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Abstract: Through the use of autonomy Unmanned Aerial Vehicles (UAVs) can be used to solve
a range of of multi-agent problems that exist in the real world, for example search and rescue or
surveillance. Within these scenarios the global objective might often be better achieved if aspects of
the problem can be optimally shared amongst its agents. However, in uncertain, dynamic and often
partially observable environments centralised global-optimisation techniques are not achievable.
Instead, agents may have to act on their own belief of the world, making the best decisions inde-
pendently and potentially myopically. With multiple agents acting in a decentralised manner how
can we discourage competitive behaviour and instead facilitate cooperation. This paper focuses on
the specific problem of multiple UAVs simultaneously searching for tasks in an environment whilst
efficiently routing between them and ultimately visiting them. This paper is motivated by this idea
that collaboration can be simple and achieved without the need for a dialogue but instead through
the design of the individual agent’s behaviour. By focusing on what is communicated we expand
the use of a single agent behaviour. Which through minor modifications can produce distinct agents
demonstrating independent, collaborative and competitive behaviour. In particular by investigating
the role of sensor and communication ranges this paper will show that increased sensor ranges can
be detrimental to system performance, and instead the simple modelling of nearby agents’ intent is a
far better approach.

Keywords: multi-agent systems; search and rescue; path planning; Unmanned Aerial Vehicles;
Travelling Salesman Problem

1. Introduction

Unmanned Aerial Vehicles (UAVs) are a potential and exciting solution to a num-
ber of real-world problems such as reconnaissance and surveillance [1–7], search and
rescue [8–10], and package delivery [11,12]. In particular, utilising multiple UAVs simul-
taneously can result in these problems being solved faster, more efficiently and more
robustly [13] than traditional manned systems. Modelling and planning for multi-agent
problems can often be difficult due to a rapidly growing decision space, made increasing
complex through agents interactions with each other and the environment. Additionally,
this can result in a need for coordination and communication that may not be possible in
many situations [14,15]. Many UAV platforms and off- the-shelf solutions are designed
in isolation and typically offer only single-agent behaviours. Unless agents have been
designed for multi-agent settings or can be coordinated via some centralised control, then
behaviour homogeneity might be unavoidable.

This paper looks at the problem of a team of homogeneous UAVs searching, routing
and visiting a number of locations (tasks) in the environment. The motivation being that
collaboration can still be achieved without the need for an explicit dialogue but instead
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through the careful design of the agents’ individual behaviours. In particular focusing on
what is communicated between agents or what agents think about other agents actions can
produce distinct results. These can demonstrate independent, collaborative and competitive
behaviour. In particular by exploring the role of sensor and communication ranges this
paper will show that increased observability of the state of the world, through increased
communication or visual range can in fact be detrimental to system performance. Instead
being more prudent with the information an agent has through simple modelling of nearby
agents’ intent is a much more fruitful approach.

This paper will begin by outlining the Multi-Agent Simultaneous Searching and
Routing Problem (MSSRP), describing the full global optimisation problem statement and
then carefully describing how our problem differs and our proposed heuristic approach
to find solutions. Then in Section 3 we outline four agent behaviours built from making
small modifications to a base-behaviour. Section 4 describes the multi-agent simulation
environment developed for testing these agent behaviours. This simulation environment is
then used in Section 5 to evaluate the effect of a range of agent parameter choices has on
system performance.

2. The Multi-Agent Simultaneous Searching and Routing Problem

The Multi-Agent Simultaneous Searching and Routing Problem (MSSRP) explored
in this paper can be summarised as the problem of simultaneously searching for tasks in
an environment whilst simultaneously routing between them. This essentially amounts
to each agent continuously following their current best route between their known tasks
and then re-optimising as new tasks are discovered. One major issue for multiple agents
is the potential for massive inefficiencies from agents ‘competing’ for the same tasks. In a
centralised problem, given full knowledge of tasks locations, all tasks could be optimally
assigned to each UAV ahead of time. However, in this decentralised case we have several
key differences (1) UAVs discover tasks by flying around the world and being in close
enough proximity to ‘see’ tasks. Thus exploration is an important and necessary factor.
(2) UAVs can communicate with other UAVs within a defined proximity in a decentralised
manner, giving them the chance to share tasks they have found. (3) UAVs can potentially
model other UAVs intent to compete for a task and instead prioritise less-contested tasks.

2.1. The Routing Problem Statement

We will start by defining the global co-operative routing problem of multiple UAVs
with full observably, i.e., the searching part of the problem is solved and we know ahead of
time the entire set of tasks to visit. However, as we will discuss, our problem differs in the
following key ways: (1) Partial Observability of task locations; (2) Agents are working in
a decentralised manner; (3) The problem is non-stationary, with agents moving and with
tasks being found or being completed over time; (4) Agents are not confined to start and
end at a depot.

First define the indexes i and j to denote tasks from the set of tasks T from 1 to N. The
set A of agents from 1 to M and the matrix Cija to denote the cost of agent a travelling from
task i to task j. We additionally define the three-index binary decision variable:

xija =

{
1 if agent a visits task j immediately after task i,
0 otherwise

(1)
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The formulation is then as follows:

min
xa

Z (2)

s.t..
N

∑
i=1

N

∑
j=1

Cij0xij0 ≤ Z (3)

N

∑
i=1

N

∑
j=1

Cij1xij1 ≤ Z (4)

...
N

∑
i=1

N

∑
j=1

CijMxijM ≤ Z (5)

N

∑
i=1

M

∑
a=1

xija = 1, ∀j (6)

N

∑
i=1

xipa −
N

∑
j=1

xpja = 0, a ∈ A, p ∈ T (7)

N

∑
j=1

x1ja = 1, ∀a ∈ A (8)

ui − uj + N
M

∑
a=1

xija ≤ N − 1, ∀i 6= j 6= 1 (9)

xija ∈ {0, 1} ∀i, j, a (10)

Usually MATSPs seek to minimise the either total distance travelled or time taken,
which for fixed speeds (as in our case) is equivalent. For our problem we want to complete
all the tasks as quickly as possible and so we look to minimise our maximum agent-time Z.
Thus the objective, Equation (2), is to minimise the ‘dummy’ variable Z. The constraints
Equations (3)–(5) enforce that Z represents the maximum individual agent distance, and
thus minimising Z ensures a min-max of individual agent distance. Notably, for agents
travelling at fixed speeds this min-max equates to simultaneous time-to-visit all tasks which
later will become our metric of performance. The remaining constraints are Equation (6)
that ensures each task is visited only once while the flow conservation constraints of
Equation (7) state that once an agent visits a task then they must also depart from it. The
constraints of Equation (8) ensure each agent is used only once. Equation (9) are sub-
tour elimination constraints [16] which rule out any solutions made of non-connected
sub-tours. There are a number of approaches to eliminating sub-tours, here we use the
Miller–Tucker–Zemlin (MTZ) formulation which uses the idea of ‘node potentials’ [17].
Here u are additional integer auxiliary decision variables, with ui corresponding to the ith
task. These decision variables assign a number to each task and enforce that the order of
vertices visited within the tour correspond to sequential values of u. This ensures that for
each agent we find at most a single tour.

The formulation above gives the global optimisation problem, given full information
of tasks and centralised cooperation between Agents. Due to the NP hard [18] nature of the
MATSP means it does not scale well with increasing the number of variables or constraints.
That is if we increase the number of agents and/or the number of tasks in the problem
we can quickly run into problems which would require a prohibitively long time to solve.
Thus a direct solution approach can be impractical and additionally is also ill suited for a
decentralised implementation let alone one that is partially observable. To meet the needs
of solving our decentralised, partial-information, searching and routing problem we make
some important adjustments.
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2.2. Partial-Observability of Task Locations

As the problem of this paper is inherently a searching problem this implies that the
tasks themselves are not known ahead of time. Constraints on aspects of a UAV vision and
communication mean that they might not be able to sense the entire state of the world at
once. Additionally, as agents in this environment act simultaneously and independently
means that the problem is Partially Observable (PO). Instead over time through exploration,
visual sensing and, communication between agents can lead to knowing more about the
current state of the world. Importantly, for each agent a, it holds its own understanding of
the state and thus its own set of tasks Ta ⊆ T.

2.3. Decentralised Agents

Each agent, a, searches the space and adds any new tasks it finds its task list, Ta. As
will be outlined in Section 3 agents may also be able to share these tasks lists with other
nearby agents. However, as full communication may not always be possible and each agent
is subject to partial observability there cannot reasonably exist a single, centralised solution
to the formulation of Equations (2)–(9). Instead agents act in a decentralised manner
looking to solve a TSP for its own list of tasks Ta. Thus reducing the problem to a series
of, potentially overlapping, Single Agent Travelling Salesman Problem (SATSP). Helpfully,
solving a SATSP is almost always much simpler than solving a MATSP. Additionally the
fact the task list is the partially observed subset Ta ⊆ T, means that each SATSP should
be easier still due to a smaller set of tasks. These two factors mean that we are able to
rely on simple heuristic approaches to solve each agent’s SATSP, these approaches will be
discussed in Section 2.6.

2.4. Non-Stationarity

As a result of the Partial Observability, the decentralised nature of the agents, the
movements of the agents and the fact tasks are being completed as time passes means that
the problem is non-stationary. A solution which is optimal in one time-step may no longer
be in the next. Therefore, instead of finding a single global solution for all agents at time
t = 0, we instead must act dynamically and re-solve at every time-step to take into account
new information. This means there must also be in an iterative updating of C. Thus
this temporal effect on C, the decentralised nature of the agents and their independent
knowledge of task locations means that a global three-dimensional cost matrix C is not
congruent nor feasible. Instead each agent must maintain its own two-dimensional cost
matrix Cij, where at each timestep its shape might change due to changing tasks and its
values need updating to reflect the new position of the agent.

2.5. No Fixed Depot

Due to the dynamic nature of the problem we relax the normal TSP constraint that
agents must start or finish at a depot (or fixed location). This is achieved by representing
the agents’ location as dummy tasks, essentially acting as their own personal depot. Along
with this an asymmetric extension is made to the cost matrix Cij, whereby the cost, Caj, is
calculated as normal to go from the agent’s current location (its dummy-task) to each of
the other tasks, but the cost to complete the tour, Cja, (i.e., travel from a final task to the
dummy agent-task) is zero.

2.6. Heuristic Solution Process

As we no longer demand a full, globally optimal solution to the formulation of
Equations (2)–(9) we can rely on the use a number of heuristic solutions to provide good
solutions quickly and reliably. Additionally, due to the dynamic nature of the problem the
route optimisation is done each time step to take into account any new information (such
as new tasks). Therefore, we use fast heuristic approaches to find approximate solutions to
the SATSP. At each time-step each agent, a, calculates its cost matrix Cij and performs, at
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random, one of two heuristic routines (called Hexhaustive and H2opt) to try to improve its
current route.

The first Heuristic Hexhaustive is a brute force exhaustive search approach and is out-
lined in Algorithm 1. Each agent a, has a cost matrix Cij and a current route r. This route r
is the ordered list of tasks to visit, and is simply a different representation of the matrix xij
of Equation (1). This current route could be the previously found good route or a random
initialisation. We can calculate the route’s cost with the following function:

evalRoute(r, C) =
Lr−1

∑
i=1

C[r[i], r[i + 1]] (11)

where Lr is the length of the route r. This function is equivalent to the left hand side of
Equation (3), but instead applied to an ordered list of tasks. The Heuristic Hexhaustive checks
the cost of each of the possible route-order permutations, returning the one, r∗, with the
lowest cost c∗.

Algorithm 1 Hexhaustive solver for the SATSP.

Input: C, r, perm_limit
c∗, r∗ ← evalRoute(r, C), r . Current best cost and route
R_perms← permGenerator(r, perm_limit) . Generate all permutations
for r′ ∈ R_perms do

c′ ← evalRoute(r, c′) . Get cost of potential route
if c′ < c∗ then

c∗, r∗ ← c′, r′ . Update best cost and route
end if

end for
return r∗, c∗

The number of possible permutations grows exponentially with the size of the route,
or more precisely with the factorial of the route length Lr!. Therefore an evaluation
limit, denoted perm_limit, is imposed. The generator function permGenerator, outlined
in Algorithm 2, randomly chooses and returns one of the possible route permutations
possible. If the number of possible permutations exceeds perm_limit then we will be un-
able to exhaustively test all permutations. Importantly, permGenerator ensures a random
set of permutations each time, so as to not bias our results towards checking through a
static ordering. First define a permutation index, i, to refer to the ith possible permutation
from the set of all permutations. Then by randomly sampling from the range of possible
permutation indexes we can create a sample set {X1, . . . , Xperm_limit} the same size as the
perm_limit. This set can then be used to generate a subset of permutations. Algorithm 2
uses divmod (also know as Euclidean division) to get the quotient and divisor and then uses
those with a form of the Fisher-Yates shuffle [19] to produce these indexed permutations.

Our second Heuristic function H2opt is based on the popular TSP heuristic known
as two-opt swap, first proposed by Croes [20] and has been used as a simple but effec-
tive heuristic solution for a range of optimisation problems [21–24]. The aim of the basic
two-opt is to take two adjacent nodes, [. . . , vi, vi+1, . . . ], in a route and swap their order,
[. . . , vi+1, vi, . . . ], with the idea being that if the paths previously crossed over, by swapping
them this might uncross them. The approach of H2opt is outlined in Algorithm 3 and using
this two-opt swapping idea, loop over each node of the route r and applying the two-opt
swap. In addition, our approach uses a second neighbourhood loop to look at increasing
swap lengths. That is, for a neighbourhood size Nr, instead of swapping elements i and
i + 1 we swap all elements i to i + k for k ∈ (1, . . . , Nr). These two loops are somewhat
analogous to a breadth vs depth search approach. Like before, we also impose an evaluation
limit (eval_limit) to ensure bounded run-times.
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Algorithm 2 permGenerator - Limited permutation generator.

Input: r, perm_limit
Lr ← length(r)
no_perms← min(Lr! , perm_limit) . Get total allowable permutations
pIndexes← {X1, . . . , Xperm_limit} ∼ U ([1, . . . , no_perms]) . Sample indexes
R_perms← {} . Keep a running set of permutations
for p in pIndexes do

for i← 1 to Lr − 1 do
p, j← divmod(p, Lr − i) . Get quotient and remainder
r[i], r[i + j]← r[i + j], r[i] . Swap the elements
R_perms← R_perms∪ {r} . Append to set of permutations

end for
end for
return R_perms

Algorithm 3 Two-Opt Heuristic solver H2opt for the SATSP.

Input: C, r, Nr, eval_limit
c∗, r∗ ← evalRoute(r, C), r . Current best cost and route
Lr ← length(r)
evals← 0
for i← 1 to Lr − 1 do

for j← i + 1 to min(Lr, i + 1 + Nr) do
if j− i 6= 1 then

r′ ← [r[0 : i− 1] + reverse(r[i : j− 1]) + r[j : Lr] . Swap the order
c′ ← evalRoute(r′, C)
evals← evals + 1

end if
if c′ < c∗ then

c∗, r∗ ← c′, r′ . Update best cost and route
end if
if evals > eval_limit then . Check if eval limit reached

Break
end if

end for
end for
return r∗, c∗

The nature of this particular search problem means that agents are constantly moving
around the world updating their task lists. Therefore what is considered optimal can
change rapidly. Thus good solutions are often sufficient and require less computation. These
two heuristics also work on slightly different aspects of the solution space. Hexhaustive is
entirely brute force stochastic approach, jumping around the global solution space hoping to
land on a better solution, whereas H2opt works to improve an existing route looking locally.
Therefore the combination of these two heuristics are more than sufficient for creating
good solutions for the individual agents whilst being bounded enough to be run each time
step (scaling linearly with the number of agents). Furthermore, as each agent retains in
memory its current order of tasks and thus its route, at each future time-step the route can be
improved further. Importantly, these methods do not need resolving entirely from scratch
like some other optimisation techniques. Instead new tasks can be added to the route at an
appropriate location, in this paper new tasks are initially added at the end of the route. By
not fundamentally changing the current route it instead assumes that at worst this task is
visited after the currently best route. Additionally, by being last in the route, the agent has
more time-steps to apply these heuristics and reorder its route to more efficiently visit it.



Drones 2022, 6, 51 7 of 18

3. UAV Agent Behaviours

Let us define a ‘base’ agent behaviour, from which other agent behaviours will be
derived. This behaviour follows the Agent Based Modelling and Simulation approach [25,26]
whereby agents are autonomous, self-directed and self-contained, the agents ‘live’ in the
environment and can interact with it and other agents and be acted upon. The simulation
involves deploying a number of these agents in the environment and simulating a number
of discrete time-steps or until some goal has been achieved. For each time step each UAV
agent will:

• Sense: Take in information from the environment through sensing and from other
agents through communication

• Plan: Use this information and other information stored in memory to decide a route
to follow and/or a direction to move

• Act: Attempt to move in the intended direction and also may communicate with others.

In this paper and outlined in Figure 1 UAVs are able to visually sense a task location. If
at that time step a task lies within a defined proximity radius referred to as a ‘vision radius’
Rvisionit is considered seen. Additionally, the UAVs have a ‘communication radius’ Rcomms,
which is the radial distance it is able to broadcast to other agents and listen to incoming
messages. By looking at Figure 1 one can imagine how UAV1’s decision of which order to
complete its tasks could be influenced by the knowledge of other tasks outside its current
vision radius. Therefore an agents behaviour will be defined by three key traits:

• Speak: What an agent communicates to others.
• Listen: What an agent does with communications heard.
• Model: What an agent does to model other agents behaviour.

Given these traits a motivating idea behind this paper is the question: can the overall
performance of a group of agents be improved if the agents are able to share their known tasks with
one another? While it might seem intuitive that knowing more about the world can only
improve performance, we will demonstrate in this paper that this is not the case.

Figure 1. Diagram of UAVs (UAV1) communication radius Rcomms and vision radius Rvision for
finding tasks and communicating with other agents (UAV2 and UAV3).

Taking those three traits and turning on or off only two of them (listening and mod-
elling) we can augment the base agent to create four distinct behaviours. These four
behaviours are detailed in Table 1 and we will refer to them as Solo, Greedy, Solo+ and
Greedy+. In Section 4.3 we will go into detail about the speak and listen traits, in particular
what, when and how this takes place.
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Table 1. Three agent behaviour types from three base modifications.

Type Speak Listen Model

Solo Broadcast all tasks Ignore None
Greedy Broadcast all tasks Add all heard tasks None
Solo+ Broadcast all tasks Ignore Move next competing task

Greedy+ Broadcast all tasks Add all heard tasks Move next competing task

3.1. Modelling Other Agents Intent

The concept of modelling other agents is to try and predict and understand what another
agent might do, in an attempt to improve our own decision. For the purposes of this paper this
modelling comes in a very simple form based around the question: Will another UAV reach
that task first? This is illustrated in Figure 2 whereby two agents, Blue (left) and Red (right),
compete for three tasks, A, B and C. Assume that we are the Blue Agent, we are following a
route that visits task A then B then C. We do not know what tasks the Red Agent is trying to do
but for this example imagine it is trying to visit the exact same three tasks in the same order.
In the first scenario the Blue Agent changes nothing and as a result the Red Agent reaches
all three tasks first. In the second scenario, the Blue Agent observes (as Red falls within its
Rvision range) the position of Red and calculates that it is closer to task A, and by modelling
the possible intent to go to task A, decides it can not make it there before Red. It therefore
looks to avoid that task for now, by moving task A to the back of its route and going after
the next available task (in this case task B). Thus a UAV with the modelling behavioural trait
allows it to use the location of another agent to better inform its route plan and hopefully
avoid competing for the same tasks and in turn more efficiently complete other tasks instead.

Figure 2. Two agents competing for three tasks. Blue agent (left) might change the order in which it
completes its tasks based on the assumption that Red agent (right) might reach a task first.

4. Multi-Agent System Simulation Environment

In order to explore the effect of these behaviours and their parameters on performance
we need to simulate them. Our main capability requirements for our research is (1) that
it is Python based; (2) Has a lightweight Graphical User Interface for demonstration and
interrogation of parameters; (3) Ability to run batches of simulations and generate results. We
decided that the Python Agent Based Modelling Simulator (ABMS) called MESA [27] met our
requirements, providing the core ABMS building blocks and interface. Extensions to the main
MESA code were implemented in order to properly simulate the aspects of our MSSRP.

The main building blocks in our set up are Agents, Spaces and Schedules. Agents are
the elements that have agency and ‘do something’ i.e., move, interact, update. The Space
is the environment in which the agents are placed, i.e., a network, a grid, or a continuous
space. The agents are also assigned to a scheduler. The role of the scheduler is to make
each of the agents step, that is, invoke an agent’s step function and also to control the order
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in which this takes place. The scheduler can be defined to run in sequence, parallel or as
we do in this paper, randomly. Thus a simulation comprises of the Agents being placed in
their Space(s) and then at each time-step the scheduler(s) are run and all the corresponding
Agents’ step functions are invoked, this continues until some termination condition is met.

4.1. The Environment

The environment in which our simulation takes place is made up of two spaces. A
two-dimensional continuous space in which the UAV agents will be placed, and a hexagonal
grid space which contains terrain cells. The hex terrain is made up from 4 tile types: sea (blue),
shore (yellow), land (green) or hill (dark green). The arrangement of these tiles is generated
procedurally with a few placement rules to form random, but sensible, map layouts (as shown
in Figure 3). One of the land terrain tiles is selected at random and given the ‘base’ property
(and displayed in red), which is the location from which the UAVs will spawn. Importantly
we use these layouts to enforce that the placement of tasks in the world is not completely
random, instead we restrict tasks to only be spawned on land locations (shore, land, hill), thus
augmenting the randomness to be ‘clumpy’. In particular in this instance the terrain serves
as a visual representation of the potential task placement locations. One can imagine how
the map features such as the number of islands, proportion of land to sea and placement of
a starting base might favour different types of agent behaviour and interaction. It is worth
clarifying that the hexagonal grid is still a continuous space, and everything that happens in
the simulation, such as UAV motion or task placement, is continuous.

Figure 3. Three examples of procedurally generated maps of hexagonal terrain tiles (blue, yellow,
green, dark green) a base spawn location (red) and a quad-copter UAV at the base).

4.2. Task Agents

Tasks are simple Agents that are spawned (placed in the environment) and don’t move.
They keep track of a number of properties such as number of times it has been visited or
whether it is currently occupied. It is also able to determine whether it has been successfully
completed, that is, it has been visited by a UAV Agent. As discussed in Section 4.1, for the
purposes of this paper, the tasks are constrained to only spawn on shore, land, or hill hexes
within the bounds of the environment. A task spawns only once by finding an admissible
starting position. It will sample a potential position at random, repeatedly until it finds one
that lies within an allowable tile.

4.3. UAV Agents

The UAVs Agents and their behaviours are the core focus of this paper and our
simulations. Just like any other Agent in an ABMS they each carry out their step routine
when instructed by their scheduler. The step routines of the Tasks and Terrain cells are
simple and are mostly used to keep track of values such as occupancy and completion
checks. Whereas the step routine of the UAV agents involves things like movement, routing
and communication. The following outlines a UAV agent’s step routine:

1. Get Visible
2. Get Communicable
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3. Receive Messages (Listen)
4. Optimise Route
5. Send Messages (Speak)
6. Move

4.3.1. Get Visible

Get the visible agents in the environment, this includes tasks and UAVs. From the set
of all tasks, T, the Get Visible process finds the subset Tvis ∈ T for a given agent, a, within
the defined radial distance Rvision of the agent’s current location. In particular:

Tvisa = {ti ∈ T , for i ∈ (1 . . . N)|dist(Aa, ti) ≤ Rvision}. (12)

The function dist calculates the Euclidean distance (L2 Norm) between any two agent
positions. From the set of all agents, A, the Get Visible process also finds the subset Avis ∈ A
for a given agent, a, within the defined radial distance Rvision of the agent’s current location:

Avisa = {Ab ∈ A , for b ∈ (1 . . . M) a 6= b|dist(Aa, Ab) ≤ Rvision}. (13)

4.3.2. Get Communicable

Similarly from the set of all Agents, A, the Get Communicable process finds the subset
Acomms ∈ A for a given agent, a, within the defined radius Rcomms. This is done using the
following equation:

Acommsa = {Ab ∈ A , for b ∈ (1 . . . M) a 6= b|dist(Aa, Ab) ≤ Rcomms}. (14)

One can imagine a situation where agents having a distinct mix of values of Rvision
and Rcomms might be of interest. However, for the purposes of this paper we assume all
UAVs are homogeneous and thus share the same values for Rvision and the same values
for Rcomms.

4.3.3. Receive Messages (Listen)

For all other agents within the set Acommsa agent a can receive any messages sent in a
previous time step. This process is carefully controlled by the simulator to ensure messages
are kept for only a single time-step and only received when within the appropriate Rcomms
distance and the agent behaviour allows it. As outlined in Table 1 an agent’s behaviour
might dictate it use or ignore this information. In this work the only messages that can be
sent (and thus also received) are a list of tasks and their locations. When an agent receives
a list of tasks, if allowed, it adds any new tasks to the end of its current task list.

4.3.4. Optimise Route

For the agent’s current task list it must now decide on the best order in which to visit
the tasks. The order of this task list implicitly defines a point-to-point route the UAV is
then able to follow. In order to ensure this route is as efficient as possible the agent uses the
two heuristic solutions to the TSP as outlined in Section 2.6.

Additionally, it is here where the modelling of other agents’ intent can be incorporated.
This is done by using the set of nearby visible agents Avisa of Equation (13) and the method
described in Section 3.1. That is, if the next task to be visited is closer to any another agent
in Avisa then we predict that the task will be visited by another agent first and instead we
move that task to the end of our current route.

4.3.5. Send Messages (Speak)

Agents are now able to broadcast information (with no guarantee it will be heard). In
this paper that information is the list of all tasks known to that agent. Again, the simulator
ensures that this information is only received by the appropriate agents.
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4.3.6. Move

Agents finish their step routine by moving, that is, simulating forward their dynamics
by a single time step, dt. At each time step the UAV agent must choose two things, a desired
direction v (a 2 dimensional velocity vector) to move and a desired speed s to move at. These
two choices are then passed to the agent’s control routine to calculate the actual velocity and
actual speed produced. The control routine ensures that the agent movement is bounded
by their dynamic constraints, such as turning rate, maximum acceleration/deceleration
and maximum speed. These control choices are then performed by the agent and the agent
moves in the space.

If the UAV agent has a current list of tasks, and thus a route from the Optimise Route
process, then the agent will choose to move towards the next task. If instead the agent has
no list of tasks it will switch to searching mode. In this work, the searching behaviour is to
simply perform a random walk. This is achieved by adjusting the agent’s current direction,
vi by a random amount, V ,

v′i+1 = vi + V where V ∼ U2(a, b) (15)

where U2 is a 2-dimensional uniform distribution. For our simulation we chose the bound
to be between a = −0.125 and b = 0.125. In both cases the desired speed, s, of the UAV
will start, and always be chosen to be, the maximum speed allowable, which in this paper
is 5 m/s.

4.4. Simulation Assumptions

While not a limitation of the problem formulation nor simulation environment, for the
purposes of this paper and the results of Section 5, a number of assumptions have been made.
Firstly, all UAVs start from the same, single base location (The red hex of Figure 4), but the
exact location within that Hex will be random for each UAV. Having multiple possible start
locations might lead to a performance benefit in some cases, but exploring it here would only
add unnecessary variables. There are no constraints on fuel consumption, each UAV starts
with an unlimited amount of fuel and does not consume any over the course of the simulation.
If fuel were taken into account then the location of the base location (i.e., the refuelling point)
might become a substantial influence on performance. Additionally, the UAVs must remain
within the simulation environment bounds and it is the role of the ABMS Space to ensure this
by ‘bouncing’ UAVs back from the edges if they try to leave (we can think of this as a kind of
geo-fencing). As tasks are only spawned within the environment bounds, this is only an issue
when UAVs are performing a random walk due to having no current tasks. We also ignore any
potential collision between UAVs and impose no spatial restriction on them. Finally the UAVs
do not need to return to base after completion of all tasks, the simulation is terminated when
all tasks have been completed. The actual impact that these assumptions have on our results
and conclusions is not investigated here, but provides a series of interesting experiments for
further research.

4.5. Example of Single Simulation Run

To demonstrate the above-outlined methodology and simulation procedures we now
show an example single simulation. This simulation is conducted for two different be-
haviour types Greedy and Solo+. For both examples there are 5 UAVs of the same behaviour
type and parameters. Each UAV has a visual range, Rvision, of 250 m (which is one third the
width and height of the 750 m by 750 m environment). Here, UAVs have a much shorter
communication range, Rcomms, of 50 m (which is one fifteenth the width and height of the
environment) meaning they can only communicate with UAVs that are very close to them.

How each simulation run progresses is shown as snapshots in Figure 4 at three
different time steps of 50, 100 and 300 (the rows). The black dots represent task locations
and dotted lines represent the UAVs current planned route to complete them. As many
UAVs have seen, or been told about, the same tasks the UAV routes will often overlap (note
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that when multiple agents’ dotted lines are plotted they can appear solid). This shared
knowledge of the world without explicit cooperation will typically manifest as clusters of
UAVs all trying to visit the same tasks at the same time. This results in an inefficient use
of the multiple UAVs available. This clustering is clearer in the Greedy Agents of Figure 4
(left column) and with a resulting time of 483 time steps compared to 325 for Solo+ (right
column). This clustering and competing for the same tasks will be demonstrated further in
Section 5 as is a key cause of poor performance.

Greedy Agents Solo+ Agents

t
=

50
t
=

10
0

t
=

30
0

Figure 4. Time steps 50, 100 and 300 of two example search and routing trials with 5 UAVs with
Rvision of 250 m, Rcomms of 50 m. With the left column using all Greedy behaviours and right column
using all Solo+ behaviour. Black dots indicate task locations, dashed lines are each UAVs intended
path (many overlap) and the green circle indicates Rvision.
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5. Results and Discussion

We now explore the parameter space of the problem by conducting a series of ensemble
simulations. A single simulation trial is defined by its parameters outlined in Table 2. The
top half of the table shows the fixed parameters, fixed for all trials, and the remaining
variable parameters in the bottom half of the table are swept over. It is the effect the
choice of these variable parameters have on overall performance that will be explored in
this Section.

Table 2. Fixed and variable Trial Parameters used within the simulation.

Parameter Description Value

Max Steps Maximum allowed time steps 1000
T0 Tasks spawned at start 100
T+ Tasks spawned during 0

Environment size Width and Height of world 750 m × 750 m
Hex Size centre to vertex distance 25 m

N Number of UAVs [2, 5, 10, 20]
Rcomms Comms Radius (m) [50, 250, 1500]
Rvision Vision Radius (m) [25, 50, 100, 250, 500, 1500]

Behaviour Agent Behaviour [Solo, Greedy, Solo+, Greedy+]

A parameter configuration is made up of the 5 static and 4 variable parameters of
Table 2 and is run 25 times by testing it against a set of 25 trials. For that parameter
configuration every agent within the trial has the same parameters (e.g., are all the same
behaviour type with the same Rcomms, Rvision) and are thus homogeneous. We run 25 trials
for each of the possible 288 (4× 3× 6× 4) different parameter configurations chosen from
Table 2. Each of these 25 trials is intialised and generated using a corresponding seed key,
so that each parameter combination is tested against a consistent set of trials. The terrain
map used for these results is shown in Figure 4 and loaded at the start of the simulation.
Each of the 25 seed keys is used to seed a pseudo-Random Number Generator (RNG). This
RNG is used to generate the start location of the tasks and UAV agents, as this is seeded it is
repeatable, allowing us to create 25 different trials that can be reproduced and tested against
each parameter combination. Every other random aspect of the simulation is subject to an
entirely different, unique RNG defined by the system clock.

With this in mind we now present the results of our ensemble simulations over the
four-dimensional parameter sweep over Rcomms, Rvision, number of UAVs N and Behaviour.
As defined in Section 2.1 we look to optimise our objective function Equation (2) which is
equivalent to minimising the Timesteps Taken to complete all tasks. The results are presented
in Figures 5 and 6 and contain the same data but pivot to focus on either (i) Rvision (as in
Figure 5); (ii) Rcomms (as in Figure 6); (iii) Number of UAVs (rows); or (iv) Behaviour (lines).
For each behaviour/colour the solid line represents the average over the 25 runs and the
shaded area represents the spread (standard deviation) of the results.

Starting with the effect of the number of UAVs, in Figures 5 and 6, there is a clear
trend. By increasing the number of UAVs from 2 to 20 UAVs (top to bottom) improves
the results across all behaviour types. However, while this reduces our particular metric
(timesteps taken) it does so inefficiently, doubling the number of agents from 10 to 20 does
not result in half the timesteps taken. This inefficiency in scale results in the cumulative
timesteps taken by all UAVs, that is M× Z, increases faster than Z decreases. If efficiency
was a secondary object then there would be a balance between number of UAVs to deploy
and efficient return.

We can easily observe the effect limiting an agents vision, Rvision, has on overall
performance. Limiting Rvision essentially limits a UAV’s ability to easily find new tasks
through searching, this means that simulations with particularly low levels of Rvision
(<100 m) perform poorly. On the other hand over a certain level of Rvision values (>1000 m)
a UAV can always observe all the tasks no matter where the UAV is, so the searching part
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of the problem becomes mostly irrelevant. A common shape can be seen in Figure 5 with
low Rvision values resulting in poor performance, followed by an optimal value around
250 m and finally a plateau in improvements for higher values. Importantly, for solo and
greedy (i.e., without modelling) it is clear that having too much Rvision becomes detrimental
to performance. This increases the likelihood of UAVs competing for the same tasks
and moving around the space in groups, rather than splitting up. In addition to UAVs
competing for the same tasks, having a larger list of tasks likely decreases the efficacy of
the heuristic routing solutions of Section 2.6 leading to less-optimal routes.

Rcomms 50 m Rcomms 250 m

2
U

A
V

s
5

U
A

V
s

10
U

A
V

s
20

U
A

V
s

Figure 5. A sweep over Rvision values for increasing (top to bottom) numbers of UAVs for two fixed
Rcomms values of 50 and 250 m.
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Rvision 50 m Rvision 250 m
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s
5

U
A
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10
U
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V

s
20

U
A

V
s

Figure 6. A sweep over Rcomms values for increasing (top to bottom) numbers of UAVs for two fixed
Rvision values of 50 and 250 m.

Interestingly the above trend is not entirely replicated with changes to Rcomms. Recall
that the only difference between solo and greedy behaviour is that greedy agents adds
tasks to its list that it hears from other agents, whereas solo agents ignore communications.
This means that communication has zero effect on solo and solo+ agents. As shown in
Figure 5 increasing Rcomms from 50 m (left column) to 250 m (right column) does not have
a huge effect on performance. Looking in more detail in Figure 6 we can see that for the
most part the results response to changing Rcomms is mostly flat. The exception to this
is for the simulations with greedy and greedy+ agents with Rvision of 50 m (left column)
which respond negatively to improved communication range. Therefore this highlights
that this result agrees with those of increased Rvision, adding evidence to the idea that to
increase performance, simply knowing about more tasks is not enough. However some of
this is likely pathological to the problem definition, due to the spatial nature of a the search,
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the communication and the homogeneity of agent sensing abilities. A tasks proximity to
an agent correlates to its chance of being visited by that agent once it is made aware of it.
Indeed being able to inform other far-away agents of tasks near to you, likely has negligible
benefits and may serve only to increase the difficulty of the other agents SATSP.

Importantly we can easily observe the effect adding modelling capability to the UAVs,
i.e., Solo+ and Greedy+, has on performance. It is clear from Figure 5 that without
modelling, increasing Rvision has a significant negative effect on performance. This is due
to the fact the UAVs will end up all having a large and similar list of tasks to complete
and are more likely to compete for those tasks, acting inefficiently. Specifically, it is the
detrimental effect of knowing too much about the world (i.e., more tasks) that is mitigated
by adding modelling. One can see that simulations of only 2 UAVs with modelling and
Rvision over 250 m can outperform 10 UAVs without modelling. Thus for homogeneous
teams of UAVs being smarter about what you do with the information in the environment is
much more important than the size of the team. Finally it is worth noting that the variance
(the shaded areas) in performance is greatly improved by adding modelling. In fact no
other parameter really has any effect on the variance in performance. Therefore without
some form of cooperation, which in this case is through modelling, you are leaving the
performance of the system up to chance.

The results show that a core contributor to poor multi-agent performance is not
effectively distributing the workload of visiting tasks. UAVs with solo behaviour act entirely
alone and so the only way to deconflict competitive behaviour is to rely on random chance
or on some underlying pathology of the environment to split multiple UAVs up. Increased
knowledge of the partially observed environment, either through increased vision to see
tasks or increased communication to tell others about tasks they have seen, leads to an
increasing likelihood of converging on the same state of the world. The behavioural
homogeneity of multiple agents means that similar beliefs about the state of the world will
lead to similar decisions within it, resulting in an increased likelihood of UAVs converging on
and competing for the same tasks. This emergent convergence property has been previously
explored by the Authors in [5] for a multi-UAV surveillance problem. In particular it was
shown that artificial heterogeneity, by adding small amounts of noise to an agents action
choice or state observation could be used to alleviate this effect.

The results in this paper show two main ways to handle this convergence in decision
making and state belief (similar to [5]). Firstly, partial observability can actually be a bene-
ficial property of the environment, increasing the agents chances to hold differing world
views allows homogeneous agents to essentially collaborate through ignorance. Secondly, and
hopefully reassuringly, instead of solely relying on this ignorance, UAVs can instead model
the intent of other UAVs and avoid trying to visit tasks they expect to be completed by
someone else.

6. Conclusions

This paper has explored the Multi-Agent Simultaneous Searching and Routing Prob-
lem whereby multiple homogeneous UAVs are used to simultaneously search for unknown
tasks in an environment and route between. A traditional global optimisation approach
was modified to meet the needs of our particular problem such as decentrality and partial
observability of the real world. The work is motivated by trying to mitigate competi-
tive behaviour between UAVs who do not explicitly collaborate. In particular this paper
demonstrates that collaborative behaviour can still be achieved through careful choices
in parameters and simple behaviour modifications. By turning on/off two specific traits
of a standard UAV type, listening to other UAVs and simple modelling of other UAVs
intent, we created four distinct UAVs behaviours. Through the use of a multi-agent simu-
lation environment we were able to simulate and investigate the parameter space of the
UAVs deployed to determine optimal parameter choices to best solve the searching and
routing problem.
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The results of this paper demonstrate that having an improved knowledge of the
environment, through seeing more tasks or being told of them by another agent, can in
fact be detrimental to performance in a multi-homogeneous-agent setting. In fact, partial
observability can be utilised, through limited vision and communication ranges, allowing
multiple-UAVs to essentially collaborate through ignorance. Notably we show that this
reliance on ignorance can be avoided if the agents do a very small amount of modelling
of other agents intent. Importantly, the addition of this modelling behaviour means that
increased knowledge of the world is always better.
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Nomenclature

N Total number of Tasks
T Set of Tasks from 1 to N
a Agent a
M Total number of Agents
A Set of UAV Agents from 1 to M
Ta Subset of tasks for Agent a
Cija Cost Matrix for agent a travelling between task i and j
xija Binary decision variable task i, j and agent a
r Route
r∗ Best route
c Cost
c∗ Best cost
LR Length of route r
U Uniform distribution

Abbreviations
The following abbreviations are used in this manuscript:

ABMS Agent Based Modelling Simulator
UAV Unmanned Arial Vehicle
TSP Travelling Salesman Problem
MSSRP Multi-Agent Simultaneous Searching and Routing Problem
MATSP Multi Agent TSP
SATSP Single Agent TSP
PO Partial Observability
RNG Random Number Generator
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