− 2yε

i−1(τ)] = ϑi(τ)[yε
i−2(τ)− y∗] ≤ 0.

Hence if i ≥ 1, then yε
i (t) < yε

i−1(t) for t < τ, t ≈ τ, in violation of the definition of τ. If i = 0,
then i− 1 = i− = −1. So y−1(0) = 0 by the foregoing, and, as before, ẏε

i−1(τ) = ẏi−1(τ) ≤ 0 by
(A17). This again entails a contradiction and proves that the set (A18) equals T and so yε

−1(t) < . . . <
yε

n+1(t) ∀t ∈ T. With regard to (A19), letting ε→ 0+ here yields that

y−1(t) ≤ . . . ≤ yn+1(t) ∀t ∈ T. (A20)

Similar arguments (with using i− instead of i+) show that these inequalities are also true in the
case where i− ≥ 0 and thus, in any possible case.

By putting ζi := yi − yi−1, we see that for 1 ≤ i ≤ n and t ∈ (0, τ+], the following is true:

ζ̇i
(i)
= ϑi

[
yi+1 − yi︸ ︷︷ ︸
≥0 by (A20)

+ yi−1 − yi︸ ︷︷ ︸
−ζi

]
− ϑi−1[yi − yi−1︸ ︷︷ ︸

ζi

+ yi−2 − yi−1︸ ︷︷ ︸
≤0 by (A20)

] ≥ −(ϑi + ϑi−1)︸ ︷︷ ︸
=:ηi

ζi, (A21)

ζ̇0 = ẏ0 − ẏ−1
(i)
= ϑ0

[
y1 − y0︸ ︷︷ ︸
≥0 by (A20)

+ y−1 − y0︸ ︷︷ ︸
−ζ0

]
− ẏ−1

by (A17) if y−1(0)=0
≥ −ϑ0︸︷︷︸

η0

ζ0, (A22)

ζ̇n+1 = ẏn+1 − ẏn
(i)
= ẏn+1 − ϑn[yn+1 − yn︸ ︷︷ ︸

ζn+1

+ yn−1 − yn︸ ︷︷ ︸
≤0 by (A20)

]
by (A17) if yn+1(0)=0

> ≥ −ϑn︸︷︷︸
ηn

ζn+1.

Let qi := ζ̇i − ηiζi. Then for all t ∈ (0, τ+], we have qi(t) ≥ 0 ∀i = 0, . . . , n, q0(t) ≥ 0 if
y−1(0) = 0, qn+1(t) > 0 if yn+1(0) = 0. Also,

ζ̇i = ηiζi + qi ⇒ ζi(t) = yi(t)− yi−1(t) = e
∫ t

0 ηi(ς) dςζi(0) +
∫ t

0
e
∫ t

s ηi(ς) dςqi(s) ds. (A23)

By invoking (iv) and putting i := n + 1 in (A23), we see that yn+1(t) > yn(t) ∀t ∈ (0τ+] by
(A23) if yn+1(0) = 0 and by reducing τ+ > 0 if yn+1(0) > 0. Then for i := n, the inequality under
the first ︸︷︷︸ in (A21) if i > 0 and in (A22) if i = 0 holds with ≥7→>, and so qi(t) > 0 ∀t ∈ (0, τ+],

whereas ζi(0) ≥ 0 due to (iii) and (iv). Hence yi(t) > yi−1(t) ∀t ∈ (0, τ+] by (A23), where i = n. The
proof is completed by iteratively continuing likewise, decreasing i by 1 at every step.

Appendix B. Proofs of the Results from Section: Convergence to the Isosurface

From now on, we assume that the UAVs are driven by the proposed control law, and the
assumptions of Theorem 2 hold. By Assumption 5, the ith UAV is initially inside the operational zone
OZ defined by (12). The first lemma tacitly addresses the maximal semi-open interval

[
0, Top

i
)

during
which the ith UAV remains in this zone [t, ri(t)] ∈ OZ (where Top

i ∈ (0, ∞]).

Lemma A5. While the ith UAV remains in the operational zone (12), the following is true:

(i) While this UAV is in the initial mode A, it flies at a constant altitude from (h−, h+), and ḣi = 0;
(ii) If A 7→M at some time Tsw

i , then afterward |ḣi| ≤ γ∆h and the UAV is not vertically oriented;
(iii) The ith UAV is never vertically oriented and | cos θi| ≤ γ∆h/vi;
(iv) The output of (9) meets the requirements from (2).

Proof. Whenever the UAV is not vertical, we have by invoking the first two formulas in (A15):

ḧi
(A8)
== vi〈ui; h〉 (9)

= −û h sgn
[
ḣi − vi

]
. (A24)
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(i) In mode A, vi ≡ 0 by (10) and so ḧi ḣi < 0 near the discontinuity surface {(ri, ei) : ḣi = 0}, which
is thereby sliding. Since ḣi(0) = 0 by Assumption 5 and (A8), sliding motion over this surface
commences at t = 0 and continues until either A is switched off or robot i leaves OZ . So until
this moment, ḣi = 0. The constant altitude of the UAV belongs to (h−, h+) by Assumption 5.

(ii) By (10), (11) and (22), |vi| ≤ γ∆h. Due to (i), T := {t ∈
[
Tsw

i , Top
i
)

: the UAV is not vertical at time
t} 6= ∅. Let

[
Tsw

i , τ
)

be the leftmost connected component of the open (in
[
Tsw

i , ∞
)
) set T, where

Tsw
i < τ ≤ Top

i . On the interval
[
Tsw

i , τ
)
, (A24) holds by the foregoing and so ḣi > γ∆h ⇒ ḧi < 0

and ḣi < −γ∆h ⇒ ḧi > 0. It follows that on this interval, {(ri, ei) : −γ∆h ≤ ḣi ≤ γ∆h} is a
trapping region, so the UAV remains there, and |ḣi(t)| ≤ γ∆h, where γ∆h < vi by (25). Then
the first equation in (A8) yields that |〈ei; h〉| < 1, so the UAV is not vertical. If τ < Top

i , then by
letting t → τ− in |ḣi(t)| ≤ γ∆h < vi, we see that the UAV is not vertical at t = τ and, by the
continuity argument, for all t ∈

[
Tsw

i , τ1
)
, where τ1 ∈ (τ, Top

i ) is close enough to τ. However,
this contradicts the definition of

[
Tsw

i , τ
)

as the connected component of T. Thus τ = Top
i ,

which completes the proof of (ii).
(iii) summarizes some parts of (i) and (ii) modulo the first equation from (A8).
(iv) Since in (9), the unit vectors (7) and hpy

i × ei are perpendicular to ei, the output ui of (9) meets
the third requirement from (2). Since these vectors are mutually perpendicular,

‖ui‖2
(9)
≤ (û f

i )
2 +

(û h)2

v2
i (1− cos2 θi)

(iii)
≤ (û f

i )
2 +

(û h)2

v2
i − γ2∆2

h

(28)
≤ û2

i .

Thus we see that the last requirement from (2) is satisfied.

Since the ith UAV starts within the operational zone (12) by Assumption 5, f− ≤ fi(0) ≤ f+.

Lemma A6. While the inequalities f− ≤ fi ≤ f+ are kept true, the ith UAV remains in the operational zone,
i.e., the second part h− ≤ hi ≤ h+ of its definition (12) is also kept true, and, moreover, h− < hi < h+.

Proof. The UAV starts in the interior of OZ by Assumption 5. So f− ≤ fi(t) ≤ f+ for t ∈ [0, T) with
some T > 0. We consider the maximal such T, where T ∈ (0, ∞]. Suppose that the conclusion of the
Lemma fails to be true. Then there exists τ ∈ (0, T] such that τ < ∞ and hi(t) ∈ (h−, h+) ∀t ∈ [0, τ)
and either hi(τ) = h+ or hi(τ) = h−. We focus on the former case, the latter is considered likewise.
Thanks to (i) in Lemma A5, τ > Tsw

i and hi(Tsw
i ) ∈ (h−, h+), where Tsw

i is the time when A 7→ M.
We focus on t ∈ (Tsw

i , τ), denote s = t− Tsw
i , and observe that

Ξ[h̊+i ]
(5),(6)
≤ Ξ[2(h+ − hi)]⇒ vi

(10)
= ð(s)

[
Ξ(h̊+i )− Ξ(h̊−i )

]
≤ v̊+i := ð(s)Ξ[2(h+ − hi)]

⇒ sgn
[
ḣi − vi

]
≥ sgn

[
ḣi − v̊+i

] (A24)⇒ ḧi ≤ −û h if ϕi := ḣi − v̊+i > 0;

ϕi > 0⇒ ϕ̇i ≤ −A, where A := û h − 2ðΞ′ ḣi + ð′ · Ξ
(a)
≥ û h − 2γ2∆h − ð′γ∆h

(29)
> 0. (A25)

Here (a) holds due to (ii) in Lemma A5, (11) and (22).
Now we are going to show that ϕi(t) ≤ 0 ∀t ∈ [Tsw

i , τ). Indeed, suppose the contrary. Since
ϕi(Tsw

i ) = 0 by the first equation in (22), there exists (τ−, τ+) ⊂ (Tsw
i , τ) such that τ− < τ+, ϕi(τ−) = 0

and ϕi(t) > 0 ∀t ∈ (τ−, τ+). Then ϕ̇i(t) < 0 ∀t ∈ (τ−, τ+) by (A25) and so ϕi(t) < 0 ∀t ∈ (τ−, τ+),
contrary to the definition of (τ−, τ+). Thus ϕi(t) ≤ 0 ∀t ∈ [Tsw

i , τ); i.e.,

ḣi ≤ ð(s)Ξ[2(h+ − hi)] ∀t ∈ [Tsw
i , τ).

Putting = in place of ≤ here yields an ODE that have the constant solution h+, whereas
hi(Tsw

i ) < h+. Then Th. 4.1 in Ch. 3 in [55] guarantees that hi(Tsw
i ) < h+ ∀[Tsw

i , τ], in violation of
hi(τ) = h+. The contradiction obtained completes the proof.

Now we examine the following part of the discontinuity surface of the first addend in (9):

S
op
i := {s = (t, ri, ei) : Si := ḟi + χ( fi − f?) = 0, (t, ri) ∈ OZ, h− < hi < h+, |ḣi| ≤ γ∆h}. (A26)

Lemma A7. The following statements hold:

(i) On S
op
i , the quantity (A11) is nonzero;

(ii) In (A10), the sign in ∓ is constant on any connected component of Sop
i ;
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(iii) The part Sop
i,− of Sop

i where this sign is − is sliding, and the part Sop
i,+ of Sop

i where this sign is + is
two-side repelling.

Proof. (i) On S
op
i , we have ḟi = −χ( fi − f?) and so | ḟi| ≤ χ by (21).

| ḟ ρ
i |

(A9)
= | ḟi|/ρ

Lemma A1
≤ χ/‖∇F‖

Assumption 2
≤ bρχ

(25)
= χρ; (A27)

Vτ
i

(A11)
==

√
v2

i cos2 αh − λ2 + x, where (A28)

x := λ2 − (ḣ2
i + λ̂2

i − 2ḣiλ̂i sin αh)
λ̂i= ḟ ρ

i +λ by (A9)
======== −ḣ2

i − ( ḟ ρ
i )

2 − 2λ ḟ ρ
i + 2ḣi(λ + ḟ ρ

i ) sin αh;

|x|
(18) and Lemma A5

≤ γ2∆2
h + χ2

ρ + 2bλχρ + 2γ∆h(bλ + χρ)
(26)
= ξ ⇒ (A29)

v2
i cos2 αh − λ2 + x ≥ v2

i cos2 αh − ξ2
(16), (26)
≥

(|λ|+ ∆λ)
2 − λ2 − (1− η2)∆2

λ ≥ η2∆2
λ > 0, (A30)

which completes the proof of (i).
(ii) By (A9), Vi = ( ḟi/ρ + λ)N − viei is continuous on S

op
i . So (ii) is implied by (i) and (A10).

(iii) We invoke Si from (A26) and will examine the limit points of Ṡi and f̈i when approaching a state
s from S

op
i in such a way that Si 6= 0 and sgn Si is kept unchanged. We will retain the notations

Ṡi and f̈i for these limit values, sgn Si for the constant value of the sign, and will compute the
other quantities at the state s. Due to (9) and (A13), we see that

Ṡi = f̈i + χ′( fi − f?) ḟi = −
û h

sin θi

〈
N; hpy

i

〉
ζ + viû

f
i

=∓ Vτ
i

vi sin θi
by (A15)︷ ︸︸ ︷〈

N; hpy
i × ei

〉
sgn Si

−II [Vi]− 2〈~ω; Vi〉 − α + ḟ ρ
i [ ḟ ρ

i nρ − 2〈∇∇ρ; Vi〉+ 2gρ] + χ′( fi − f?) ḟi.

Here ζ ∈ [−1, 1] is born by sgn
[
ḣi − vi

]
in (9) via Filippov’s convexification procedure [40].

By using (iii) in Lemma A5, we see that | sin θi| =
√

1− cos2 θi ≥
√

1− γ2∆2
h/v2

i . Meanwhile,

|
〈

N; hpy
i

〉
| ≤ 1 since both N and hpy

i are unit vectors. Now we put Vi :=
√

v2
i cos2 αh − λ2 and

Υi := û f
i Vi ± Ṡi sin θisgn Si , and note that the formula for Ṡi can be rewritten in the form:

Ṡi = ∓
sgn Si
sin θi

[
û f

i Vi − Υi

]
, where (A31)

|Υi|
(A27)
≤ viû h√

v2
i − γ2∆2

h

+ |II [Vi] + 2〈~ω; Vi〉+ α|︸ ︷︷ ︸
A

(A32)

+ χρ[χρ|nρ|+ 2‖∇∇ρ‖‖Vi‖+ 2|gρ|︸ ︷︷ ︸
B

+ û f
i |V

τ
i −Vi|+ |χ′( fi − f?) ḟi|︸ ︷︷ ︸

C

.

To estimate A, B, and C, we first note that

‖Vi‖2 (A10),(A15)
=====

(Vτ
i )

2 + (λ̂i sin αh − ḣi)
2

cos2 αh

(A11)
=

v2
i cos2 αh − (ḣ2

i + λ̂2
i − 2ḣiλ̂i sin αh) + (λ̂i sin αh − ḣi)

2

cos2 αh
= v2

i − λ̂2
i ≤ v2

i

⇒ B
(18)
≤ χρ(χρbn + 2vib∇ + 2bg).

By invoking (15), (A8), and (A10), we see that

Vi = V∓i + V∆
i , where V∆

i
(A9)
= ∓~τ

Vτ
i −Vi

cos αh
+

ḟ ρ
i sin αh − ḣi

cos αh
htan.

Now we introduce the function f (y) :=
√

v2 cos2 αh − λ2 + y and note that Vi = f (0), whereas
Vτ

i = f (x) by (A28). Due to (A30), | f ′(y)| ≤ 1/(2η∆λ) for y between 0 and x. By applying the mean
value theorem to the function f (·), we see that
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|Vτ
i −Vi| = | f (x)− f (0)| ≤ |x|

2η∆λ

(A29)
≤ ξ

2η∆λ
(A33)

⇒ ‖V∆
i ‖

(A15)
==

√
(Vτ

i −Vi)2 + ( ḟ ρ
i sin αh − ḣi)2

cos αh

(16),(A26),(A27)
≤ vi

∆λ

√
ξ2

4η2∆2
λ

+ (χρ + γ∆h)2. (A34)

By (15) and the last equation from (A15), ‖V∓i ‖ =
√

v2
i − λ2 ≤ vi. By retaining the notation II

for the bilinear form II [V, W] associated with the quadratic form II [V] and noting that |II [V, W]| ≤
|κ|‖V‖‖W‖ for the maximal (in absolute value) eigenvalue κ of the latter form, we see that

A ≤ |II
[
V∓i
]
+ 2
〈
~ω; V∓i

〉
+ α|+ |II [Vi] + 2

〈
~ω; Vi −V∓i

〉
− II

[
V∓i
]
|

(17)
≤ Viûi − ∆u +

∣∣∣II
[
Vi; V∆

i

]∣∣∣+ ∣∣∣II
[
V∓; V∆

i

]∣∣∣+ 2‖~ω‖‖V∆
i ‖

(18)
≤ Viûi − ∆u +

[
bκ‖Vi‖+ bκ‖V∓i ‖+ 2bω

]
‖V∆

i ‖
(A11)
≤ Viûi − ∆u + 2[vibκ + bω ]‖V∆

i ‖;

C ≤ |Vi −Vτ
i |ûi + |χ′|| ḟ |

(21),(A33)
≤ ξûi

2η∆λ
+ χχ ′

(25)
=

ξûi
2η∆λ

+ χρχ ′/bρ.

By summarizing and invoking (A32), we see that

|Υi| ≤
viû h√

v2
i − γ∆2

h

+ Viûi − ∆u + 2[vibκ + bω ]
vi
∆λ

√
ξ2

4η2∆2
λ

+ (χρ + γ∆h)2

+χρ(χρbn + 2vib∇ + 2bg + χ ′/bρ) +
ξûi

2η∆λ

(27)
< Viû

f
i .

So ∓ṠiSi > 0 by (A31), which completes the proof of (iii).

The next lemma employs the natural number ni from Assumption 6.

Lemma A8. (i) There exists a closed-loop trajectory such that the following claims hold for any UAV i:

1. There exists time tsm
i < Ti := 2πni/û f

i such that during (0, tsm
i ), the UAV is in mode A and

moves at a constant altitude with Si 6= 0, and f− ≤ fi(t) ≤ f+;
2. For t ≥ tsm

i , the UAV undergoes sliding motion over Sop
i,− and fi(t)→ f? as t→ ∞.

(ii) If a trajectory does not meet 1 and 2, then there is i such that Si(0) = 0, (A10) holds with + in ∓, and
starting from t = 0, the ith UAV stays on the two-side repelling surface Sop

i,+ for a nonzero time.

Proof. (i) By (A8) and Assumption 5, [0, ri(0)] is inside OZ and ḣi(0) = 0. Let Si(0) = 0. Then
at t = 0 the ith UAV is on S

op
i by (A26). If it is not on S

op
i,−, then it is on S

op
i,+ by (i) of

Lemma A7. Then due to (iii) of Lemma A7, there exists a trajectory such that for t > 0, t ≈ 0,
we have Si(t) 6= 0, and the UAV is in OZ. The last two properties are true if Si(0) 6= 0 by the
continuity argument. So we have to examine two cases: (A) at t = 0 the UAV is on S

op
i,− and (B)

Si(t) 6= 0 ∀t > 0, t ≈ 0.
We intend to show that there is tsm

i for which 1 is true and the UAV is on S
op
i,− at t = tsm

i . In the
case A), it suffices to take tsm

i := 0 (then (0, tsm
i ) = ∅). In the case B), we focus on the situation

where Si(0) > 0 ∀t > 0, t ≈ 0, the converse one Si(0) < 0 ∀t > 0, t ≈ 0 is handled likewise.
Suppose that tsm

i does not exist in the case B). Then f− < fi(t) < f+ ∀t ∈ [0, Ti). Indeed,
otherwise τ < Ti for the leftmost connected component [0, τ) of {t ∈ [0, Ti) : f− < fi(t) < f+},
and fi(τ) = f±. By (8) and the specification of Ttr given just before Theorem 2, during [0, Ti]
mode A is on and ḣi = 0, hi ∈ (h−, h+). Also, Si(t) > 0 ∀t ∈ (0, τ] since otherwise Si arrives at 0
at a time τar ∈ (0, τ] and tsm

i := τar the UAV is on S
op
i,− by (iii) of Lemma A7, in violation of the

first sentence in this paragraph. So by (2) and (9), for t ∈ [0, τ], the UAV moves in a horizontal
plane H with the angular velocity û f

i and hence goes over the boundary of the disc D̊+
i (û f

i )

defined in Section 6 when preliminarily choosing û f
i . By this choice, f− < fi(t) < f+ ∀t ∈ [0, τ],
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in violation of fi(τ) = f±. Thus f− < fi(t) < f+ ∀t ∈ [0, Ti) indeed. Hence τ = Ti, and by the
foregoing,

Si > 0 ∀t ∈ (0, Ti]. (A35)

We introduce a Cartesian frame concentric with D̊+
i (û f

i ) in H. Since cos αh > 0 and so Nhor 6= 0

in OZ by (16), and the set D♦ := [0, Ti]× D̊+
i (û f

i ) is simply connected, Assumption 6 (with

ûi := û f
i ) implies that there exists a continuous function ϕ : D♦ → R such that ϕ(t, r) is the

polar angle of Nhor(t, r) for any (t, r) ∈ D♦ and ϕ[0, ri(0)] ∈ [0, 2π). By (i) in Assumption 6,
|ϕ[0, ri(0)]− ϕ[Ti, r(Ti)]| = |ϕ[0, ri(0)]− ϕ[Ti, ri(0)]| ≤ 2πni − 2π. As t ranges over [0, Ti], the
vector ei(t) rotates counterclockwise with the angular rate û f

i . So the continuous function
ψ(t) := ϕ[t, ri(t)] runs over an interval whose length does not exceed 2πni − 2π, whereas the
polar angle of ei(t) continuously runs from 0 to 2πni. So there exist t−, t+ ∈ [0, Ti] such that the
vector ±ei(t±) is aligned with Nhor(t±) and so ei(t±) = ±Nhor(t±). Hence

Si(t±) = ḟi(t±) + χ[ fi(t± − f?)]
(A8)
= ρ[vi〈N(t±); ei(t±)〉 − λ] + χ[ fi(t± − f?)]

〈h;ei〉=0
==== ρ[vi cos αh〈Nhor(t±); ei(t±)〉 − λ] + χ[ fi(t± − f?)] = ρ[±vi cos αh − λ] + χ[ fi(t± − f?)]

⇒ ±Si(t±) ≥ ρ[vi cos αh − |λ|]− |χ[ fi(t± − f?)]|
(16),(21)
≥ ρ∆λ − χ

(a)
≥ b−1

ρ ∆λ − χ
(25)
> 0.

Here (a) is due to Assumption 2 and Lemma A1. Thus at t = t±, the continuous map Si(t) takes
values of the opposite signs. Hence it vanishes between t− and t+, in violation of (A35). This
contradiction proves that not only in the case (A) but also in (B), there exists tsm

i for which 1 is
true and the UAV is on S

op
i,− at t = tsm

i .

By Lemmas A6 and A7, sliding motion over S
op
i,− commences at tsm

i and continues while
fi ∈ [ f−, f+]. During this motion, ẏ = −χ(y) for y := fi − f?, where the RHS of the ODE obeys
(20). So fi monotonically goes to f? ∈ [ f−, f+] and hence never leaves [ f−, f+] so that |ḣi| ≤ γ∆h
by Lemma A5 and the UAV remains in OZ by Lemma A6. So by (A26), sliding motion over
S

op
i,− never terminates, and fi(t)→ f?. Thus we see that 2 is true.

(ii) The foregoing shows that 1 and 2 are necessarily true if Si(0) 6= 0 or Si(0) = 0 and (A10) holds
with − in ∓. It remains to note that otherwise, the ith UAV starts from S

op
i,+, may stay on S

op
i,+

for a nonzero time, and after leaving S
op
i,+ (if this happens), claims 1 and 2 are true.

Now we “inflate” the targeted isosurface St( f?) into the surrounding layer:

Ŝ
δ f
t ( f?) := {(t, r) ∈ OZ : f? − δ f ≤ F(t, r) ≤ f? + δ f }. (A36)

Lemmas A6, A8, and Formula (8) yield the following.

Corollary A1. For any trajectory satisfying 1, 2 in Lemma A8, any UAV i is always inside the operational
zone (12) and switches to M at some time Tsw

i ≥ Ttr. In mode M, it undergoes sliding motion over Sop
i,− and

is in the set (A36), whereas fi(t) monotonically converges to f? as t→ ∞ and ḟi = −χ( fi − f?).

The first statement in this corollary, (iii) in Lemma A5 and (ii) in Lemma A8 justify the pitch
angle estimate from the first sentence in Remark 3.

Appendix C. Proofs of the Results from Section: Absence of Collisions among the UAVs

In Appendix C, we performed a purely mathematical study of the closed-loop trajectories.
Unlike the real world, a coincidence of the locations of two UAVs at some time entails no implications
for such study. Now we will show that this coincidence does not occur in effect. From now on, we
focus on the non-chimerical trajectories of the team.

Lemma A9. Two UAVs may collide only if both of them are in mode M and are switched from A to M simul-
taneously and with the same field value.

Proof. In A, the UAVs are at distinct altitudes by Assumption 5 and (i) in Lemma A5 and so cannot
collide. If one of them (say i) is in mode M at time t, then t ≥ Ttr, | fi(t) − f?| ≤ δ f by (8) and
Corollary A1. If the other UAV j 6= i is still in A, then | f j(t) − f?| > δ f by (8), so | fi(t) − f?| ≤
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δ f , | f j(t)− f?| > δ f ⇒ fi(t) 6= f j(t), where fi(t) and f j(t) are the field values at the locations of the
respective UAVs. Thus these locations are different, and so the UAVs do not collide.

Let both UAVs be in M. By Corollary A1, fi(t), t ≥ Tsw
i and f j(t), t ≥ Tsw

j solve a common
ODE whose equilibrium f? attracts all non-equilibrium solutions at a time-varying nonzero rate.
Suppose that Tsw

i 6= Tsw
j , and let Tsw

i < Tsw
j . By (8), | fi(Tsw

i )− f?| ≤ δ f , whereas | f j(Tsw
j )− f?| > δ f .

It follows that | fi(t)− f?| < δ f , | f j(t)− f?| ≥ δ f ∀t ∈ (Tsw
i , Tsw

j ] ⇒ fi(Tsw
j ) 6= f j(Tsw

j ) ⇒ fi(t) 6=
f j(t) ∀t ≥ Tsw

j , where the last inequality excludes being at the same location. The cases where
Tsw

j < Tsw
i or Tsw

i = Tsw
j and fi(Tsw

i ) 6= f j(Tsw
j ) are considered likewise (in the latter case, the

arguments start just before the last⇒ symbol).

Thus it remains to show that two UAVs cannot collide if both are in mode M and launch this
mode simultaneously. This will be done by Lemma A13, which is prefaced by several intermediate
technical facts.

Lemma A10. At any time t, the horizontal projections of any two points from the layer (A36) are separated
by a distance not greater than dhor + 2δ f bρv2

i ∆−2
λ , where dhor is taken from Assumption 4.

Proof. Given r ∈ Ŝ
δ f
t ( f?), let H be the horizontal plane passing through r, and let NH(t, r) be the

horizontal projection of N(t, r). Suppose that F(t, r) ≤ f? (the case f? ≤ F(t, r) is considered likewise).
The solution r(·) for the Cauchy problem ṙ(s) = NH [t, r(s)], r(0) = r remains in H and

d
ds

F[t, r(s)] = 〈∇F; NH〉 = ‖∇F‖〈N; NH〉 = ‖∇F‖‖NH‖2
(a)
≥ b−1

ρ cos2 αh
(16)
≥

∆2
λ

bρv2
i

while r ∈ OZ ,

where (a) holds by Assumption 2. Here r ∈ OZ until F[t, r(s)] reaches f∗ at some s∗, which does
happen with s∗ ≤ [ f? − F(t, r)]bρv2

i ∆−2
λ ≤ δ f bρv2

i ∆−2
λ . Also, ‖NH‖ ≤ 1 since NH is the projection of

the unit vector N. Hence ‖r − r(s∗)‖ ≤ s∗ ≤ δ f bρv2
i ∆−2

λ , where r(s∗) ∈ St( f?) ∩OZ . Thus r is at a
distance ≤ δ f bρv2

i ∆−2
λ from the point of St( f?) ∩OZ . Assumption 4 completes the proof.

This lemma and Corollary A1 yield the following.

Corollary A2. Whenever two UAVs are both in mode M, their horizontal projections are separated by a
distance not greater than dhor + 2δ f bρv2

i ∆−2
λ .

Let inM(t) and inA(t) stand for the set of UAVs that are in mode M and A, respectively.

Lemma A11. For any time t and UAV i ∈inM(t), the following modification of the sets (5)

E±i :=
{

j : ±(hj − hi) > 0 and either j ∈inM or j ∈inA∩ Ei

}
(A37)

does not alter the output ui in (9) and Ξ(h̊±i ) in (10) if the sets (A37) are used and (6) is replaced by

h̊±i :=

min
j∈E±i
±(hj − hi) if E±i 6= ∅,

2|h± − hi| otherwise
(A38)

Proof. It suffices to show that Ξ(h̊±i ) are not altered. We focus on Ξ(h̊+i ), whereas Ξ(h̊−i ) is handled
likewise. UAV j with hj ≥ hi + ∆h, as well as the top h+ of OZ if |hi − h+| ≥ dvis, cannot affect
Ξ(h̊+i ) since their effect falls in the saturation zone of Ξ(·) due to (6), (11), (24). Let hi < hj < hi + ∆h.
If (5) considers j, so does (A37). Let j be considered in (A37). If robot j is in mode A, it is considered
in (5). Let j be in M. Then the horizontal projections of ri and rj are separated by a distance
≤ dhor + 2δ f bρv2

i ∆−2
λ by Corollary A2, and the gap between their altitudes ≤ ∆h. So ‖ri − rj‖ < dvis

−
by (24), j ∈ Ei by (4), and so j is considered in (5). Hence Ξ(h̊+i ) is not altered.

We extend ð(·) from (10) on t ≤ 0 by putting ð(t) := 0. The next lemma is concerned with

Σj|i := ḣi − ð(t− Tsw
i ) · Ξ(hj − hi), Σi := ḣi − ð(t− Tsw

i ){Ξ[h̊+i ]− Ξ[h̊−i ]}, (A39)

k := ûh
i − 2ð′γ∆h − 4γ2∆h

(29)
> 0. (A40)
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Lemma A12. Let i ∈inM and j ∈inM∪inA∩ Ei on an interval T, and let τ ∈ T. If hi(t) < hj(t) ∀t ∈ T,

Σj|i(τ) > 0⇒ ḧi(τ) = −uh and Σj|i(τ) > 0⇒ Σ̇j|i(τ) ≤ −k, (A41)

Σi|j(τ) < 0⇒ ḧj(τ) = uh and Σi|j(τ) < 0⇒ Σ̇i|j ≥ k, (A42)

Σj|i(τ) ≤ 0⇒ Σj|i(t) ≤ 0 ∀t ≥ τ, t ∈ T, (A43)

Σi|j(τ) ≥ 0⇒ Σi|j(t) ≥ 0 ∀t ≥ τ, t ∈ T. (A44)

Proof. Whenever m ∈inM, (10), (A24) and (A39) imply that hm is a solution for the following ODE:

ḧm = −û h sgnΣm. (A45)

Due to Lemma A11, (4), (5) and (11), Ξ(h̊+i ) ≤ Ξ[hj − hi], Ξ(h̊−j ) ≤ Ξ[hj − hi], Ξ(h̊−i ) ≥ 0,

Ξ(h̊+j ) ≥ 0. So on T, we have Σi ≥ Σj|i, Σj ≤ Σi|j, and by (A45), ḧj ≥ −û h sgn Σi|j if j ∈inM, whereas

ḧi ≤ −û h sgn Σj|i. Also Σj|i(τ) < 0 ⇒ j ∈in M by (i) in Lemma A5 and (A39). Hence the first
entailment in both (A41) and (A42) does hold. Whenever the respective premise is true, we have

Σ̇j|i = ḧi − ð′Ξ(hj − hi)− ðΞ′(ḣj − ḣi)
(a)
≤ −kj|i(t)sgn Σj|i

Σ̇i|j = ḧj − ð′Ξ(hi − hj)− ðΞ′(ḣi − ḣj)
(a)
≥ −ki|j(t)sgn Σi|j

, where kj|i(t) ≥ k. (A46)

Here (a) is true due to (11) (by which |Ξ| ≤ γ∆h, |Ξ′| ≤ γ), (22) (by which |ð| ≤ 1, |ð′| ≤ ð′),
(A40), and (i), (ii) in Lemma A5. Hence the second entailment in both (A41) and (A42) holds.

Suppose that (A43) is untrue, i.e., Σj|i(τ) ≤ 0 but the set {t ∈ T : Σj|i(t) > 0} is not empty. Any
its connected component is an interval Tc whose left end τ− is a root of Σj|i. However, Σj|i(t) > 0
and so Σ̇j|i(t) < 0 on the interior of Tc thanks to (A41). Then Σj|i(τ−) = 0⇒ Σj|i(t) < 0 ∀t ∈ Tc, in
violation of the definition of Tc. This contradiction completes the proof (A43).

If j ∈in M(τ), (A44) is established likewise. Otherwise, Σj(t) = 0 ∀t ≤ Tsw
j , and so the

conclusion in (A44) trivially holds until Tsw
j . It remains to note that j ∈inM[Tsw

j ].

Lemma A13. There are no collisions among the UAVs. If two UAVs start mode M simultaneously, they are
always at different altitudes.

Proof. By Lemma A9, UAVs i 6= j may collide only if i, j ∈in M and Tsw
i = Tsw

j =: τ. Due to (22)

and (i) in Lemma A5, ḣi(τ) = ḣj(τ) = 0,ð(0) = 0 and so Σj|i(τ) = Σi|j(τ) = 0 by (A39); whereas
hj(τ) 6= hi(τ) by Assumption 5. Let hj(τ) > hi(τ). It suffices to show that hj(t) > hi(t) ∀t ≥ τ.

Suppose the contrary. Then there is T ∈ (τ, ∞) such that hj > hi on T := [τ, T) and
hj(T) = hi(T). On T, (A43) and (A44) imply that ḣj ≥ −ð(t− τ)Ξ(hj− hi) and ḣi ≤ ð(t− τ)Ξ(hj − hi).
So ζ̇ ≥ −2ð(t − τ)Ξ(ζ) for ζ := hj − hi. Here ζ(τ) > ζ0(τ), where ζ0(t) ≡ 0 solves the ODE
ζ̇0 = −2ð(t− τ)Ξ(ζ0). Then ([55], Th. 4.1,Ch. 3) yields that ζ(t) > ζ0(t) ∀t ∈ [τ, T], in violation of
hj(T) = hi(T). This contradiction completes the proof.

Appendix D. Proofs of the Results from Section: Distribution over the Altitudinal Range

In this appendix, the first lemma shows that whenever two UAVs go to different altitudes from
a common one, they never return to a common altitude afterward. More precisely, this is true if both
UAVs are in mode M and even in a more general situation.

Lemma A14. Suppose that on a time interval T = (τ−, τ+), always hi(t) 6= hj(t), one of UAVs i, j is in
mode M, whereas the other either is constantly in M or is constantly in A and in the set (4) associated with the
other UAV. If hi(τ−) = hj(τ−), then hi(τ+) 6= hj(τ+).

Proof. It can be assumed that hi(t) < hj(t) ∀t ∈ (τ−, τ+). Then hi(τ−) = hj(τ−) implies that
ḣi(τ−) ≤ ḣj(τ−). This leaves room for only three cases, which are further dealt with separately.

Let ḣi(τ−) ≤ 0 ≤ ḣj(τ−). Then Σj|i(τ−+) ≤ 0 ≤ Σi|j(τ−+) by (A39). If both UAVs are in
mode M, then (A43) and (A44) imply that Σj|i(t) ≤ 0 ≤ Σi|j(t) for all t ∈ (τ−, τ+), i.e.,

ḣi ≤ ð(t− Tsw
i ) · Ξ(ζ), ḣj ≥ −ð(t− Tsw

j )Ξ(ζ), where ζ := hj − hi. (A47)
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If one of the UAVs i, j is in mode A, the above inequality for the respective derivative holds by
(i) in Lemma A5. So putting q(t) := ð(t− Tsw

i ) + ð(t− Tsw
j ), we get

ζ̇ ≥ −q(t)Ξ(ζ).

The associated ODE ẏ = −q(t)Ξ(y) has a solution y ≡ 0, whereas ζ(τ) > y(τ) ∀τ > τ−, τ ≈ τ−.
Then Theorem 4.1 in Chapter 3 in [55] guarantees that 0 = y(τ+) < ζ(τ+) = hj(τ+)− hi(τ+).

Let 0 < ḣi(τ−) ≤ ḣj(τ−). By (i) in Lemma A5, we have i, j ∈in M. Then the second
inequality in (A47) is still true. Also, Σj|i(τ−+) > 0 and so Σj|i(t) > 0 on some interval of the form
(τ−, τ), τ ≤ τ+; we consider the maximal such an interval. For t ∈ (τ−, τ), (A41) yields that

hi(t) = hi(τ−) + ḣi(τ−)(t− τ−) +
∫ t

τi
ds
∫ s

τ−
(−uh) dς,

hj(t) = hj(τ−) + ḣj(τ−)(t− τ−) +
∫ t

τi
ds
∫ s

τ−
ḧj(ς) dς,

where hi(τ−) = hj(τ−), ḣi(τ−) ≤ ḣj(τ−)

and −uh ≤ ḧj(ς) a.a. ς ∈ (τ−, τ). So if hi(τ) ≥ hj(τ), then ḣi(τ−) = ḣj(τ−) and −uh = ḧj(ς) a.a.
ς ∈ (τ−, τ) and so hi(ς) = hj(ς) ∀ς ∈ (τ−, τ], in violation of the first assumption of the lemma. So
hi(τ) < hj(τ), and the proof is completed if τ = τ+.

If τ < τ+, then Σj|i(τ) = 0 due to the definition of τ and Σj|i(t) ≤ 0 ∀t ∈ [τ, τ+) by (A43).
Hence (A47) is true on [τ, τ+). By retracing the arguments following (A47), we get hi(τ+) < hj(τ+).

Let ḣi(τ−) ≤ ḣj(τ−) < 0. This case is considered likewise.

The following lemma shows that for any trajectory of the team, since some time any, two UAVs
either are constantly at a common altitude or are constantly at different altitudes.

Lemma A15. For any i 6= j,there is T such that either (i) hi(t) 6= hj(t) ∀t ≥ T or (ii) hi(t) = hj(t)∀t ≥ T.

Proof. Suppose that the lemma fails to be true. Then there is time τ1 such that UAVs i and j are
in mode M for t ≥ τ1 and hi(τ1) 6= hj(τ1). Meanwhile, there necessarily exists τ2 > τ1 such
that hi(t) = hj(t) for t = τ2. Since the last equation does not extend on all t ≥ τ2, the open set
{t > τ2 : hi(t) 6= hj(t)} is not empty and differs from (τ2, ∞). Hence it contains a bounded connected
component (τ−, τ+). Then hi(τ−) = h+(τ−), hi(τ+) = hj(τ+), and hi(t) 6= hj(t) ∀t ∈ (τ−, τ+), in
violation of Lemma A14. This contradiction completes the proof.

The next lemma sheds light on the evolution of the function Σm(·) from (A45).

Lemma A16. Let on a time interval T, the ith UAV be in mode M, the set inA(t) ∩ Ei does not alter, and for
any j 6= i, either constantly hj 6= hi or constantly hj = hi. Then the function Σi from (A39) is absolutely
continuous on T and Σ̇i(t)sgn Σi(t) ≤ −k a.a. t ∈ T, where k is defined by (A40).

Proof. On T, the sets (A37) are constant and by (A38) (modified as is described in Lemma A11),

h̊+i = hup
i − hi, where hup

i :=

{
minj∈E+

i
hj if E+

i 6= ∅

2h+ − hi otherwise.

If Ei 6= ∅, Danskin’s theorem [56] guarantees that minj∈E+
i

hj(t) is an absolutely continuous

function and its derivative equals ḣj∗(t)(t) a.a. t ∈ T, where j∗(t) is a minimizer in minj∈E+
i

hj(t). So

| d
dt h̊+i | ≤ 2γ∆h by (i) and (ii) in Lemma A5. Likewise, | d

dt h̊−i | ≤ 2γ∆h. Hence

Σ̇i
(A39)
= ḧi − ð′i{Ξ[h̊

+
i ]− Ξ[h̊−i ]} − ði

{
Ξ′[h̊+i ]

dh̊+i
dt
− Ξ′[h̊−i ]

dh̊−i
dt

}
(A24)
= −[û h − Υ]sgnΣi, (A48)

where |Υ| ≤ 4γ2∆h + 2ð′γ∆h by (10), (11), and (22). It remains to invoke (A40).

This Lemma and Lemma A15 imply the following.

Corollary A3. There is time T such that for t ≥ T, every UAV i is in mode M, undergoes sliding motion
with Σi ≡ 0, and for any j 6= i, either hi(t) 6= hj(t) ∀t ≥ T or hi(t) = hj(t)∀t ≥ T.
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Let A(t) be a non-enlargeable group of UAVs from inM(t) that are at a common altitude at time
t, and let Ak(t), k = 1, . . . , K(t) be all such groups, enumerated in the order of increasing common
altitude hc

k(t). If for Ak(t), there is UAV j ∈in A(t) at the same altitude and in the set Ei(t) of some
i ∈ Ak(t), the group Ak(t) is augmented via adding this j. (By Assumption 5 and (i) in Lemma A5,
there is no more than one such j.) A trajectory of the team is said to be altitudinally scattered at time
t if the size |Ak(t)| ≤ 1 ∀k, and weakly altitudinally scattered on a time interval T if |Ak(t)| ≤ 1 ∀k
anywhere on T, maybe, except for finitely many points t.

Lemma A17. Any trajectory that is weakly altitudinally scattered on a time interval [0, τ], τ > 0 can be
continued on t > τ so that it is altitudinally scattered at any time t ∈ (τ, τ+) for some τ+ > τ, τ+ ≈ τ.

Proof. We observe the state of the team at t = τ and re-enumerate the UAVs with the index
i = 0, . . . , N − 1 so that (1) the higher the altitude, the larger the index, (2) for the UAVs at a
common altitude, the greater the speed ḣi(τ), the larger the index, and (3) if in the group of the
UAVs at the altitude hc

k(τ), there are UAVs from inA(τ) \ Ak(τ), they are assigned indices lesser than
any UAV from Ak(τ). If in Ak(τ), there are several UAVs with a common speed, including some
j ∈in M(τ) and r ∈in A(τ+) ∩ Ej(τ), then the rth UAV is assigned the least index among them and
the jth UAV the next index. (If there are many such jth, an arbitrary j is used.) Let ik

1 be the least index
in Ak(τ). Then Ak(τ) = {ik

1, ik
1 + 1, . . . , ik

nk
:= ik

1 + nk}, where nk := |Ak(τ)|, and ik+1
1 ≥ ik

nk
+ 1. For

any k = 1, . . . , K(τ), we define the Lipschitz continuous function h−k of the variables h0, . . . , hN−1 ∈ R
as the maximum of the following quantities

hik−1
nk−1

if k ≥ 2, max
j∈inA(τ)∩Eik1

(τ),hj(τ)<hc
k(τ)

hj(τ) if this max is over a nonempty set,

2h− − hik
1

if the first two conditions are not met.

We also define the Lipschitz continuous function h+k as the minimum of the following quantities

hik+1
nk+1

if k ≤ K(τ)− 1, min
j∈inA(τ)∩Eiknk

(τ),hj(τ)>hc
k(τ)

hj(τ) if this min is over a nonempty set,

2h+ − hik
nk

if the first two conditions are not met.

Now we continue the trajectory of the robotic team from its state at t = τ by applying the
controller (8)–(10), where for i ∈ Ak(τ) ∩inM(τ) with any k, the second line in (10) is altered into

vi := ð(t− Tsw
i )


Ξ[h+k − hi]− Ξ[hi − hi−1] if i = ik

nk
,

Ξ[hi+1 − hi]− Ξ[hi − h−k ] if i = ik
1,

Ξ[hi+1 − hi]− Ξ[hi − hi−1] otherwise.

(A49)

To complete the proof, it suffices to show that the resultant trajectory has the following property:
p) The greater the index k of the hosting (at t = τ) group Ak(τ) or the index of the UAV within this

group, the higher the altitude of the UAV for t > τ, t ≈ τ.
Indeed, for τ+ > τ, τ+ ≈ τ, (4) and (8) imply that inM(t),inA(t), Ei(t) do not alter with

t ∈ [τ, τ+]. Hence any UAV i ∈inA(τ) is driven by the original control law (8)–(10), and hi(t) = hi(τ)
thanks to (i) in Lemma A5. If i ∈in M(τ), then i ∈ Ak(τ) ∩inM(τ) for some k and so vi is given
by (A49). It remains to note that this vi equals ð(t− Tsw

i )[Ξ(h̊+i )− Ξ(h̊−i )], where h̊−i and h̊+i are
computed from (A37) and (A38), and to invoke Lemma A11.

Now we turn to justify p). Let Ar
k(τ), r = 1, . . . , Rk(τ) be the partition of Ak(τ) into groups

with a common vertical speed ḣr
k(τ) := ḣi(τ) ∀i ∈ Ar

k(τ). For two UAVs from the groups Ar
k(τ) with

different (k, r)’s, the property p) holds due to the continuity argument, the definition of the velocity,
(i) in Lemma A5, and Assumption 5. For the case of a common subgroup Ar

k(τ) with no less than
two elements, we examine the behavior of hi(t), i ∈ Ar

k(τ) ∩in M(τ) for t > τ, t ≈ τ.
ḣr

k(τ) = 0 and the minimal and maximal i ∈ Ar
k(τ)∩in M(τ) is greater and lesser than ik

1
and ik

nk
, respectively: For i ∈ Ar

k(τ) ∩in M(τ), we have Σi(τ) = 0 by (A39) and so sliding motion
with Σi(·) ≡ 0 starts at t = τ, which is proven like in (A48). Hence for t > τ, t ≈ τ, the variables
hi(t), i ∈ Ar

k(τ) ∩in M(τ) obey a system of ODE’s that meets the assumptions of Lemma A4 (up to
shifts in t and i), where ϑi := γð(t− Tsw

i ) due to (11). Then p) holds by Lemma A4.
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ḣr
k(τ) = 0 but the other assumptions of the previous paragraph are not met: If i = ik

nk
∈

Ar
k(τ) ∩in M(τ) and Tsw

i 6= τ, then Σi(τ) < 0 by (A39) and ḧi(t) = uh∀t > τ, t ≈ τ by (A45).
Similarly, if i = ik

0 ∈ Ar
k(τ) ∩in M(τ) and Tsw

i 6= τ, then ḧi(t) = −uh∀t > τ, t ≈ τ. As before, we see
that sliding motion with Σi ≡ 0 ∀t > τ, t ≈ τ holds for all other indices i ∈ Ar

k(τ) ∩in M(τ) (if they
exist). The proof of p) is completed by applying Lemma A4 to them.

ḣr
k(τ) 6= 0: Let ḣr

k(τ) > 0, the case ḣr
k(τ) < 0 is handled likewise. Then Ar

k(τ) ⊂in M(τ) by
(i) in Lemma. A5. For any i ∈ Ar

k(τ), i 6= ik
nk

and t ≈ τ, we have Σi(t) > 0 by (A39) and so ḧi ≡ −uh

by (A45). Since the trajectory is weakly altitudinally scattered on [0, τ], there is at most one index
i ∈ Ar

k(τ) such that Σi(t) > 0 ∀t ≈ τ. Hence set Ar
m(τ) consists of i and i + 1 = ik

nk
, insofar as

|Ar
m(τ| ≥ 2, and Σi+1(τ) ≤ 0. If Σi+1(τ) = 0, we infer, like before, that sliding motion starts at t = τ

in the system (A45) with m = i + 1. This implies that ḧi+1 > −uh = ḧi ∀t > τ, t ≈ τ and so p) does
hold. If Σi+1(τ) < 0, then ḧi+1 = uh > −uh = ḧi ∀t > τ, t ≈ τ, and p) holds again.

The times when the set Ei(t) is altered for some i do not accumulate since they are separated by
periods of no less (dvis − dvis

− )/vi due to (4). Since any trajectory is altitudunally scattered on [0, Ttr]
thanks to (8), (i) in Lemma A5, and Assumption 5, Lemmas A14 and A17 imply the following.

Corollary A4. There is a trajectory that starts with the given initial state and has the following property:
p) The trajectory is defined on R+ := [0, ∞), is weakly altitudinally scattered on R+, and meets 1 and 2

from Lemma A8 for any i.

Lemma A18. Any trajectory for which p) from Corollary A4 holds is corporeal.

Proof. It suffices to show that the trajectory is corporeal on any interval T = [τ−, τ+] that does not
contain 0 and times when two UAVs are at a common altitude, or the set Ei(t) alters or A 7→M for
some i. Due to (A24) and 1, 2 in Lemma A8, there is only one trajectory of the closed-loop system that
starts at t = τ− with the same state as the considered trajectory. Then by (9) and (10), and Corollary 1
in Section 8 from Chapter 2 in [40], the trajectory continuously depends on small perturbations of the
team’s state at t = τ−, which completes the proof.

Lemma A19. Any trajectory for which (ii) from Lemma A15 holds with some i 6= j is chimerical, and the
common altitude of UAVs i and j is constant for t ≥ T, where T is taken from Lemma A15.

Proof. Let T be the time from Corollary A3. By using (22) and increasing T if necessary, we ensure
that ð(t− Tsw

i ) ≥ 1/2 ∀t ≥ T, i. There is a group G of UAVs such that |G| ≥ 2 and

hi(t) = hi′ (t) 6= hj(t) ∀t ≥ T, i, i′ ∈ G, j 6∈ G. (A50)

By Lemma A13, UAVs i 6= i′ from G do not start mode M simultaneously: Tsw
i 6= Tsw

i′ . For
t ≥ T, we see that ḣi(t) = ḣi′ (t) and h̊±i (t) = h̊±i′ (t) by Lemma A11, whereas sliding motion
with Σr ≡ 0 occurs for any r since T is borrowed from Corollary A3. So (A39) implies that ð(t−
Tsw

i )[Ξ(h̊+i )− Ξ(h̊−i )] = ð(t− Tsw
i′ )[Ξ(h̊+i′ )− Ξ(h̊−i′ )], where ð(t− Tsw

i ) 6= ð(t− Tsw
i′ ) by (22). Hence

Ξ(h̊+i )− Ξ(h̊−i ) = 0 and ḣi(t) = 0 ∀i ∈ G, t ≥ T.
Now we focus on an interval T = [τ−, τ+], where τ+ > τ−(≥ T) will be specified later on.

It suffices to show that the trajectory is fully chimerical on T. Let this fail to be true. Almost all
perturbations (no matter how small) of the team’s state at time τ− bring the UAVs to different
altitudes. So by the definition of the full chimericality, there is a sequence of states {xk} at t = τ−
with the “different altitudes” property such that any trajectory emitted at t = τ− from xk converges
to the original trajectory uniformly on T as k → ∞. For the emitted trajectory, the UAVs remain at
different altitudes for t > τ−, t ≈ τ−. By Corollary A4, this trajectory can be extended on [τ−, ∞) to
be weakly altitudinally scattered on [τ−, ∞). We shall consider this trajectory, assuming that k is large
enough and dropping k in the notations whenever this does not confuse.

Due to (A50), Corollary A1, and the uniform convergence, we have for any ζ > 0 and k ≈ ∞,

|hi(t)− hj(t)| ≥ λ > 0, |hi(t)− h±| ≥ λ ∀t ∈ T, i ∈ G, j 6∈ G, (A51)

|hi(t)− hi′ (t)| ≤ ζ, |ḣi(t)| ≤ ζ ∀t ∈ T, i, i′ ∈ G, (A52)

where λ ∈ (0, ∆h) does not depend on k, t, i, j. Let ζ ∈ (0, λ) be so small that ζ < λ, ζ < 2û h(τ+− τ−),
and 1/2[Ξ(λ)−Ξ(ζ]− ζ > 0. We also put hmax / min(t) := max / mini∈G hi(t), denote by imax / min(t)
the respective maximizer/minimizer, and by τ0 = τ− < τ1 . . . < τs+1 = τ+ the sequence of times
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τ ∈ T that consists of τ−, τ+ and the times when at least two UAVs are at a common altitude. On
any interval Tm := (τm, τm+1), the indices imax / min(t) are constant imax / min(t) = i+/−

m and by
Lemma A11,

i = i+m
(A51),(A52)
=====⇒ h̊+i ≥ λ, h̊−i ≤ ζ ⇒ ḧi

(A45)
= û h sgn

{
ð(t− Tsw

i )[Ξ(h̊+i )− Ξ(h̊−i )]− ḣi

}
≥ û h sgn{1/2[Ξ(λ)− Ξ(ζ]− ζ} = û h; i = i−m

similarly
====⇒ ḧi = −û h.

Hence ḣmax(τm+1−) ≥ ḣmax(τm+) + û h(τm+1 − τm). The definition of hmax(t) implies that
ḣmax(τm+) ≥ ḣmax(τm−). It follows that ḣmax(τ+−) ≥ ḣmax(τ−+) + û h(τ+ − τ−), and similarly,
ḣmin(τ+−) ≤ ḣmin(τ−+)− û h(τ+− τ−). Thus we see that ḣmax(τ+−)− ḣmin(τ+−) ≥ ḣmax(τ−+)−
ḣmin(τ−+) + 2û h(τ+ − τ−) ≥ −ζ + 2û h(τ+ − τ−) > 0. Since the last expression does not depend
on k, we arrive at a contradiction to the uniform convergence to the original trajectory because of
(A50). This contradiction completes the proof.

We consider a trajectory for which (i) in Lemma A15 is valid whenever i 6= j. Then there is
T such that all UAVs are at different altitudes for t ≥ T. We re-enumerate them in the order of
increasing altitude and put d−1(t) := 2

[
h0(t)− h−

]
, d0(t) := h1(t)− h0(t), . . . , dN−2(t) := hN−1(t)−

hN−2(t), dN−1(t) := 2
[
h+ − hN−1(t)

]
. We recall that ω-limit point of the bounded function D(·) :=

[d−1(·), . . . , dN−1(·)] is the limit limk→∞ D(tk) associated with any sequence {tk}∞
k=1 such that tk →

∞ as k→ ∞. The set Ω of all such points is nonempty and compact.

Lemma A20. If (i) from Lemma A15 holds whenever i 6= j, the following inequality is true:

min
D∈Ω

min
i=−1,...,N−1

di ≥ σh := [h+ − h−]/N. (A53)

Proof. Suppose to the contrary that the left-hand side of (A53) is less than σh. We consider D

furnishing minΩ in (A53) and the sequence {tk}∞
k=1 associated with the ω-limit point D, and denote

by J the set of all minimizers i for di with this D. The set {−1, . . . , N − 1} \ J is not empty since

d−1/2 + d0 + · · ·+ dN−2 + dN−1/2 = h+ − h−. (A54)

So there is i ∈ J such that either i ≥ 0 and di < di−1 or i < N − 1 and di < di+1. We focus on the
first case; the second one is handled likewise. Due to (i) and (ii) in Lemma A5,

|ḋj(t)| ≤ 2γ∆h and so |dj(t′′)− dj(t′)| ≤ 2γ∆h|t′′ − t′| ∀j = −1, . . . , N − 1, t, t′, t′′ ≥ 0. (A55)

We note that ∆h > σh by (23) and (A53). This permits us to pick ξ > 0 and then ε > 0 so that
ξ < min{di−1; ∆h}− di, ε < min{di−1; ∆h}− di − ξ, and ε < ξ/6. We put δ := ε/(4γ∆h), t−k := tk− δ,
note that dj(tk) → dj ∀j as k → ∞, and consider so large k’s that t−k > T, where T is taken from
Corollary A3, di−1(tk)− di(tk) > ξ + ε, i < N − 1⇒ di+1(tk)− di(tk) > −ε, di(tk) + ξ + ε < ∆h, and

ð(t− Tsw
i ) ≥ 1/2,

ð(t−Tsw
i+1)

ð(t−Tsw
i )
≤ 2 for t ≥ t−k . For t ∈ [t−k , tk], we have

min{di−1(t), ∆h} − di(t)
(A55)
≥ min{di−1(tk), ∆h} − di(tk)− 4γ∆hδ ≥ ξ + ε− 4γ∆hδ = ξ,

i < N − 1⇒ di+1(t)− di(t)
(A55)
≥ di+1(tk)− di(tk)− 4γ∆hδ ≥ −ε− 4γ∆hδ = −2ε.

Due to (11), γ[min{d′′; ∆h} − d′] ≤ Ξ(d′′)− Ξ(d′) ≤ −γ[min{d′; ∆h} − d′′] whenever d′, d′′ ≥ 0.
For h̊±j (t) from Lemma A11 and t ∈ [t−k , tk], we have h̊+j (t) = dj(t), h̊−j (t) = dj−1(t) and so
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ḋi(t) =
{

ḣi+1(t)− ḣi(t) if i < N − 1
−2ḣi(t) if i = N − 1

}

(A39)
=


ð
(

t− Tsw
i+1

){
Ξ
[
di+1(t)

]
− Ξ

[
di(t)

]}
− ð

(
t− Tsw

i
){

Ξ
[
di(t)

]
− Ξ

[
di−1(t)

]} if i < N − 1

−2ð
(
t− Tsw

i
){

Ξ
[
di(t)

]
− Ξ

[
di−1(t)

]}
if i = N − 1


≥ γð(t− Tsw

i )


ð(t−Tsw

i+1)
ð(t−Tsw

i )
min{di+1(t)− di(t), ∆h − ∆i(t)}

+ min{di−1(t), ∆h} − di(t)
if i < N − 1

2 min{di−1(t), ∆h} − di(t) if i = N − 1


≥ γð(t− Tsw

i )

 ξ − 2
ð(t−Tsw

i+1)
ð(t−Tsw

i )
ε if i < N − 1

2ξ if i = N − 1

 ≥ γð(t− Tsw
i )

{
ξ − 4ε if i < N − 1
2ξ if i = N − 1

}
≥ γε;

di(t−k ) = di(tk)−
∫ tk

t−k
ḋi(t) dt ≤ di(tk)− γεδ.

By picking a convergent subsequence from {D(t−k )}k, we acquire D− ∈ Ω with d−i ≤ di − γεδ.
Thus D is not a minimizer for the left-hand side of (A53). This contradiction completes the proof.

Lemma A21. If (i) from Lemma A15 holds whenever i 6= j for a trajectory of the team, the team can be
enumerated so that hi(t)→ hi as t→ ∞ for i = 0, . . . , N − 1, where hi are defined in (1).

Proof. By (A53) and (A54), di = σh ∀D ∈ Ω, i = −1, . . . , N − 1, i.e., the ω-limit point of D(·) is
unique. Hence D(t) goes to this point as t → ∞ by Corollary 1.1 in Chapter 7 in [55], and so
di(t) → σh = [h+ − h−]/N as t → ∞ for all i. The proof is completed by (1) and the definition of
di(t).

Proof of Theorem 2. The existence of a corporeal solution follows from Corollary A4 and Lemma A18.
Let us consider a non-chimerical solution. It is needed to show that the statements (i)–(v) in Theorem 1
are true. We first note that (i) from Lemma A15 and (1) and (2) from Lemma A8 hold by these lemmas
and Lemma A19.

(i) holds thanks to (iii) in Lemma A5 and Corollary A1.
(ii) is true due to (iv) in Lemma A5 and Corollary A1.
(iii) is valid by Lemma A13.
(iv) holds thanks to Corollary A1 and (12).
(v) is true due to Corollary A1, Lemma A21, and Definition 1.

Proof of Theorem 1. This theorem is immediate from Theorem 2.
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