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Abstract: In recent years, the increasing number of unmanned aerial vehicles (UAVs) in the low-
altitude airspace have not only brought convenience to people’s work and life, but also great threats
and challenges. In the process of UAV detection and tracking, there are common problems such as
target deformation, target occlusion, and targets being submerged by complex background clutter.
This paper proposes an anti-occlusion UAV tracking algorithm for low-altitude complex backgrounds
by integrating an attention mechanism that mainly solves the problems of complex backgrounds and
occlusion when tracking UAVs. First, extracted features are enhanced by using the SeNet attention
mechanism. Second, the occlusion-sensing module is used to judge whether the target is occluded. If
the target is not occluded, tracking continues. Otherwise, the LSTM trajectory prediction network
is used to predict the UAV position of subsequent frames by using the UAV flight trajectory before
occlusion. This study was verified on the OTB-100, GOT-10k and integrated UAV datasets. The
accuracy and success rate of integrated UAV datasets were 79% and 50.5% respectively, which were
10.6% and 4.9% higher than those of the SiamCAM algorithm. Experimental results show that the
algorithm could robustly track a small UAV in a low-altitude complex background.

Keywords: unmanned aerial vehicle; target tracking; attention mechanism; anti-occlusion;
location prediction

1. Introduction

In recent years, with the rapid development of the UAV industry and the continuous
improvement of artificial intelligence, UAVs have been widely used in public security,
disaster relief, photogrammetry, news broadcasts, travel, and other fields, bringing great
convenience to production and social life. However, the increasing number of UAVs in
low-altitude airspace and the frequent occurrence of various illegal flight incidents have
brought great threats and challenges to aviation flight, security, confidentiality protection
and privacy protection [1].

In order to detect UAV in the low-altitude airspace as early and as far as possible using
computer vision, it is often necessary to implement the long-distance detection and tracking
of UAVs [2], which cause small imaging sizes and weak signals [3]. At the same time, the
flight altitude of UAV in low-altitude airspace is very low, often only dozens to hundreds
of meters, and the surrounding environment of this altitude is relatively complex, such as
trees, buildings, and walls, which may lead to the visual tracking of UAV being interfered
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by strong clutter, occlusion, and other factors, resulting in tracking drift and loss. Therefore,
it is important and urgent to find a robust tracking algorithm against background clutter
interference and occlusion for UAV tracking in low-altitude airspace.

On the basis of combining existing UAV visual tracking technology and referring to
the network structure of ATOM [4], this paper proposes an anti-occlusion target tracking al-
gorithm by integrating the SeNet [5] attention mechanism to solve the complex background
and occlusion problems during tracking, which achieved good performance. First, the
SeNet attention mechanism was introduced into the original feature extraction network to
enhance the extracted features, which effectively improved the performance of subsequent
tracking process. Second, an occlusion-sensing model was designed to judge the state
of the target. Lastly, the LSTM [6] trajectory prediction network was used to predict the
UAV position according to the target state. This study was verified on the OTB-100 [7],
GOT-10k [8] and integrated UAV datasets. Experimental results show that the proposed
algorithm could effectively reduce the influence of low-altitude complex environments on
the target and robustly track a UAV.

The main contributions of this paper are:
1. In order to solve the problem of UAVs in the low-altitude airspace being easy to be

submerged in complex background clutter, the SeNet attention mechanism was used in the
backbone to improve the correlation between feature channels, enhance the feature of the
target, and reduce the influence of background clutter.

2. In order to solve the occlusion problem in low-altitude airspace during flight, an
occlusion judgment mechanism is proposed to judge whether the target is occluded.

3. When the target is occluded, the LSTM trajectory prediction network is used to
predict the flight trajectory of the aircraft, so as to achieve robust tracking and stop the
template update to improve tracking accuracy.

2. Related Works

Existing target tracking algorithms can be roughly divided into two categories: One
is the traditional target tracking method based on correlation filtering [9–13], which uses
the response diagram between the template frame and the detection frame after Fourier
transform to determine the target of the detection frame. The other is the deep-learning
target tracking method based on a convolutional neural network [14–17], which obtains
the features of the target by convolutional operation on the images of the template and
detection frames, and then obtains the tracking target by similarity matching. This section
reviews the related work of researchers in recent years.

2.1. Algorithm Based on Correlation Filter

The tracker based on a discriminant correlation filter (DCF) can effectively use limited
data and enhance the training set by using all shifts of local training samples in the learning
process. The method based on DCF trains the least-squares regression to predict the target
confidence score by using the characteristics of cyclic correlation and fast Fourier transform
(FFT) in the learning and detection steps [18]. Mosse [9] was the first pioneering work to
propose correlation filter for tracking that uses a random affine set of samples from a single
initial frame transformation to construct a minimal output sum of the squares’ filter. KCF
reduces storage and calculation [6] by several orders of magnitude by diagonalizing the
cyclic data matrix with discrete Fourier transform. The periodic assumption of KCF also
introduces an unnecessary boundary effect, which seriously reduces the quality of tracking
model. SRDCF introduces a spatial regularization component in the learning process in
order to reduce the boundary effect, which punishes them according to the spatial position
of the correlation filter coefficients [19]. In addition, there are several excellent trackers
based on correlation filters, such as STRCF [20] and ECO [8]. They usually divide tracking
into two stages: feature extraction and target classification, so end-to-end training is not
possible. The objective function in the target classification module in ATOM [13] is based on
the mean square error, like the discriminant correlation filtering method, but it is established
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on a two-layer fully convolutional neural network. ATOM returns the size of the target
with IoU-Net. Although ATOM has achieved effective performance, it is sometimes wrong
in size estimation because the predicted joint cross (IoU) may be inaccurate, which leads to
tracking failure, especially in a cluttered background.

2.2. Algorithm Based on Siamese Network

In recent years, the visual tracker based on a Siamese network has attracted much
attention due to its good balance between tracking performance and efficiency [21]. A
Siamese network learns similarity measure functions offline from image pairs, and trans-
forms a tracking task into a template matching task. SiamFC [21] uses a large number of
templates and search areas for sample matching in offline training. During online tracking,
the template and search regions are correlated in the feature space through forward propa-
gation, and the target position is determined according to the peak position of the correlated
response. SiamRPN [12] adds a region proposal network (RPN) to obtain various aspect
ratio candidate target frames. It interprets the template branch in a Siamese network as a
training parameter, predicts the kernel of a local detection task, and regards the tracking
task as a one-time local detection task. SiamMask [22] added a segmented branch based
on SiamFC and SiamRPN. The size and shape of the target are obtained, and the tracking
results are refined according to the mask of the position of the maximal classification score.
One disadvantage of Siamese method is that it ignores the context information around the
template, and only extracts the template information from the initial target area.

Due to unrestricted video conditions such as illumination changes and viewpoint
changes, the appearance of subsequent targets may be greatly different from that of the
initial target. Therefore, the previously proposed Siamese-based tracker degenerates when
similar disturbances and object appearance changes occur, which leads to tracking drift
and failure. In order to overcome the shortcomings of the Siamese method, DiMP [23]
trains a discriminant classifier online and separates the target from the background. This
model is derived from a discriminant learning loss by designing a special optimization
process, which predicts a strong model in several iterations. The tracker continuously
collects positive and negative samples in the tracking process when the target has sufficient
confidence prediction, and the classifier template is updated online when 20 frames of
target are tracked or a disturbance peak is detected to deal with the appearance change.

So far, many researchers have studied the occlusion problem. However, most of the
research is based on the correlation filtering algorithm using handcrafted features, and
the effect is not very good. As shown in Figure 1, occlusion may lead to target loss, so it
is difficult to achieve accurate tracking through the method based on a Siamese network
in actual industrial production. Target redetection algorithms are more used to solve the
occlusion problem in tracking. However, the premise is that other cameras must capture
unoccluded targets at a time of occlusion, which means that a target requires at least two
or more cameras; that is, the number of cameras should at least double. Therefore, it is
necessary to propose a cheap method to solve the problem of target occlusion.

Figure 1. Diagram of tracking failure caused by occlusion.

3. Anti-Occlusion UAV Tracking Algorithm by Integrating Attention Mechanism

In order to solve the problem of complex background and occlusion in low-altitude
UAV tracking, this paper proposes a single-target tracking algorithm with attention mech-
anism and anti-occlusion ability. Extracted convolutional features are enhanced to solve
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the problem of complex backgrounds by adding a squeeze-and-excitation (SE) module
to feature extraction network for feature optimization. Combining target tracking and
UAV flight trajectory prediction, the trajectory prediction module is started to predict the
position of a UAV when it is occluded. In this paper, the ATOM algorithm is improved.
The sequence and exception (SE) module was added to the feature extraction part, and the
occlusion-sensing and trajectory-prediction modules were added to the tracking process to
realize the robust tracking of low-altitude UAVs.

3.1. Squeeze-and-Excitation (SE) Module

A squeeze-and-excitation (SE) module is an attention method to improve the corre-
lation between feature channels, and enhance target features. By introducing the SeNet
attention mechanism, the representation of targets in the channel dimension is enhanced.
At the same time, by emphasizing the target and suppressing background information, ad-
justing the parameters in the network, it shows obvious advantages in image classification.
Therefore, the SeNet attention mechanism was added to the ResNet-18 feature extraction
network and the final output to enhance the extracted target features in order to solve the
complex background problem of low-altitude UAVs.

As shown in Figure 2, squeeze-and-excitation (SE) modules generate different weight
coefficients for each channel according to relationship between feature channels, multiply-
ing the previous features and adding them to the original features to achieve the purpose
of enhancing features.

Input feature X

Hꞌ×Wꞌ×Cꞌ

1×1×C

Ftr

Input feature U

H×W×C

1×1×C

Output feature Xꞌ 

H×W×C

Fsq(·)

Fex(·,W)

Fscale(·,·)

Figure 2. Squeeze-and-excitation (SE) module.

As shown in Figure 2, the process of the SeNet attention mechanism is as follows:
First, the extracted feature X ∈ RH′×W ′×C′ is mapped to U ∈ RH×W×C by transforming
function Ftr. Then, the global information of each channel is represented by a channel
feature description value through global average pooling Fsq(·), and the channel feature
description value is adaptively calibrated by Fex(·, W) to render the weight more accurate.
Lastly, the enhanced feature Y ∈ RH×W×C is obtained by multiplying the weight value and
the original feature by Fscale(·, ·).

Specifically, Ftr is treated as a convolutional operator, V = [v1, v2, · · · , andvC] repre-
sents the set of learned filter kernels, where vi represents the parameters of the i− th filter.
So, the output of X through Ftr is U = [u1, u2, · · · , uC],

ui = vi ∗ X =
C′

∑
t=1

vt
i ∗ xt (1)

where ∗ represents a convolutional operation, and vt
i is a two-dimensional spatial kernel

that represents the channel corresponding to a single channel in X.
Global average pooling Fsq(·): In order to better represent the features of all channels

without losing any features, global average pooling is used for the feature information
of each channel, and the feature information of the channel is expressed as a value. zi
represents the feature description value of each channel, which is expressed as

zi = Fsq(ui) =
1

H ×W

H

∑
r=1

W

∑
c=1

ui(r, c) (2)
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where ui is a feature in the i-th channel.
Adaptive calibration Fex(·, W): two fully connected layers are used to fully exploit

the correlation between channels. First, the number of channels is reduced to C/r through
a fully connected layer to reduce the amount of calculation, and the ReLU function is used
to activate the output. Then, the number of channels is again restored to C through a fully
connected layer, and a sigmoid activation function is adopted to output. This process is
expressed as

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (3)

where δ is the ReLU activation function, σ is the sigmoid activation function, and
W1 ∈ R C

r ×C,W2 ∈ RC× C
r .

Lastly, enhanced features on the channel are obtained by multiplying the weight
coefficient through the fully connected layers with the previous features.

yi = Fscale(ui, si) = siui (4)

where yi is the feature of the i− th channel after weight multiplication, Y ∈ [y1, y2, · · · , y′C]
is the enhanced feature through the channel.

Inspired by SeNet, combined with the characteristics of ResNet-18 network, a ResNet-
18 network combined with SeNet is proposed. On the basis of the original ResNet-18
network, the SeNet layer was added behind each dense block to realize the utilization of
the attention mechanism of ResNet-18 network channel. The specific network framework
is shown in Figure 3.

Residual Residual

Global 

pooling

FC

ReLU

FC

Sigmoid

Scale

Figure 3. Se-ResNet network by integrating SeNet.

At the same time, after features are extracted from the Se-ResNet network, SeNet is
used again to enhance the extracted features to solve the complex background problem in
the tracking of low-altitude UAV. The feature extraction network is shown in Figure 4.
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Se-ResNet

Input feature X

Hꞌ×Wꞌ×Cꞌ

1×1×C

Ftr

Input feature U

H×W×C

1×1×C

Output feature Xꞌ 

H×W×C

Fsq(·) Fex(·,W)

Fscale(·,·)

Figure 4. Feature extraction network by integrating attention mechanism.

3.2. Occlusion-Sensing Module

An occlusion-sensing module is proposed to determine whether a target is occluded.
The Gaussian response map is obtained by cross-correlation between the feature map from
the feature extraction network in the search area and the target frame. Response values
within a certain range are found, and the position is recorded as set A. The Euclidean
distance between the target and the elements in set A is calculated, and the average value is
obtained. If the distance is greater than the threshold set by the algorithm, it is determined
as an occlusion.

In this study, the feature response diagram of a feature extraction network was ana-
lyzed through the visualization of the training process. When occlusion occurs, the response
graph fluctuates and the response peak is not prominent. On the basis of this phenomenon,
an occlusion-sensing module is proposed to accurately determine whether the target is
occluded, as shown in Figure 5.

Backbone

Classifier

M >θ& fmax <ε?

Return the target 

location

Predict the target 

location

NY

Output the target 

location

Figure 5. Occlusion-sensing module.

First, points with a certain range of response values in the response diagram are
obtained, and the position set is denoted as A.

A = {(i, j)|(r̂(i, j) > η1mean(r̂))and(r̂(r, j) < η2max(r̂))} (5)

where r̂ is the current frame response graph, and mean(r̂) is the average response graph.
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Average occlusion distance metric MO is defined as

MO =
1
n ∑

(i,j)∈A

√
(i−m)2 + (j− n)2 (6)

where n represents the number of points contained in set A, and (m, n) represents the
location of the peak response.

Figure 6 shows the target response diagram after using the proposed occlusion strategy.
Three common response diagrams of a tracking target state are given, namely, no occlusion,
partial occlusion, and complete occlusion. The dark points in the figure represent the points
in set A. With the increase in the occlusion degree of the target, the response diagram
dramatically changed, the number of points in set A increased, the average occlusion
distance metric MO also increased, and multiple peaks appeared in the response diagram.
Therefore, average occlusion distance measure MO could reflect the occlusion state of the
target to a certain extent.

Figure 6. Response diagram under occlusion-sensing module.

In view of the phenomenon described in Figure 6, an occlusion-sensing module is
proposed to discriminate the occlusion of UAVs during tracking. The specific process
is shown in Figure 5. Feature extraction is performed on the target frame, and a mask
operation is performed on the extracted features and the trained template to obtain the
Gaussian response diagram. When global mean occlusion distance DO is greater than the
set threshold θ, and the peak fmax of the response graph is less than set threshold ε, the
UAV is judged to be occluded. The trajectory prediction module is called to predict the
next position of the UAV, and the template update is stopped to prevent the template from
being occluded.

3.3. UAV Trajectory Prediction Based on LSTM

The traditional Kalman filter algorithm has achieved good results in terms of trajectory
prediction and has been applied in engineering. However, the Kalman filter is only appli-
cable to tracking linear moving targets. The single-target tracking problem with different
trajectory types is difficult. The measurement value is uncertain, especially when the target
is occluded or has disappeared, so it is difficult to effectively predict in this case.

Most target trajectories do not follow the linear principle in common UAV flight
videos, which hinders the Kalman filter from predicting trajectories well, while long short-
term memory (LSTM) performs better. LSTM is more suitable for solving the prediction
problem of a nonlinear motion trajectory because it benefits from its internal mechanism.
For example, the Social-LSTM algorithm achieved good trajectory prediction performance.
In view of the diversification of target trajectories, a trajectory prediction model is proposed
by improving the LSTM algorithm. The central coordinates of the historical frame before
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occlusion are used as the input of the trajectory prediction model, trajectory samples are
generated by LSTM, and the next prediction position of the target is obtained, which solves
the problem of tracking failure when the UAV is occluded.

The space coordinate of UAV at the time t is (xt, yt), in which the time t = 1 to t = tobs is
observable, and the corresponding observable trajectory is represented as (x1, y1), (x2, y2), · · · ,
(xobs, yobs). Time t=tpred is the prediction time, and the corresponding prediction coordinates
is represented as (x̂pred, ŷpred).

The trajectory prediction network based on LSTM proposed in this paper is shown
in Figure 7. With the historical flight trajectory of UAV as the input, the predicted flight
trajectory is output after a LSTM encoder and decoder.

LSTM LSTM
h

Encoder Decoder ( , )pred predx y

Figure 7. Trajectory prediction network based on LSTM.

Let ht represent the hidden state of LSTM at time t, which is used to predict the
distribution of target position (x̂t+1, ŷt+1) at time t + 1. Assuming that it obeys binary
Gaussian distribution, mean µt+1, standard deviation σt+1 and correlation coefficient ρt+1
are predicted by weight matrix Wp. Then, prediction coordinate (x̂t, ŷt) at time t is:

(x̂t, ŷt) ∼ (µt, σt, ρt) (7)

The parameters of the model are learnt by minimizing the negative logarithmic likeli-
hood function:

[µt, σt, ρt] = Wpht−1 (8)

L(We, Wl , Wp) = −
Tpred

∑
t=Tobs+1

log(P(xt, yt|σt, µt, ρt)) (9)

The model is trained by minimizing the loss for all trajectories in the training dataset,
where Wl is the network weight of the LSTM, and We is the weight of the position coordi-
nates. Because this article only predicts the trajectory of the UAV, there is no relationship
with other trajectories, and there is no need to calculate the weight associated with other
trajectories, so the weight We of the position coordinate iwass set to 1.

3.4. Comprehensive Scheme and Algorithm Implementation

Anti-occlusion target tracking for UAVs integrating the SeNet attention mechanism is
proposed considering the SeNet attention module, occlusion-sensing module, and flight
trajectory prediction above, as shown in Algorithm 1. Global and local information is
fused for feature enhancement by using the SeNet attention mechanism. The occlusion-
sensing module is used to determine whether the target is occluded. When the target is
occluded, the LSTM algorithm is used to predict the target position. The whole process of
the algorithm is shown in Figure 8.
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Algorithm 1 Proposed UAV tracking algorithm.

Input: Target position pos and the size of bounding box rect in the first frame.
Output: Target position posi and the size of bounding box recti in the i− th frame.

1: Initialize Nimage, pooling, t, ε.
2: for i = 2 to Nimage do
3: Extract the area of pooling ∗ rect size as search area with posi−1 coordinates in the

i− th frame.
4: Extract features in search area by the backbone.
5: Generate response graph using classified regression filter.
6: Calculate A and MO using Equations (5) and (6).
7: if MO > θ and fmax < ε then
8: Call LSTM trajectory prediction algorithm, enter [posi−t, ..., posi−1], and output

posi.
9: else

10: Output classification regression filter response graph corresponding position posi.
11: end if
12: Extract multiple bounding boxes of different scales with posi as the coordinate origin,

and calculate the IoU scores. The bounding box with the highest score corresponds
to the posi and recti of the target in the i− th frame.

13: end for

Reference Image

Test Image

BackBone
IoU 

Adjustment

IoU 

Prediction

Groundtruth Box

BackBone

Classification & 

Regression of the 

target location

Prediction Box

IoU

M >θ& fmax <ε?

Regress the target 

location

Predict the target 

location by LSTM

Output the target 

location

Y

N

Se-ResNet

Input feature X

Hꞌ×Wꞌ×Cꞌ

1×1×C

Ftr

Input feature U

H×W×C

1×1×C

Output feature Xꞌ 

H×W×C

Fsq(·) Fex(·,W)

Fscale(·,·)

BackBone

Figure 8. Comprehensive scheme of the proposed UAV tracking algorithm.

4. Experimental Results and Analysis

In this paper, some UAV datasets in Drone-vs.-Birds [24] and LaSOT [25] were inte-
grated to form UAV datasets. Experimental verification was carried out on the OTB-100,
GOT-10k, and integrated UAV datasets to verify the effect of the improved algorithm pro-
posed in this paper, and the tracking-success and precision plots were used for evaluation.

4.1. Experimental Environment and Parameters Setting

The algorithm was implemented in Python 3.7 with the PyTorch framework. The
experimental computer operating system was Ubuntu 180.4 64-bit, CPU InterCore i7-9700k,
the main frequency was 3.60 GHz, with 16 GB memory, NVIDIA GeForce RTX2080Ti, and
11 GB memory. In the training process, some LaSOT and GOT-10k-train dataset are used
as the training set, and the part of GOT-10k-train dataset that does not participate in the
training is used as the verification set. The pretraining parameters on ImageNet are used in
the backbone. By training the network, the common features in the visual tracking process
are learned for the following tracking. In the tracking process, the occlusion threshold is set
to θ = 12, ε = 0.1.
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4.2. Comparison and Analysis of Experimental Results
4.2.1. Experiment on OTB-100 Dataset

The OTB-100 dataset contains 100 different video sequences. The coordinates of the
target and the size of the bounding box in the sequence are manually labeled, and are
relatively accurate. The dataset contains 25% gray images, which pose a challenge to the
algorithm on the basis of color feature tracking.

The proposed algorithm was tested on OTB-100 and compared with four advanced
trackers, namely, the Siamfc, Dimp, Prdimp, and ATOM algorithms. Figure 9 shows the
precision and success plots of the five algorithms on the OTB-100 dataset. The precision
and success rate of the proposed algorithm were improved compared with the second
algorithm after adding the SeNet attention mechanism and anti-occlusion module.
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Figure 9. Precision and success plots on OTB-100 dataset.

The tracking results of some video sequences of the OTB-100 dataset are shown in
Figure 10. The ATOM and Siamfc algorithms lost the target if the occlusion time was too
long. However, the algorithm proposed in this paper could effectively resist occlusion with
the use of the anti-occlusion module. Furthermore, for short-term occluded targets, the
algorithm proposed in this paper tracked the target position more accurately than other
baseline algorithms did because of the LSTM prediction module.

PrDimp Dimp Siamfc ATOMOUR

Figure 10. Tracking results of video sequences of the OTB-100 dataset.

4.2.2. Experiment on GOT-10k Dataset

The GOT-10k dataset contains video sequences of more than 10,000 moving targets
in the real world, in which more than 1.5 million targets are manually marked in location
and bounding box. The GOT-10k test set contains 84 target categories and 32 moving target
categories, without overlap between the training set and test set. Therefore, GOT-10k-val
for testing is not affected by GOT-10k-train for training.

The proposed algorithm was also compared with the Siamfc, Dimp, Prdimp and
ATOM algorithms on the GOT-10k dataset. Figure 11 shows the precision and success plots
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of the five algorithms on the GOT-10k dataset. After adding the SeNet attention mechanism
and anti-occlusion module, the accuracy and success rate of the proposed algorithm were
59.9% and 73.1%, respectively, which were 8.3% and 3.7% higher than those of the second
algorithm.
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Figure 11. Precision and success plots on GOT-10k dataset.

The visualization of part of the video sequence tracking results of the GOT-10k-val
dataset is shown in Figure 12. The ATOM and Siamfc algorithms were not accurate in
predicting the target scale in a complex background. With the use of the SeNet attention
mechanism, the algorithm proposed in this paper was more accurate for the scale regression
of the target than other baseline algorithms were.

PrDimp Dimp Siamfc ATOMOUR

Figure 12. Tracking results of video sequences of the GOT-10k dataset.

4.2.3. Experiment on Integrated UAV Dataset

Drone-vs.-Birds is a target detection dataset used to distinguish between UAVs and
birds with video sequences of UAVs and birds. This study uses its UAV video sequence
and the UAV video sequence of the LaSOT dataset to form a dataset for UAV tracking to
verify the proposed algorithm. UAV video sequences in the Drone-vs.-Birds and LaSOT
datasets were combined into a dataset for UAV tracking to verify the algorithm proposed
in this study.

Figure 13 shows the precision and success plots of the Siamfc, Dimp, Prdimp, ATOM,
and proposed algorithms on the integrated UAV dataset. The accuracy and success rate of
the proposed algorithm were 79% and 50.5%, which are 10.6% and 4.9% higher than those
of the second algorithm.

The visualization of the partial tracking process is shown in Figure 14. When occlusion
occurred, the Siamfc and ATOM algorithms may have lost the target and failed in tracking.
With the use of SeNet attention mechanism and anti-occlusion module, the algorithm
proposed in this paper could achieve better tracking results.
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Figure 13. Precision and success plots on integrated UAV dataset.

PrDimp Dimp Siamfc ATOMOUR

Figure 14. Tracking results under occlusion of the integrated UAV dataset.

5. Conclusions

Aiming at the problems of complex background and occlusion of UAVs in low-altitude
airspace during flight, an anti-occlusion UAV tracking algorithm with an integrated at-
tention mechanism was proposed. In this algorithm, the SeNet attention mechanism is
introduced to fuse global and local information for feature enhancement to solve the prob-
lem of complex backgrounds. The occlusion-sensing module was designed to determine
whether the target is occluded, and if the target is occluded, the LSTM algorithm is used to
predict the target position to solve the occlusion problem. By validating on three different
datasets, the method proposed in this paper achieved good results and tracked UAVs well.
However, with the addition of SeNet attention mechanism and anti-occlusion module, the
algorithm parameters increased and the amount of calculation increased, resulting in a
decrease in the running speed of the algorithm. The running speed on the GPU 2080ti
server was 49 fps/s, which basically achieves real-time tracking. Further improving the
tracking speed and performance of the algorithm without reducing its accuracy is future
research work.
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