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Abstract: Herein, we investigate the robust formation control problem for a group of unmanned
aerial vehicles (UAVs) with system uncertainty. A hierarchical formation control strategy is introduced
to ensure the uniform ultimate boundedness of each UAV’s reference tracking error. First, a group
of saturated high-level virtual agents are defined to act as the trajectory planners that offer feasible
position references to the actual UAVs. A sliding mode neural-based observer is then constructed
to estimate the nonlinear uncertainty in the UAV model. Furthermore, sliding mode controllers are
designed for both the position loop and the attitude loop of the UAV. To attenuate the chattering
phenomenon in the control input, a saturated and smoothed differentiator is proposed along with an
observation introduction function. The effectiveness of the proposed control scheme is validated by
both the Lyapunov stability theory and numerical simulations based on a multiple-UAV system.

Keywords: neural-based observer; unmanned aerial vehicles; hierarchical formation control; sliding
mode control; multi-agent systems

1. Introduction

In recent years, the concept of multi-agent systems [1–5] was developed after the limita-
tions of using single robot were found in various practical scenarios. Along with consensus
theory [6] and swarm behaviour [7,8], formation control [9–12] have become an attractive
research topic because of its close connection with tasks such as transportation [13] and
surveillance. Compared to unmanned ground vehicles (UGVs) [14], UAVs [15–20] are more
popular because they possess higher degrees of freedom.

In [16], the time-varying formation tracking problem for a multiple-UAV system
subjected to switching communication topologies is investigated by solving an algebraic
Riccati equation. Similar results were found for the time-varying formation-containment
control problem in [21]. Although the results presented in [16,21] can illustrate the uniform
ultimate boundedness of formation tracking errors, the corresponding designs were based
on the ideal homogeneous second-order dynamics, which are only applicable in the high-
level path planning perspective, not low-level motion controller design.

Based on the nonlinear cascade model presented in [22], a finite-time leader–follower
formation tracking scheme was proposed in [23] for a group of UAVs with undirected
topologies. Furthermore, a heterogeneous multi-robot system that includes both UAVs
and UGVs was analysed in [24], and a neural-based fault tolerant formation controller
was introduced to perform adaptive formation tracking. However, neither of the above
two works included the path planning module for UAVs, leading to rapid and excessive
changes in the angular status, which is also referred to as aggressive flight [25]. Hence, it
is necessary to develop a path planning scheme that offers smooth and suitable reference
states to the formation controller to reduce the frequency of aggressive motions.

Model uncertainty and external disturbance are also essential factors to consider
for practical applications [26–28]. Regarding nonlinear systems with model switching
phenomena because of the linearisation operation, the methods that are based on the
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linear parameter varying modelling theory are helpful for maintaining the robustness of
the controller design [29–31]. Alternatively, building up nonlinear adaptive observers
is necessary to compensate for the system uncertainty if we choose to analyse a system
without linearisation. An adaptive terminal sliding mode observer was introduced in [32]
to estimate the system uncertainties within finite time. Although the observer given
in [32] was found to be effective, this was based on the assumption of correlation with the
uncertainty’s Lipschitz constant.

Compared to the conventional adaptive observers [33], the neural-based observer
presented in [34] has less constraints for the system uncertainty and is more adaptive. The
structure in [34] was further modified in [35] to estimate the unknown velocity and the
system uncertainty simultaneously for second-order systems. However, the designs in [34]
and [35] both use the proportional error reduction term, which makes it hard to guarantee
fast convergence of observer states. Therefore, whether we can integrate the neural-based
design in [34] with the sliding mode technique in the conventional observer design is a
topic worthy of discussion.

Due to the special cascading relationship between a UAV’s position loop and attitude
loop, the motion controller of a UAV is usually designed in a two-loop structure [15] that
requires using the virtual control input in the position loop to get the desired angular
status through flight control algorithms. With a strong coupling relationship between the
two loops, the control input is sensitive to the sudden changes in system states that can
potentially lead to oscillation and chattering [32]. The work in [35] also pointed out that
the neural network (NN) output is filled with chattering if the neural weight adjusting law
is equipped with static parameters. Hence, it is necessary to find a method to attenuate the
potential chattering phenomenon in the control input.

Based on our previous discussions, the contributions of this paper are listed as follows:

1. Inspired by the work in [36], a hierarchical formation control scheme is employed
in this paper. To make the reference provided by the high-level systems feasible for
low-level UAVs, a saturated high-level formation controller is proposed to reduce the
frequency of aggressive motion.

2. To improve the error converging speed of the observer structure in [34], the sliding
mode technique is integrated with an artificial NN to construct an adaptive observer
to estimate the unknown nonlinearities in UAV dynamics, and a fully error-related
update law is employed.

3. To attenuate the chattering phenomenon in the control input [32], a saturated and
smoothed differentiator is proposed along with an observation introduction function
to reduce the oscillations caused by the differentiating process and the neural-based
observer.

The article is structured as follows. The modelling of the multi-UAV system, the basics
of graph theory and some background on artificial NN estimation are given in Section 2.
The hierarchical formation control scheme and the sliding mode neural-based observer
are presented in Section 3. The set-up, results and discussion regarding the numerical
simulations of a group of UAVs are illustrated in Section 4. The conclusions are drawn in
Section 5.

Notation: In this paper, the term ⊗ represents Kronecker production, In denotes an
identity matrix with the dimension of n. For a matrixM, ‖M‖F represents its Frobenius
norm. IfM is a square matrix, we have σ(M) and σ(M) as the maximum and minimal
eigenvalues ofM, respectively.

2. Preliminaries
2.1. Dynamic Model of Uavs

Consider a distributed heterogeneous multi-drone system consists of N(N > 1) UAVs,
where the dynamics of the ith UAV is expressed as: [24]
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p̈xi = −
Ki,x

mi
ṗxi +

cos(φi)sin(θi)cos(ψi) + sin(φi)sin(ψi)

mi
(ui,1 + ui,2 + ui,3 + ui,4) + w̄i,x

p̈yi = −
Ki,y

mi
ṗyi +

cos(φi)sin(θi)sin(ψi)− sin(φi)cos(ψi)

mi
(ui,1 + ui,2 + ui,3 + ui,4) + w̄i,y

p̈zi = −
Ki,z

mi
ṗzi − g +

cos(φi)cos(θi)

mi
(ui,1 + ui,2 + ui,3 + ui,4) + w̄i,z

φ̈i = −
Ki,φ

Ji,x
φ̇i +

Ji,y − Ji,z

Ji,x
θ̇iψ̇i +

Ri
Ji,x

(−ui,2 + ui,4) + w̄i,φ

θ̈i = −
Ki,θ

Ji,y
θ̇i +

Ji,z − Ji,x

Ji,y
φ̇iψ̇i +

Ri
Ji,y

(−ui,1 + ui,3) + w̄i,θ

ψ̈i = −
Ki,ψ

Ji,z
ψ̇i +

Ji,x − Ji,y

Ji,z
φ̇i θ̇i +

υi
Ji,z

(−ui,1 + ui,2 − ui,3 + ui,4) + w̄i,ψ, i ∈ [1, N]

(1)

where pxi, pyi and pzi represent the global coordinates of the ith UAV; φi, θi and ψi denote the
roll angle, pitch angle and yaw angle, respectively; ui,j(j ∈ [1, 4]) represents the combined
thrust or force provided by the jth motor; Ri is the distance between the centre of the drone
and the centre of the rotor; and the rest of the parameters are defined in Table 1.

Table 1. Parameter definitions.

Term(s) Definition

Ki,x, Ki,y, Ki,z, Ki,φ, Ki,θ , Ki,ψ Aerodynamic drag coefficients
w̄i,x, w̄i,y, w̄i,z, w̄i,φ, w̄i,θ , w̄i,ψ External disturbances

Ji,x, Ji,y, Ji,z Moments of inertia around the axis
mi The mass of the UAV
g The gravity constant
υi The drag force coefficient

For the sake of simplicity, we make the following definitions to divide the control
input of the system into Ti, τi,1, τi,2 and τi,3:

Ti = ui,1 + ui,2 + ui,3 + ui,4, τi,1 = −ui,2 + ui,4

τi,2 = −ui,1 + ui,3, τi,3 = −ui,1 + ui,2 − ui,3 + ui,4
(2)

Due to the strong coupling between channels, the position channel and the attitude
channel should not be combined into an overall second-order model [23]. Instead, design
and analysis based on individual loops are required. Define xi,p = [pxi, pyi, pzi]

T and
vi,p = [ ṗxi, ṗyi, ṗzi]

T. We then have the dynamics of the position loop as{
ẋi,p = vi,p

v̇i,p = fi,p + gi,pTi + w̄i,p − ḡp, i ∈ [1, N]
(3)

for which we have the following equations:

fi,p = −[Ki,x ṗxi/mi, Ki,y ṗyi/mi, Ki,z ṗzi/mi]
T, w̄i,p = [w̄i,x, w̄i,y, w̄i,z]

T, ḡp = [0, 0, g]T

gi,p =
[

cos(φi)sin(θi)cos(ψi)+sin(φi)sin(ψi)
mi

cos(φi)sin(θi)sin(ψi)−sin(φi)cos(ψi)
mi

cos(φi)cos(θi)
mi

]T

If we have wi,p = fi,p + w̄i,p as the overall system uncertainties in the position loop,
Equation (3) can be simplified to the following version:{

ẋi,p = vi,p

v̇i,p = gi,pui + wi,p, i ∈ [1, N]
(4)
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Similarly, if we define xi,a = [φi, θi, ψi]
T and vi,a = [φ̇i, θ̇i, ψ̇i]

T, then the dynamics in
the attitude loop has the following expression:{

ẋi,a = vi,a

v̇i,a = gi,aτi + wi,a, i ∈ [1, N]
(5)

where wi,a = fi,a + w̄i,a, w̄i,a = [w̄i,φ, w̄i,θ , w̄i,ψ]
T and

fi,a =

(Ji,y − Ji,z)θ̇iψ̇i/Ji,x − Ki,φφ̇i/Ji,x
(Ji,z − Ji,x)φ̇iψ̇i/Ji,y − Ki,θ θ̇i/Ji,y
(Ji,x − Ji,y)φ̇i θ̇i/Ji,z − Ki,ψψ̇i/Ji,z

, gi,a =


Ri
Ji,x

0 0

0 Ri
Ji,y

0

0 0 υi
Ji,z

, τi =

τi,1
τi,2
τi,3


For the sake of convenience while analysing the cluster formation tracking behaviour

in later parts, it is still necessary to have a unified cluster dynamics expression. For the ith
UAV, define xi = [xT

i,p, xT
i,a]

T and vi = [vT
i,p, vT

i,a]
T; then, we have the following simplified

version: {
ẋi = vi

v̇i = ui + wi − ḡi, i ∈ [1, N]
(6)

where we have ui = [(gi,pTi)
T, (gi,aτi)

T]T, wi = [wT
i,p, wT

i,a]
T and ḡi = [ḡT

p , 0, 0, 0]T.

To obtain the cluster expression, we define x = [xT
1 , xT

2 , . . . , xT
N ]

T, v = [vT
1 , vT

2 , . . . , vT
N ]

T,
u = [uT

1 , uT
2 , . . . , uT

N ]
T, w = [wT

1 , wT
2 , . . . , wT

N ]
T and ḡ = [ḡT

1 , ḡT
2 , . . . , ḡT

N ], which further lead
to {

ẋ = vs.

v̇ = u + w− ḡ
(7)

Definition 1 ([37]). Consider a vector X. We have a correlated continuous Lyapunov function
V(X). Then the vector X is said to be semi-globally uniformly ultimately bounded (SGUUB) if
V(X) satisfies V(X) = 0 only when ‖X‖ = 0, and there exists a positive boundary bX and a time
tX(X(t0), bX) such that ‖V(X)‖ ≤ bX for all t ≥ tX and X(t0) ∈ ΩV

X , where t0 is the initial time,
X(t0) is the initial value of X and ΩV

X is a compact set of X.

There are two sets of reference for each UAV to follow, the position reference and the
attitude reference. Throughout this paper, we use xd

i,p ∈ R3 and ψd
i ∈ R1 to represent the

position reference and the desired yaw angle for the ith UAV, respectively. The goal of this
article is to achieve semi-global uniform ultimate boundedness for each UAV’s position
tracking error and attitude tracking error, which is illustrated as

lim
t→∞
‖xi,p − xd

i,p‖ ≤ µp, lim
t→∞
‖ψi − ψd

i ‖ ≤ µa, ∀xi(t0) ∈ Ωx (8)

where both µp and µa are small positive constants, and Ωx is a compact set of xi.
The following assumptions are made for the system of Equation (7):

Assumption 1. The trajectory reference xd
i,p and its derivatives ẋd

i,p and ẍd
i,p are all bounded and

accessible to the ith UAV. The yaw angle reference ψd
i is bounded and known to the ith UAV.

2.2. Graph Theory

In this paper, the distributed communication topology of the multi-UAV system
is illustrated by a directed graph G = {R, E, A}, where R = {r1, r2, . . . , rN} represents
the set of nodes, E ⊆ R × R stands for the set of edges and A = [aij] ∈ RN×N is the
adjacency matrix with nonnegative entries. An edge of the graph G is illustrated as
eij = (ri, rj), which stands for edge points from node ri to node rj. Self-loops are not
considered in this paper, and aji = 1 if and only if eij ∈ E. We define degin(ri) = ∑N

j=1 aij
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to be the in-degree of the ith node, and the degree matrix of the graph is illustrated
as D = diag{degin(r1), degin(r2), . . . , degin(rN)}. The Laplacian matrix of the graph is
defined as L = D− A. If there always exists a directed path between a pair of distinguished
nodes, then the directed graph G is said to be strongly connected. The following lemma is
useful for the stability analysis of the proposed control scheme.

Lemma 1 ([38]). Let the graph G be strongly connected and B ∈ Rn×n be a non-negative diagonal
matrix with at least one positive element. The matrix (L + B) is considered as an irreducible
nonsingular M-matrix. Define

q = [q1 q2 . . . qN ]
T = (L + B)−11N×1.

We then obtain that P = diag{pi} = diag{1/qi} is a positive definite matrix. Then the matrix Q
defined as Q = P(L + B) + (L + B)TP is symmetric and positive definite.

2.3. Artificial Nn Approximation

In this study two-layer artificial NNs were employed to estimate the overall system
uncertainty wi. According to the universal approximation theorem, a single-layer artificial
NN can be used to approximate the unknown function whose variables are restricted to a
compact set [39]. Hence, the uncertainty wi can be given in the following form:

wi = WT
i ϕ(xi, vi) + εi, ∀xi ∈ Ωx, vi ∈ Ωv, i = 1, 2, . . . , n

where ϕ(·) is the activation function vector of the NN, Wi is the optimal weight matrix,
εi is the bounded network approximation bias that satisfies ‖εi‖ ≤ εM, εM is a bounded
positive number and Ωv is a compact set of vi. To reduce the complexity of the NN
design, we chose the activation function as the identity function, which further leads to
ϕ(xi, vi) = [xT

i , vT
i ]

T ∈ R12×1, Wi ∈ R12×6 and εi ∈ R6.
For the ith UAV, the NN estimation of wi is given as:

ŵi = ŴT
i ϕ(xi, vi) (9)

where Ŵi denotes the estimated weight matrix.
Define W̃i = Wi − Ŵi and w̃i = wi − ŵi. Then the estimation error w̃i is given as

w̃i = W̃T
i ϕ(xi, vi) + εi

The following assumption is made to ensure the boundedness of the NN output:

Assumption 2. The optimal weight matrix Wi is bounded such that ‖Wi‖F ≤WM is met for each
UAV, where WM is a positive constant.

Remark 1. In a practical task, the external disturbance may include functions that do not use the
system states xi and vi as variables. For example, the external disturbance w̄i can be a function that
only relates to the task time t (such as w̄i = sin(t)). However, since the system states xi and vi
are correlated with external variables such as t, and therefore can be expressed as a function whose
variables include the external variables, the external variables can also be seen as a function that
uses the system states xi and vi as its variables. Hence, we are still able to employ the NN to perform
a unified estimation of w̄i, which validates the implementation of Equation (9).

3. Main Results

In this paper, the robust formation control problem of multi-UAV systems is considered,
along with the collision avoidance issue when each UAV contains model uncertainty. To
reduce the complexity of the controller design, we propose to use a hierarchical two-level
formation controller design to separate the concerns.
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In high-level designs, virtual agents are generated according to the second-order
nominal model of UAVs to act as the reference generators that provide feasible commends
to the low-level design, and the low-level controllers are responsible for the actual motion
control of physical UAVs. A new neural-based observer design is also proposed in this
section for the estimation and compensation of the nonlinear model uncertainties.

3.1. High-Level Formation Controller Design

To ensure that the formation controller of each UAV is offered with a sufficient number
of state references, each high-level virtual agent is defined to have the homogeneous
second-order dynamics as follows: {

˙̄xi = v̄i,
˙̄vi = S(ūi, ŪMi)

(10)

where x̄i ∈ Rn and v̄i ∈ Rn are the position and velocity information of the virtual agent,
respectively; ūi ∈ Rn is the control input of the virtual agent; and S(ūi, ŪMi) ∈ Rn is the
actuator saturation phenomenon. Define S(ūi(j), ŪMi) to be the jth element of S(ūi, ŪMi).
Then we have

S(ūi(j), ŪMi) =

{
ūi(j) |ui(j)| ≤ ŪMi

sign(ūi(j))ŪMi |ūi(j)| > ŪMi
(11)

where ŪMi is a positive constant that represents the saturation limitation.
Accordingly, we have the following cluster expression:{

˙̄x = v̄,
˙̄v = S(ū)

(12)

where
S(ū) = [ST(ū1, ŪM1),ST(ū2, ŪM2), . . . ,ST(ūN , ŪMN)]

T

x̄ = [x̄T
1 , x̄T

2 , . . . , x̄T
N ]

T, v̄ = [v̄T
1 , v̄T

2 , . . . , v̄T
N ]

T

Regarding the virtual system Equation (10), we define the high-level tracking errors
δ̄xi and δ̄vi as δ̄xi = x̄i − xd

i,p

δ̄vi = v̄i − ẋd
i,p

(13)

The tracking error dynamics for the ith virtual agent is given as:{ ˙̄δxi = δ̄vi

˙̄δvi = S(ūi, ŪMi)− ẍd
i,p

Then we have the virtual local formation tracking errors ēxi and ēvi as follows (respectively):
ēxi =

N

∑
j=1

lij δ̄xj + bi δ̄xi

ēvi =
N

∑
j=1

lij δ̄vj + bi δ̄vi

(14)

where bi is the ith diagonal element of B. Define λ̄i to be a positive constant. Then the
virtual sliding surface is designed as

s̄i = ēvi + λ̄iS̄(ēxi, τ̄e, ψ̄e) (15)
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where τ̄e is a positive constant, ψ̄e is a very small positive constant and S̄(ēxi, τ̄e, ψ̄e) ∈ Rn

is a bounded smooth projection function whose jth element is expressed as:

S̄(ēxi(j), τ̄e, ψ̄e) =


τ̄e + ψ̄e

(
1− exp

(
τ̄e − ēxi(j)

ψ̄e

))
, if ēxi(j) > τ̄e

ēxi(j), if |ēxi(j)| ≤ τ̄e

ψ̄e

(
exp

(
τ̄e + ēxi(j)

ψ̄e

)
− 1
)
− τ̄e, if ēxi(j) < −τ̄e

(16)

Then we have the time derivative of the virtual sliding surface as:

˙̄si = ˙̄evi + λ̄idiag{S̄d(ēxi, τ̄e, ψ̄e)}ēvi (17)

where the jth element in S̄d(ēxi, τ̄e, ψ̄e) has the following expression:

S̄d(ēxi(j), τ̄e, ψ̄e) =


exp

(
τ̄e − ēxi(j)

ψ̄e

)
, if ēxi(j) > τ̄e

1, if |ēxi(j)| ≤ τ̄e

exp
(

τ̄e + ēxi(j)
ψ̄e

)
, if ēxi(j) < −τ̄e

Define S̄ = [s̄T
1 , s̄T

2 , . . . , s̄T
N ]

T, ēx = [ēT
x1, ēT

x2, . . . , ēT
xN ]

T, ēv = [ēT
v1, ēT

v2, . . . , ēT
vN ]

T and Λ̄ =
diag{λ̄1, . . . , λ̄N}; then the cluster expression is

S̄ = ēv + (Λ̄⊗ I3)S̄(ēx, τ̄e, ψ̄e)

Based on the discussions about the tracking error (Equation (13)) and the sliding
surface design (Equation (15)) of the virtual system (Equation (10)), we have the nominal
high-level controller design as follows:

ūnom
i = ẍd

i,p − c̄i s̄i − λ̄idiag{S̄d(ēxi, τ̄e, ψ̄e)}δ̄vi − k̄i δ̄xi

where c̄i and k̄i are both positive constants.
To ensure that the amplitudes of the control input stay within the saturation limitation,

we have the following saturated high-level formation controller:

ūi = S̄(ūnom
i , τ̄u, ψ̄u) (18)

where τ̄u and ψ̄u are both positive constants.
Now we are ready to present our result within high-level controller design:

Theorem 1. Consider the virtual cluster equation—Equation (10)—where Assumption 1 holds
due to the sliding surface design (Equation (15)) and the sliding mode controller (Equation (18));
the variables S̄, ēx and δ̄x are all uniformly ultimately bounded (UUB).

Proof. Consider a Lyapunov candidate as follows:

V1 =
1
2

S̄TP⊗ I3S̄ +
1
2

ēT
x (PK̄)⊗ I3 ēx

where K̄ = diag{k̄1, k̄2, . . . , k̄N}.
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The time derivative of V1 is given as:

V̇ = S̄TP⊗ I3
˙̄S + ēT

x (PK̄)⊗ I3 ˙̄ex

= S̄TP⊗ I3( ˙̄ev + Λ̄⊗ I3diag{S̄d(ēx, τ̄e, ψ̄e)}ēv) + ēT
x (PK̄)⊗ I3(S̄− (Λ̄⊗ I3)S̄(ēx, τ̄e, ψ̄e))

= S̄T(P(L + B))⊗ I3(
˙̄δv + Λ̄⊗ I3diag{S̄d(ēx, τ̄e, ψ̄e)}δ̄v) + ēT

x (PK̄)⊗ I3S̄

− ēT
x (PK̄Λ̄)⊗ I3S̄(ēx, τ̄e, ψ̄e)

First, we rule out the saturation phenomenon (Equation (11)) and have ūi = ūnom
i

instead to test if the nominal controller is able to ensure the uniform ultimate boundedness
of both s̄i and ēxi. Then we have the modified version of V̇1 as:

V̇1 = −S̄T(P(L + B)C̄)⊗ I3S̄− S̄T(PK̄)⊗ I3 ēx + ēT
x (PK̄)⊗ I3S̄

− ēT
x (PK̄Λ̄)⊗ I3S̄(ēx, τ̄e, ψ̄e)

= −S̄T(P(L + B)C̄)⊗ I3S̄− ēT
x (PK̄Λ̄)⊗ I3S̄(ēx, τ̄e, ψ̄e)

By Lemma 1 and the inequality that S̄(ēx, τ̄e, ψ̄e) ≤ ēx, we have the following norm
form:

V̇1 ≤ −
1
2

σ(QC̄)‖S̄‖2 − σ(PK̄Λ̄)‖S̄(ēx, τ̄e, ψ̄e)‖2

Hence, we get that V̇1 will remain negative until ‖S̄‖ = ‖S̄(ēx, τ̄e, ψ̄e)‖ = 0 is achieved.
By the characteristics of the smooth projection function S̄(ēx, τ̄e, ψ̄e), ‖ēx‖will also converge
to the value of 0. According to Equation (14), we have that ‖δ̄x‖ = 0 is ultimately achieved
as well. By the definition of uniformly ultimately bounded (UUB) in [38], we have that
‖S̄‖, ‖ēx‖ and ‖δ̄x‖ are all UUB, which indicates that the design of ūnom

i is able to achieve
convergence of the virtual tracking error.

If we recall the saturation phenomenon (Equation (11)) and the saturated controller
design (Equation (18)), similar results are also expected and the states ‖S̄‖, ‖ēx‖ and ‖δ̄x‖
are all UUB, which completes the proof.

Remark 2. The virtual high-level agent Equation (10) is constructed with a saturation phenomenon
Equation (11) to ensure that the states x̄i, v̄i and ūi are a set of suitable and feasible reference vectors
to prevent the low-level UAVs from causing aggressive motion (creating large pitch angles or
rotational angles [25]).

3.2. Neural-Based Observer Design

Differently from the high-level design, it is vital to consider the system uncertainties
wi for the low-level design. To maintain the robustness of the formation tracking process,
one popular way is to employ the neural-based observer designs [34,35] to estimate the
unknown terms and then perform compensation in the controller design. On the basis of the
work in [35], the sliding mode technique is integrated with an artificial NN to approximate
the unknown factor wi in system Equation (6).

Although the structures in [34,35] are effective for an arbitrary kind of uncertainty, the
design of only using the NN output as the estimation value relies too much on the accuracy
of the NN. In other words, if we were to use the designs in [34,35], then the difference
between ŵi and wi would be no less than εi, which illustrates their limitation. To overcome
this weakness, we propose to have an alternative way of analysing the problem. First, we
build up an imaginary second-order observation system according to the actual system
(Equation (6)): {

˙̂xi = v̂i

˙̂vi = giui + ûi
(19)

where ûi is the imaginary control input, and vectors x̂i and v̂i represent our estimations
of states xi and vi, respectively. As ui is the to be designed controller and gi is known in
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advance, the term giui is treated as the known dynamics for the imaginary system. By
comparing the difference between the imaginary system Equation (19) and the actual UAV
dynamics Equation (6), we have the following tracking error dynamics for the imaginary
system: {

˙̃xi = ṽi

˙̃vi = wi − ûi
(20)

where x̃i = xi − x̂i and ṽi = vi − v̂i are applied.
In theory, we have wi = ûi when both ‖x̃i‖ = 0 and ‖ṽi‖ = 0 are satisfied. Hence,

our goal of building up an adaptive observer to estimate wi is also equivalent to designing
a tracking controller ûi that reduces the value of ‖x̃i‖ and ‖ṽi‖ as much as possible. To
achieve the uniformly ultimate boundedness of x̃i and ṽi, we define the observation sliding
surface as

s̃i = ṽi + λ̃i x̃i (21)

where λ̃i is a positive constant.
We have the derivative of the observation sliding surface as

˙̃si = ˙̃vi + λ̃i ˙̃xi = wi − ûi + λ̃i ṽi

Based on our previous discussion about the artificial NN estimation of wi Equation (9),
we have the following neural adaptive sliding mode controller design for the imaginary
system:

ûi = ŴT
i ϕ(xi, vi) + λ̃i ṽi + c̃i s̃i + k̃i x̃i (22)

where c̃i and k̃i are both positive constants, and the update law of the NN is

˙̂Wi = η1 ϕ(xi, vi)s̃T
i − η2‖s̃i‖Ŵi (23)

where η1 and η2 are both positive constants.
Now we are ready to present our result of the neural-based sliding mode observer

design.

Theorem 2. Consider the system of Equation (19), where Assumption 2 is satisfied by the observa-
tion sliding variable (Equation (21)), the NN estimation (Equation (21)), the adaptive neural weight
tuning law (Equation (23)) and the imaginary control input (Equation (22)). We have that the error
states s̃i, x̃i and W̃i are all SGUUB if the compact set conditions of the NN hold such that we have
xi(t) ∈ Ωx and ui(t) ∈ Ωu when t ≥ t0 for the ith UAV.

Proof. Consider the following Lyapunov candidate:

V2 =
1
2

s̃T
i s̃i +

1
2η1

tr{W̃T
i W̃i}+

k̃i
2

x̃T
i x̃i

Then we have the derivative of V2 as follows:

V̇2 = s̃T
i

˙̃si −
1
η1

tr{W̃T
i

˙̂Wi}+ k̃i x̃T
i

˙̃xi

= s̃T
i (wi − ûi + λ̃i ṽi)−

1
η1

tr{W̃T
i

˙̂Wi}+ k̃i x̃T
i (s̃i − λ̃i x̃i)

= s̃T
i (W̃

T
i ϕ(xi, vi) + εi − c̃i s̃i)−

1
η1

tr{W̃T
i (η1 ϕ(xi, vi)s̃T

i − η2‖s̃i‖Ŵi)} − k̃iλ̃i x̃T
i x̃i

= −c̃i s̃T
i s̃i − k̃iλ̃i x̃T

i x̃i + s̃T
i εi +

η2

η1
‖s̃i‖tr{W̃T

i (Wi − W̃i)}

(24)
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We can further modify Equation (24) into the following norm form:

V̇2 ≤ −c̃i‖s̃i‖2 − k̃iλ̃i‖x̃i‖2 + ‖s̃i‖εM +
η2

η1
‖s̃i‖‖W̃i‖F(WM − ‖W̃i‖F)

≤ −c̃i‖s̃i‖2 − k̃iλ̃i‖x̃i‖2 + ‖s̃i‖εM −
η2

η1
‖s̃i‖(‖W̃i‖2

F −WM‖W̃i‖F +
W2

M
4
−

W2
M

4
)

≤ −c̃i‖s̃i‖2 − k̃iλ̃i‖x̃i‖2 + ‖s̃i‖εM −
η2

η1
‖s̃i‖(‖W̃i‖2

F −
WM

2
)2 +

η2W2
M

4η1
‖s̃i‖

≤ −c̃i‖s̃i‖2 − k̃iλ̃i‖x̃i‖2 + ‖s̃i‖εM +
η2W2

M
4η1

‖s̃i‖

≤ −χT
1 H1χ1 +H1χ1

where

χ1 =

[
‖s̃i‖
‖x̃i‖

]
, H1 =

[
εM + η2W2

M/4η1 0
]

H1 =

[
c̃i 0
0 k̃iλ̃i

]
Hence, V̇2 is said to be negative when the following condition is met:

‖χ1‖ >
4η1εM + η2W2

M
4η1σ(H1)

By Definition 1, we have that the vector χ1 is SGUUB within the following neighbour-
hood:

Ω1
χ =

{
χ1

∣∣∣∣‖χ1‖ ≤
4η1εM + η2W2

M
4η1σ(H1)

}
Hence, the error states s̃i and x̃i are both SGUUB. According to the Lyapunov stability

theory extension presented in [40], the correlated state W̃i is also SGUUB, which completes
the proof.

As a result, we are confident to have ‖w̃i‖ ≤ w̃M, where w̃M is a positive constant, to
support our result in the low-level formation controller design.

3.3. Low-Level Formation Controller Design

Regarding the low-level design, we need to first focus on the position loop to provide
an essential reference for the attitude control loop [23]. Accordingly, the position loop
dynamics (Equation (4)) and the attitude loop dynamics (Equation (5)) of the ith UAV are
investigated for the low-level designs.

By Theorem 1, we have that the states x̄i, v̄i and ūi will converge to xd
i,p, ẋd

i,p and ẍd
i,p,

respectively. Hence, it is reasonable to use states x̄i, v̄i and ūi to act as the references for the
ith low-level system. Define δxi,p and δvi,p to be the low-level reference tracking errors as
follows: {

δxi,p = xi,p − x̄i

δvi,p = vi,p − v̄i, i ∈ [1, N].
(25)

Then we have the tracking error dynamics as:{
δ̇xi,p = δvi,p

δ̇vi,p = gi,pui + wi,p − ūi − ḡp, i ∈ [1, N]
(26)
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Differently from the nominal system designs [35,41], we did not design ui directly
from the perspective of Equation (26). Instead, we first defined ui,p = gi,pui to denote the
nominal control input of the position loop. Then we could rewrite Equation (26) as:{

δ̇xi,p = δvi,p

δ̇vi,p = ui,p + wi,p − ūi − ḡp, i ∈ [1, N]
(27)

The position loop sliding surface is constructed as follows:

si,p = δvi,p + λ
p
i δxi,p (28)

where λ
p
i is a positive constant.

The time derivative of the sliding surface is given as:

ṡi,p = δ̇vi,p + λ
p
i δvi,p = ui,p + wi,p − ūi + λ

p
i δvi,p − ḡp

By the neural-based observer design, we have ûi = ŵi, where ŵi = [ŵT
i,p, ŵT

i,a]
T

represents our estimation of the system uncertainty wi.
Based on the discussion about the neural-based observer Equation (22) and the

potential-based position loop sliding variable (Equation (28)), we have the following nomi-
nal controller design:

ui,p = ūi − ŵi,p − λ
p
i δvi,p − kp

i δxi,p − cp
i si,p + ḡp (29)

where kp
i ∈ R+ and cp

i ∈ R+.
Now we are ready to present our results in the low-level nominal controller design for

the position loop Equation (4) of the ith UAV.

Theorem 3. Consider the nominal position loop dynamics of the ith UAV (Equation (4)), where
Assumptions 1–2 are satisfied by the neural-based observer (Equation (22)) and the nominal control
law (Equation (29)). The states δxi,p and si,p are both SGUUB if the compact set conditions of the
NN hold such that we have xi(t) ∈ Ωx and ui(t) ∈ Ωu when t ≥ t0 for the ith UAV.

Proof. Consider the following Lyapunov candidate for the ith UAV:

Vi,p =
1
2

sT
i,psi,p +

kp
i

2
δT

xi,pδxi,p (30)

The time derivative of the Lyapunov candidate (Equation (30)) is:

V̇i,p = sT
i,p ṡi,p + kp

i δT
xi,p δ̇xi,p

= sT
i,p(δ̇vi,p + λ

p
i δvi,p) + kp

i δT
xi,p(si,p − λ

p
i δxi,p)

= sT
i,p(ui,p + wi,p − ūi − ḡp + λ

p
i δvi,p) + kp

i δT
xi,p(si,p − λ

p
i δxi,p)

= sT
i,p(w̃i,p − kp

i δxi,p − cp
i si,p)− kp

i λ
p
i δT

xi,pδxi,p + kp
i δT

xi,psi,p

≤ −cp
i ‖si,p‖2 + ‖si,p‖w̃M − kp

i λ
p
i ‖δxi,p‖2

where w̃i,p = wi,p − ŵi,p.
Alternatively, we have the following matrix form:

V̇i,p ≤ −χT
2 H2χ2 +H2χ2

where

χ2 =

[
‖si,p‖
‖δxi,p‖

]
, H2 =

[
w̃M 0

]
, H2 =

[
cp

i 0
0 kp

i λ
p
i

]
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Hence, V̇i,p is guaranteed to be negative within the following region:

‖χ2‖ >
w̃M

σ(H2)

By Definition 1, we have that the vector χ2 is SGUUB within the following region:

Ω2
χ =

{
χ2

∣∣∣∣‖χ2‖ ≤
w̃M

σ(H2)

}
As in the case of ‖χ2‖, the values of ‖si,p‖ and ‖δxi,p‖ are both SGUUB, which com-

pletes the proof.

After obtaining the nominal control ui,p, the next step is to use the flight control
techniques to calculate the reference for the row angle and the yaw angle. Inspired by [24],
with ui,p = [ui,x, ui,y, ui,z]

T, we have a new guidance law for Td
i :

Td
i =

miui,z

cos(φi)cos(θi)

φd
i = arcsin

(
(ui,xsin(ψd

i )− ui,ycos(ψd
i ))

(u2
i,x + u2

i,y + u2
i,z)

1/2

)

θd
i = arctan

(ui,xcos(ψd
i ) + ui,ysin(ψd

i )

ui,z

) (31)

After both φd
i and θd

i are calculated, we can use the conventional approach of calculat-
ing the slope between the current value and the previous value to get the value of φ̇d

i , φ̈d
i ,

θ̇d
i , θ̈d

i , ψ̇d
i and ψ̈d

i as follows:

ξi,1 =


[0, 0, 0]T t ≤ tstep

xd
i,a(t)− xd

i,a(t− tstep)

tstep
t > tstep

(32)

where ξi,1 is the estimation of ẋd
i,a, t represents the current time and tstep is the control step

size. Similarly, we have the following structure to get the second-order derivative as:

ξi,2 =


[0, 0, 0]T t ≤ 2tstep

ξi,1(t)− ξi,1(t− tstep)

tstep
t > 2tstep

(33)

Accordingly, we have ξi,1 = ẋd
i,a and ξi,2 = ẍd

i,a when t > 2tstep. Similarly to the
position loop, define δxi,a and δvi,a to be the reference tracking errors in the attitude loop,
which further leads to {

δxi,a = xi,a − xd
i,a

δvi,a = vi,a − ẋd
i,a, i ∈ [1, N]

(34)

If we define ui,a = gi,aui to be the nominal control input for the attitude loop, we have
the error dynamics as follows:{

δ̇xi,a = δvi,a

δ̇vi,a = ui,a + wi,a − ẍd
i,a, i ∈ [1, N]

(35)
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Differently from the position loop, the vector δvi,a cannot be directly obtained because
ẋd

i,a is unknown to the ith UAV. Instead, the UAV can only gain access to the estimated error
vector δ̂vi,a as

δ̂vi,a = vi,a − ξi,1

Accordingly, we have the actual sliding surface for the attitude loop as si,a = δvi,a +
λa

i δxi,a, and the estimated sliding variable is given as

ŝi,a = δ̂vi,a + λa
i δxi,a (36)

where λa
i is a positive constant. The time derivative of the actual sliding surface si,a is

ṡi,a = δ̇vi,a + λa
i δvi,a = ui,a + wi,a − ẍd

i,a + λa
i δvi,a

Based on our discussion about the neural-based observer Equation (22) and the esti-
mated attitude loop sliding variable Equation (36), we have the following nominal controller
design:

ui,a = ξi,2 − ŵi,a − λa
i δ̂vi,a − ka

i δxi,a − ca
i ŝi,a (37)

where ka
i and ca

i are both positive constants.
Now we are ready to present our result in the low-level nominal controller design for

the attitude loop of the ith UAV:

Theorem 4. Consider the nominal attitude loop dynamics of the ith UAV (Equation (5)), where
Assumptions 1 and 2 are satisfied by the neural-based observer (Equation (22)), the first-order
differentiator (Equation (32)), the second-order differentiator (Equation (33) ) and the nominal
control law (Equation (37)). The states δxi,a and si,a are both SGUUB if the compact set conditions
of the NN hold such that we have xi(t) ∈ Ωx and ui(t) ∈ Ωu when t ≥ t0 for the ith UAV.

Proof. Consider the following Lyapunov candidate.

Vi,a =
1
2

sT
i,asi,a +

ka
i

2
δT

xi,aδxi,a

Then we have the time derivative of Vi,a as

V̇i,a = sT
i,a ṡi,a + ka

i δT
xi,a δ̇xi,a

= sT
i,a(δ̇vi,a + λa

i δvi,a) + ka
i δT

xi,a(si,a − λa
i δxi,a)

= sT
i,a(ui,a + wi,a − ẍd

i,a + λa
i δvi,a) + ka

i δT
xi,a(si,a − λa

i δxi,a)

= sT
i,a(w̃i,a − ka

i δxi,a − ca
i ŝi,a + ξi,2 − ẍd

i,a + λa
i (δvi,a − δ̂vi,a))− ka

i λa
i δT

xi,aδxi,a + ka
i δT

xi,asi,a

(38)

where w̃i,p = wi,p − ŵi,p. We have ξi,1 = ẋd
i,a, ξi,2 = ẍd

i,a, δvi,a = δ̂vi,a and si,a = ŝi,a when
t > 2tstep. Therefore, Equation (38) should be rewritten as:

V̇i,a = sT
i,a(w̃i,a − ca

i si,a)− ka
i λa

i δT
xi,aδxi,a

≤ −ca
i ‖si,a‖2 + w̃M‖si,a‖ − ka

i λa
i ‖δxi,a‖2

Similarly, we also have the following matrix form:

V̇i,a ≤ −χT
3 H3χ3 +H3χ3

where

χ3 =

[
‖si,a‖
‖δxi,a‖

]
, H3 =

[
w̃M 0

]
, H3 =

[
ca

i 0
0 ka

i λa
i

]
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Hence, V̇i,a is negative within the following region:

‖χ3‖ >
w̃M

σ(H3)

By Definition 1, we have that the vector χ3 is SGUUB within the following region:

Ω3
χ =

{
χ3

∣∣∣∣‖χ3‖ ≤
w̃M

σ(H3)

}
As in the case of ‖χ3‖, the values of ‖si,a‖ and ‖δxi,a‖ are both SGUUB, which com-

pletes the proof.

As the position loop and the attitude loop are strongly coupled, a subtle fluctuation in
the output of any part of the controller design can lead to oscillation in the system states.
Regarding the designs covered by Theorems 1–4, there are two factors that can lead to
potential oscillations in the system’s control input:

1. The values of θd
i and ψd

i are not guaranteed to be smooth because they are generated
by the reverse calculation (Equation (31)). Hence, the output values of the direct
derivative structures (Equations (32) and (33)) can be filled with chattering because of
the discontinuity of their input.

2. Before ‖Ŵi −Wi‖F is settled within a neighbourhood around 0, the output of the NN
is usually filled with oscillations [35].

Before we introduce the saturated and smoothed differentiator, we need to first make
the following assumption:

Assumption 3. The vectors ẋd
i,a and ẍd

i,a are both bounded such that limt→+∞ |ẋd
i,a| ≤ ξ1

M13 and
limt→+∞ |ẍd

i,a| ≤ ξ2
M13 are met simultaneously.

Consequently, we have the saturated and smoothed differentiator designs, as shown
in Algorithm 1, where lξ is initially set as 0. Accordingly, we have

ξi,1 = D(tstep, tdiff, xd
i,a, t, ξ1

M)

ξi,2 = D(2tstep, tdiff, ξi,1, t, ξ2
M)

(39)

where tdiff is the differentiate step size.
To reduce the negative effect brought about by the fluctuations in the NN’s output,

the following observation introduction function is proposed to smoothly introduce the
uncertainty estimations ŵi,p and ŵi,a into the low-level controller designs.

f̄ (t) = 1− exp(−γ1(t− γ2))

1 + exp(−γ1(t− γ2))
(40)

where γ1 and γ2 are both positive constants.
Hence, instead of using ŵi,p and ŵi,a directly, we have the following smoothed position

controller and attitude controller:

us
i,p = ūi − f̄ (t)ŵi,p − λ

p
i δvi,p − kp

i δxi,p − cp
i si,p + ḡp (41)

us
i,a = ξi,2 − f̄ (t)ŵi,a − λa

i δ̂vi,a − ka
i δxi,a − ca

i ŝi,a (42)
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Algorithm 1: Saturated and smoothed differentiator D(tdelay, tdiff, ξ+in, t, ξM).

Input: tdelay, tdiff, ξ+in, t, ξM

Output: ξ+out
if t ≤ tdelay then

ξ+out = [0, 0, 0]T ;
else

if t ≥ lξ tdiff then
ξ+out = (ξ+in − ξ−in)/tdiff ;
lξ = lξ + 1 ;

else
ξ+out = ξ−out ;

end
end
ξ−out = ξ+out ;
ξ−in = ξ+in ;
ξ+out = S(ξ+out, ξM) ;
Return ξ+out ;

Ultimately, we have the following motion controller design:

Ti =
ḡT

pus
i,p

gcos(φi)cos(θi)

τi = g−1
i,a ui,a

(43)

In all, the hierarchical formation controller is illustrated as Figure 1. Now, we are
ready to present our final result in the overall system design.
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Figure 1. Hierarchical control diagram.

Theorem 5. Consider a group of UAVs (Equation (7)) with a strongly connected communica-
tion topology, where Assumptions 1–3 are satisfied, by the high-level formation controller in
Equation (18), the smoothed low-level position loop controller in Equation (41), the smoothed low-
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level attitude formation controller in Equation (42) and the actual motion controller in Equation
(43). The values of

∥∥xi,p − xd
i,p

∥∥ and
∥∥ψi − ψd

i

∥∥ are both SGUUB if the compact set conditions of
the NN hold such that we have xi(t) ∈ Ωx and ui(t) ∈ Ωu when t ≥ t0 for the ith UAV.

Proof. By Theorem 1, we have

lim
t→+∞

∥∥x̄i − xd
i,p
∥∥ = 0, lim

t→+∞

∥∥v̄i − ẋd
i,p
∥∥ = 0, lim

t→+∞

∥∥v̄i − ẍd
i,p
∥∥ = 0 (44)

Since the value of the introduction function Equation (40) will converge to 1 ultimately,
the result and analysis related to Theorem 3 remain the same.

Although the smoothed design in Algorithm 1 will lead to differences between the set
{ξi,1, ξi,2} and {ẋd

i,a, ẍd
i,a}, the difference should be small and bounded if the value of tdiff is

chosen properly. Suppose we have ‖ξi,1 − ẋd
i,a‖ ≤ ξ̃1

M and ‖ξi,2 − ẍd
i,a‖ ≤ ξ̃2

M, similar to the
proof of Theorem 4. We have that

lim
t→+∞

∥∥xi,a − xd
i,a
∥∥ ≤ w̃M + (λa

i + ca
i )ξ̃

1
M + ξ̃2

M
σ(H4)

(45)

where ξ̃1
M and ξ̃2

M are both small positive constants.
With the actual motion controller chosen as Equation (43), we have that:

lim
t→+∞

‖xi,p − x̄i‖ ≤
w̃M + (λa

i + ca
i )ξ̃

1
M + ξ̃2

M
σ(H3)

lim
t→+∞

∥∥xi,a − xd
i,a
∥∥ ≤ w̃M + (λa

i + ca
i )ξ̃

1
M + ξ̃2

M
σ(H4)

which matches the goal of this paper (Equation (8)) and concludes the proof.

4. Simulation Results and Discussion

To justify the performance of the proposed hierarchical formation controller design,
comparative simulations based on a multi-UAV system were conducted.

Consider a multi-UAV system that contains six heterogeneous UAVs whose dynamics
are expressed as Equation (1). The system’s parameter values are given in Table 2, where
we have Ki = Ki,x = Ki,y = Ki,z = Ki,φ = Ki,θ = Ki,ψ.

Table 2. UAV system parameters.

UAV
Number mi (kg) Ri (m) Ji,x(Ns2/rad) Ji,y(Ns2/rad) Ji,z(Ns2/rad) Ki(Ns2/rad) υi

1 2.08 0.29 1.25 1.24 2.50 1.2× 10−2 5.1× 10−2

2 2.10 0.31 1.23 1.25 2.52 1.3× 10−2 5.2× 10−2

3 2.11 0.30 1.24 1.24 2.51 1.4× 10−2 4.9× 10−2

4 2.10 0.32 1.23 1.26 2.49 1.1× 10−2 5.1× 10−2

5 2.09 0.34 1.24 1.23 2.50 1.2× 10−2 4.8× 10−2

6 2.12 0.33 1.25 1.26 2.53 1.3× 10−2 5.3× 10−2

The gravity constant g was set to g = 9.81. The communication topology of the system
was chosen as shown in Figure 2, and we used bi = 1 for i ∈ [1, 6].
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1

2 5

43

6

Figure 2. Communication topology.

The initial states are chosen as x1,p = x̂1,p = x̄1 = [4, 1, 0]T, x2,p = x̂2,p = x̄2 = [1, 2, 0]T,
x3,p = x̂3,p = x̄3 = [−2,−4, 0]T, x4,p = x̂4,p = x̄4 = [−4,−1, 0]T, x5,p = x̂5,p = x̄5 =

[−1.5,−1, 0]T and x6,p = x̂6,p = x̄6 = [0,−1, 0]T. All the other states were set as zero
vectors or zero matrices when t = 0.

The position reference for the ith UAV was chosen as

xd
i,p = [3cos(0.08t + (i− 1)π/3), 3sin(0.08t + (i− 1)π/3), 0.5 + 0.15t]T (46)

The reference of the yaw angle was chosen as ψd
i = 0. The system uncertainties were

chosen as follows:

w̄i,p = [0.6sin(0.3t + iπ/6), 0.8sin(0.2t + iπ/5), 0.9sin(0.2t + iπ/4)]T

w̄i,a = [0.1sin(0.5t− iπ/6), 0.08sin(0.6t− iπ/5), 0.06sin(0.4t− iπ/4)]T

The parameters of the high level controller were chosen as ŪMi = 0.2, τ̄e = 0.5,
ψ̄e = 0.05, c̄i = 1, λ̄i = 2, k̄i = 1.5, τ̄u = 0.19 and ψ̄u = 0.01. To illustrate the effectiveness of
the high-level formation controller (Equation (18)), the norms of the high-level error-related
vectors δ̄xi and s̄i are given in Figures 3 and 4, respectively.

Figure 3. Norms of high-level reference tracking errors.
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Figure 4. Norms of high-level sliding variables.

Although the performance of the sliding mode controller (Equation (18)) was affected
by the saturation phenomenon (Equation (11)) and obvious state overshoots can be noted,
the uniform ultimate boundedness of both δ̄xi and s̄i was still achieved simultaneously,
which validates the results presented in Theorem 1.

The parameters of the neural-based observer were selected as λ̃i = 2, c̃i = 4, k̃i = 4,
η1 = 20 and η2 = 0.5. Define ‖x̃‖, ‖s̃‖ and ‖d̃‖ as follows to represent the overall state ob-
servation error norm, overall observation sliding variable norm and uncertainty estimation
error norm, respectively.

‖x̃‖ =

√√√√ N

∑
i=i
‖x̃i‖2, ‖s̃‖ =

√√√√ N

∑
i=i
‖s̃i‖2, ‖w̃‖ =

√√√√ N

∑
i=i
‖w̃i‖2

Then we have the values of ‖x̃‖, ‖s̃‖ and ‖d̃‖ as shown in Figure 5, where we found
that all three norms are SGUUB for 2× 10−3. Hence, Theorem 2 was verified. However,
both overshooting and chattering were observed in the output of the neural-based ob-
server within the first 2 s, which validates our motivation of employing the observation
introduction function Equation (40).

Figure 5. Effectiveness of the neural-based observer.
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The parameters of the low-level position controller were chosen as λ
p
i = 2, cp

i = 2 and
kp

i = 2; and the parameters of the low-level attitude controller were selected as λa
i = 2,

ca
i = 4 and ka

i = 4. To illustrate the stability of our low-level controller design, we define
error norm vectors ‖δx,a‖, ‖δx,p‖, ‖sa‖ and ‖sp‖ as follows:

‖δx,a‖ =

√√√√ N

∑
i=i
‖δxi,a‖2, ‖δx,p‖ =

√√√√ N

∑
i=i
‖δxi,p‖2, ‖sa‖ =

√√√√ N

∑
i=i
‖si,a‖2, ‖sp‖ =

√√√√ N

∑
i=i
‖si,p‖2

The trends of ‖δx,a‖, ‖δx,p‖, ‖sa‖ and ‖sp‖ are recorded in Figure 6, where they are
SGUUB for 4× 10−4, 7× 10−4, 3× 10−4 and 1.5× 10−3. Hence, the both Theorem 3 and 4
are valid.

Figure 6. Effectiveness of the low-level controller.

To prove that the observation introduction function (Equation (40)) and the saturated
differentiator (Algorithm 1) help attenuate the chattering in the control input, the following
two comparative simulations were conducted:

1. The original controller (TOC) where both Equations (32) and (33) are employed to
provide the derivatives of the attitude reference xd

i,a. The derivatives are saturated
with ξi,1 = S(ξi,1, 0.2) and ξi,2 = S(ξi,2, 0.1).

2. The smoothed controller (TSC) where the observation introduction function Equation (40)
is employed with γ1 = 4 and γ2 = 2, and the attitude reference derivatives are ob-
tained as

ξi,1 = D(tstep, 10tstep, xd
i,a, t, 0.2), ξi,2 = D(2tstep, 10tstep, ξi,1, t, 0.1)

where the overall controller is chosen simultaneously with Equation (43). Furthermore, we
have the results shown in Figures 7 and 8.
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Figure 7. Control inputs of TOC.

Figure 8. Control inputs of TSC.

As the introduction function (Equation (40)) is not used in the TOC design, more chat-
tering was observed in the control input for the first 4 s. Besides, the TSC design was found
to have smoother control input ultimately (see UAV 2 and 6) due to the implementation of
the smoothed differentiator (Algorithm 1). Therefore, the effectiveness of the TSC design
and its superiority over the TOC design are both illustrated.

Finally, define xd
p = [xd

1,p, xd
2,p, . . . , xd

N,p]
T and xp = [x1,p, x2,p, . . . , xN,p]

T to represent
the overall formation reference and the actual position of the multi-UAV system, respec-
tively. Then we have the norm of the overall reference tracking error of the system with
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TSC design, as shown in Figure 9, where the semi-global uniform ultimate boundedness of
‖xp − xd

p‖ proves the validity of Theorem 5.

Figure 9. Norm of the overall reference tracking error.

The trajectories of all UAVs are given in Figure 10 to illustrate the movement and
formation status of the entire system. According to Equation (46), the desired formation
is a rotating circle that keeps on elevating (see the dotted grey circle). In Figure 10, each
UAV successfully reached its position reference within bounded error to form the desired
formation, which illustrates the effectiveness of the proposed design structure in Figure 1.
The angular status of each UAV is also given in Figure 11 to indicate that the saturation
phenomenon employed in the higher level helps restrict the pitch and roll angle within
[−30◦, 30◦] to further reduce the aggressive motion of each UAV.

Figure 10. Illustration of system formation and individual trajectories.



Drones 2022, 6, 40 22 of 24

Figure 11. Trends of angular states.

5. Conclusions

In this paper, the robust formation control problem for a group of UAVs with system
uncertainties was investigated. A neural-based hierarchical formation controller was pro-
posed to ensure the semi-global uniform ultimate boundedness of the system’s formation
tracking error. A cluster of saturated high-level agents were defined to act as the smooth
reference generator, and a saturated sliding mode controller was proposed to ensure the
convergence of the high-level tracking errors. The sliding mode technique was further
integrated with the neural-based observer structure to estimate system uncertainties in
both the position loop and the angular loop. Adaptive sliding mode observers were then in-
troduced for both position and angular loops to perform adaptive estimation of the system
uncertainties. To reduce the chattering and oscillation in the control input, a combination of
the smoothed differentiator and the observation introduction function is employed for each
UAV. The effectiveness of the robust and adaptive hierarchical formation control scheme
was validated by both theoretical analysis and comparative simulations.
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