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Abstract: Given the stagnating progress in the fight against malaria, there is an urgent need for area-
wide integrated vector management strategies to complement existing intra-domiciliary tools, i.e.,
insecticide-treated bednets and indoor residual spraying. In this study, we describe a pilot trial using
drones for aerial application of Aquatain Mosquito Formulation (AMF), a monomolecular surface
film with larvicidal activity, against the African malaria mosquito Anopheles arabiensis in an irrigated
rice agro-ecosystem in Unguja island, Zanzibar, Tanzania. Nine rice paddies were randomly assigned
to three treatments: (a) control (drone spraying with water only), (b) drone spraying with 1 mL/m2, or
(c) drone spraying with 5 mL/m2 of AMF. Compared to control paddies, AMF treatments resulted in
highly significant (p < 0.001) reductions in the number of larvae and pupae and >90% fewer emerging
adults. The residual effect of AMF treatment lasted for a minimum of 5 weeks post-treatment, with
reductions in larval densities reaching 94.7% in week 5 and 99.4% in week 4 for the 1 and 5 mL/m2

AMF treatments, respectively. These results merit a review of the WHO policy regarding larval source
management (LSM), which primarily recommends its use in urban environments with ‘few, fixed,
and findable’ breeding sites. Unmanned aerial vehicles (UAVs) can rapidly treat many permanent,
temporary, or transient mosquito breeding sites over large areas at low cost, thereby significantly
enhancing the role of LSM in contemporary malaria control and elimination efforts.

Keywords: drones; UAV; malaria; larval source management; larvicide; rice agro-ecosystem; Zanzibar

1. Introduction

Despite the tremendous gains made in curbing malaria mortality and morbidity, espe-
cially in sub-Saharan Africa, between 2000 and 2015, progress has stalled since then [1,2].
The more than 1.7 billion averted cases and more than 10 million lives saved since the turn
of the millennium are largely the result of successes in controlling Anopheles mosquitoes that
transmit malaria parasites between humans. Notably, the free and large-scale distribution
of long-lasting insecticidal bednets (LLINs), and, to a lesser extent, indoor residual spraying
(IRS) of insecticides, together accounted for 78% of the reported success [3]. Vector control
thus remains a crucial element in the fight against malaria but is increasingly plagued by
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resistance of mosquitoes to the chemicals used on bednets or sprayed on indoor walls [4,5].
Not only resistance to insecticides but also changes in mosquito behavior that result in
avoidance of contact with insecticides through early evening and outdoor biting are in-
creasingly observed [6–9]. Furthermore, Anopheles arabiensis, which is the main malaria
mosquito species in Zanzibar, is primarily an outdoor biting (i.e., exophagic) mosquito [10].
This, combined with weak health delivery systems, drug resistance of Plasmodium parasites
that cause malaria [11], and the absence of an effective vaccine resulted in an estimated
627,000 deaths and 241 million cases in 2020 [1]. As a consequence, the call for innovative
tools that can target malaria mosquitoes in different (non-chemical) ways in the outdoor
environment is now more widely and frequently heard [12–15].

Virtually every country that successfully eliminated malaria relied in some way on
the active control of aquatic stages of the mosquito through larval source management
(LSM) [16]. LSM is the management of water bodies that are potential larval habitats
to prevent the development of immature mosquitoes into adults [17]. Despite huge and
well-documented successes both outside and inside Africa, LSM became to be viewed as an
inferior strategy at the end of the Global Malaria Eradication Programme based on models
that indicated that a focus on the daily survival rate of the adult female mosquito had a
much larger impact on malaria transmission intensity than larval control [18]. Nevertheless,
historical campaigns that were successfully executed over sometimes extremely large areas,
notably the eradication of the African malaria vector Anopheles arabiensis from Brazil [19,20]
and Egypt [21] and the near elimination of the yellow fever mosquito Aedes aegypti from the
whole of South America by 1962 [22], have fueled renewed enthusiasm for LSM. Although
larviciding is an old tool for mosquito control and has played a prominent role in malaria
elimination efforts in many countries (the USA, Europe, Australia, etc.), its wide-scale
adoption for malaria control and elimination in Africa is only starting. Nevertheless, by
2017, nearly 60 countries were implementing some form of mosquito larval control, and
24 out of 46 endemic African nations apparently were doing so on a smaller or larger
scale [23]. LSM, therefore, appears to be an increasing trend. Current larvicides include
surface films such as mineral oils and alcohol-based surface products that suffocate larvae
and pupae; synthetic organic chemicals such as organophosphates that interfere with the
nervous system of larvae; microbials such as Bacillus thuringiensis israeliensis (Bti) and
B. sphaericus (Bs) that kill only larvae since their toxins have to be ingested and lead to
starvation; and insect-growth regulators that interfere with insect metamorphosis and
prevent adult emergence from the pupal stage [24]. These products are mostly applied
from the ground by hand, using knapsack sprayers or granular product formulations.

The use of unmanned aerial vehicle (UAV) technology is rapidly advancing and
applied for an increasing number of purposes in health and civil applications [25–28].
It is already being used to map potential breeding sites for malaria mosquitoes using
aerial imagery [29–32], for terrain reconnaissance and vector control program planning,
and is even being considered for the release of sterile male mosquitoes in genetic control
programs [33,34]. In this study, we present an example of architectural innovation by
combining two existing and proven technologies and applying them within a different
context and market. On the one hand, we used Aquatain Mosquito Formulation (hereafter
AMF) [35], which has been field-tested as a larvicide in Africa [36]. On the other hand,
we used a commercial drone platform (the Agras MG-1 S), normally used for precision-
spraying of crops, to apply AMF on mosquito larval habitats. AMF is a commercially
available surface film, with polydimethylsiloxane (PDMS) as its major constituent, with
known lethal physical action against the aquatic stages of mosquitoes [36–38]. AMF
obtained WHO prequalification in December 2018 and is now included as a larvicide for
use by the UN and other organizations and countries [39]. The objectives of the pilot
trial presented here were to assess how efficiently aerial application of AMF using drones
can suppress the development of malaria mosquitoes in rice paddies and measure how
long this suppression would last. Below, we describe the outcome of a trial conducted in



Drones 2022, 6, 180 3 of 12

Zanzibar (Unguja island), where AMF was used in different concentrations and compared
against a control in nine selected rice paddies.

2. Materials and Methods
2.1. Study Area

This study was carried out in the rice irrigation scheme of Cheju, an area situated
in the Central/South region of Zanzibar’s main island, Unguja, the United Republic of
Tanzania (Figure 1). Although back in 2009 a feasibility assessment deemed the prospects
of malaria elimination on the island challenging but feasible [40], recurring introductions
of parasites by travelers [41] and seasonal workers from the mainland [42] have so far
prevented this. Nevertheless, intense campaigns with contemporary control tools resulted
in highly impressive reductions in the community prevalence of malaria to as low as
0.43% in 2015 [43]. Today, resistance to insecticides used and evasion of contact with
insecticides by mosquitoes through outdoor biting have stagnated further progress and call
for interventions that can target vectors outdoors and with novel tools. This is particularly
so now that the more outdoor feeding Anopheles arabiensis has become a dominant malaria
vector in Zanzibar [10,43].
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Figure 1. (A) Location of the 9 experimental paddies in the Cheju rice irrigation scheme. Control 
paddies are indicated by 3, 6, and 9; low-dose AMF (1 mL/m2) by 2, 5, and 8; and high-dose AMF (5 
mL/m2) by 1, 4, and 7. (B) The location of the irrigation scheme within Unguja island, Zanzibar (C). 
(D) The Agras MG-1 S drone spraying AMF in a rice paddy. 
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Figure 1. (A) Location of the 9 experimental paddies in the Cheju rice irrigation scheme. Control
paddies are indicated by 3, 6, and 9; low-dose AMF (1 mL/m2) by 2, 5, and 8; and high-dose AMF
(5 mL/m2) by 1, 4, and 7. (B) The location of the irrigation scheme within Unguja island, Zanzibar
(C). (D) The Agras MG-1 S drone spraying AMF in a rice paddy.

2.2. Site Selection and Drone Spraying

A total of nine rice paddies were availed by local farmers. The surface area of indi-
vidual paddies ranged between 768 and 2405 m2. These paddies were randomly assigned
as control fields (‘C’) or treatment fields (‘T’). The control paddies were sprayed by drone
with water only, and the treatment paddies received either a low dose (Tlow, 1 mL/m2) or
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high dose of AMF (Thigh, 5 mL/m2). Baseline mosquito larval/pupal densities and adult
emergence counts were measured in all nine paddies for a period of five days prior to
spraying. This roughly equals one full mosquito life cycle (from egg to adult) duration
under the prevailing tropical climatic conditions.

An Agras MG-1 S drone (DJI, Shenzhen, China; 10 L carrying capacity) was used
to spray water or AMF. Since AMF, a biodegradable, non-toxic, silicone-based liquid, is
more viscous than water (‘honey-like’), the original stock membrane pumps were removed
from the drone and new specially fabricated mechanical pumps installed. In addition
to hardware modifications, extensive software redesign was undertaken, including the
rewriting of the flight controller algorithm, and the installation of custom firmware on
the drone and its remote controller. The battery power of the drone lasted, depending on
the payload weight, between 10 and 15 min. During the spraying exercise, the drone was
provided with extra batteries that were charged by a small fuel generator kept in the field.
From a working distance of 2 m above the water surface, a spraying swath of up to 5 m and
an operating speed 2–5 m/s ensured that a correct and even amount of formulation was
sprayed on the surface of the paddies. In this way, the amount of the liquid suspension
was precisely regulated to economize operations. The drone was operated in manual mode
but can also be pre-programmed to operate in automatic mode. It was able to fly above
little water pockets in the rice paddies that were cornered by muddy edges or had lower
water levels, which prevented the self-spreading characteristic of AMF from covering all
water surfaces within those pockets. Overall, the water levels in all treated and untreated
rice paddies were equally high. The capacity of the pumps (33 mL/s) limited the time
that was needed to spray the calculated amount of AMF per paddy because the maximum
operating speed of the drones is 8 m/s. The drone with integrated mechanical pumps
sprayed each of the 1000 m2 of the rice paddies in 30 (for Tlow) or 150 s (for Thigh) at its
maximum spraying capacity.

2.3. Monitoring Immature and Adult Mosquitoes

Mosquito larval/pupal densities and adult emergence counts were conducted daily in
all 9 paddies for a period of 46 days (from 27 October 2019 to 16 December 2019) during
the intervention (post-treatment) phase. Upon arrival at a rice paddy, a standard WHO
dipper (‘cup’) was lowered gently at an angle of 45 degrees just below the water surface
to allow any larvae/pupae present in the water to flow into the dipper. Larval/pupal
sampling was carried out between 9 and 11 am. The number of Anopheles larvae collected
from each of 6 dips was summed and recorded for individual paddies. Sampling was
carried out in areas around floating debris and the edges of the habitats, which are the
preferred sites for mosquito larvae [17]. Collected larvae were identified morphologically
using taxonomic keys [44].

Adult mosquitoes emerging from the paddies were collected using emergence traps [45].
Three emergence traps were placed in each of the 9 paddies. The traps were positioned over
water in areas likely to contain anopheline larvae (e.g., at the edges of each experimental
paddy or over tufts of vegetation inside the paddies). Every other day, the traps were
relocated to other places inside the paddies to minimize sampling bias. The traps were
constructed from conical metal frames (1 m high and 1 m in diameter at the base (0.785 m2

surface area)) and covered with mosquito netting to reduce shading of the water, which
might reduce catches. Adult mosquitoes were removed from the trap using an aspirator
through a netting sleeve placed on the side of each trap. The traps were emptied daily, and
specimens transported to the laboratory for identification and counting.

2.4. Data Analysis

The effect of AMF treatment on the number of larvae present inside experimental rice
paddies in Cheju was modeled using generalized linear models (GLMs) with a Poisson
distribution and a log link function [46]. The stage of development of the rice plants was
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included as a moderator variable in the GLM. All data were analyzed using version 23 of
the IBM SPSS statistical package.

The percentage reduction in larval and adult mosquito densities over time was calcu-
lated using Mulla’s formula [47,48]:

% reduction = 100 − (C1/T1 × T2/C2) × 100 (1)

where C1 and C2 describe the average number of larvae in the control paddies pre- and
post-treatment, and T1 and T2 describe the average number of larvae in the intervention
group pre- and post-treatment.

3. Results

Over the entire study period, a total of 11,241 larvae, 1789 pupae, and 1278 adult
mosquitoes, consisting mostly (~90%; M.H. Makame, pers. comm.) of the malaria mosquito
Anopheles arabiensis, were collected from the rice paddies (see Supplementary Materials for
raw data).

3.1. Impact of the Low and High Dose of AMF on Different Life Stages

The highest mean (± SE) number of larvae (73.8 ± 7.1) were collected from untreated
paddies during the baseline data collection period (‘untreated before’, Figure 2a). Untreated
paddies used as controls during the intervention period (‘untreated after’) also yielded large
numbers of larvae (41.7 ± 3.6), albeit significantly fewer than during the ‘untreated before’
period. However, the mean number of larvae present in paddies treated with 1 or 5 mL/m2

of AMF was much reduced (10.7 ± 1.8 and 5.1 ± 1.3, respectively) compared to the controls
pre- and post-intervention, demonstrating a strong insecticidal effect of AMF. Statistical
analyses showed highly significant differences (p < 0.001) between all pairwise comparisons
of the four treatments (Figure 2a). The number of pupae found in paddies with the different
treatments assumed exactly the same pattern as that of the larvae. Thus, the mean (±SE)
number of pupae reduced progressively from the ‘untreated before’ (10.8 ± 1.3) followed
by ‘untreated after’ (7.2 ± 0.8) to AMF 1 and 5 mL/m2 (1.7 ± 0.3 and 0.9 ± 0.2, respectively;
Figure 2b). Finally, significantly fewer adult mosquitoes emerged from paddies in the
‘untreated before’ (3.1 ± 1.9) than in the ‘untreated after’ (7.5 ± 0.9; p < 0.001). However,
the mosquitoes collected in these two treatments were significantly (p < 0.001) higher than
those collected from paddies treated with AMF at both concentrations (which did not differ;
p = 0.744; Figure 2c). The finding that both the low and high concentration yielded similar
reductions in adult mosquito emergence favors the cheaper option of AMF application at a
dose of 1 mL/m2. Results from the larval sampling for the individual fields are shown in
Figure 3, which, especially for the 5 mL/m2 treatment, show comparable numbers.
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Figure 2. Mean number (± SE) of Anopheles arabiensis larvae (A), pupae (B), and adults (C) sampled
from rice fields in Cheju, Zanzibar. The paddies were sprayed (by drone) with water (‘untreated
after’) or with 1 or 5 mL/m2 of AMF. Bars without letters in common are significantly different at
p < 0.001.
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Figure 3. Mean number (± SE) of Anopheles arabiensis larvae collected from the 9 individual paddies
during the pre-intervention (‘before’) and post-intervention (‘after’) period.

3.2. Residual Effect of AMF Treatments

The residual effect of AMF in suppressing the development of mosquito larvae in
habitats was observed throughout the 7-week (day 5–day 51) period over which measure-
ments post-treatment were carried out (Figure 4). The percent reduction in larval density,
calculated using Mulla’s formula, reached a ceiling of 94.7% in week 5 and 99.4% in week
4 for the 1 and 5 mL/m2 AMF treatments, respectively (Table 1). Larval densities started
increasing thereafter, signifying the onset of a diminishing performance of AMF, which
biodegrades under the influence of UV light.
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Figure 4. Reduction in the mean larval abundance in untreated rice paddies and those treated with
1 or 5 mL/m2 of AMF. The pre-treatment period is indicated in dark blue. Thereafter, AMF was
applied by drone (arrow) and observations of larval abundance continued until day 51.

Table 1. Weekly mean abundance and percent reduction of mosquito larvae in rice paddies treated
with two doses of AMF (1 or 5 mL/m2); data were pooled for the different treatments. No paddy was
treated with AMF in week 1 (pre-test period). The highest reductions observed for both treatments
are underlined.

Week Control AMF % Reduction

1 mL/m2 5 mL/m2 1 mL/m2 5 mL/m2

1 (Pre) 80.0 57.0 84.0 — —
1 (Post) 70.2 26.4 22.1 47.2 70.0

2 59.7 24.0 7.5 43.6 88.0
3 42.5 12.0 2.3 60.4 94.8
4 31.4 2.0 0.2 91.1 99.4
5 28.9 1.1 0.3 94.7 99.0
6 24.5 2.6 0.5 85.1 98.1
7 25.8 3.2 0.6 82.6 97.8

3.3. Drone Operation Speed

We treated six rice paddies with AMF: three paddies with Tlow (measuring 1325,
1299, and 769 m2) and three paddies with Thigh (measuring 1082, 1820, and 1157 m2). The
operating speed of the drones was limited by two factors. One limiting factor was the
capacity of the pumps, which sprayed at a maximum of 33 mL/s. The second limiting
factor was the maximum load of the Agras MG-1 with the newly installed mechanical
pumps. We used a safe maximum load of 8 L (instead of the maximum of 10 L this drone
features). Given this, we were required to refill the tank with AMF during the treatment of
the larger rice paddy of 1820 m2 and treatment with Thigh.

It took the drone 40 s to spray the 1325 m2 paddy, 39 s to spray the 1299 m2 paddy, and
23 s to spray the 769 m2 paddy, when treating with Tlow (see Supplementary Materials for
a video of a spraying drone). The back-and-forth flight to the three paddies took 30–50 s.
The flight between the treated paddies lasted 20 s. The overall operating time for the Tlow
treatment of the three paddies took 3:22 min.

For Thigh, it took the drone 30 s to fly to the 1082 m2 paddy, 162 s to spray it, plus 240 s
of refill time; 174 s to spray the 1157 m2 paddy plus 240 s of refill time; and 273 s to spray
the 1820 m2 paddy plus 50 s for the flight back to base. Thus, the overall operating time
for the Thigh paddies was 19:29 min. Combined, the treatment of all six paddies, totaling
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7452 m2, including the times to reach plots and return to base for intermittent refueling,
took 22:51 min.

4. Discussion

In this research, we report the successful use of drones in Africa to control malaria
mosquitoes in irrigated rice agro-ecosystems. The aerial application of AMF with the use of
drones resulted in impacts on the different life stages comparable to original evaluations of
AMF against anopheline mosquitoes in the laboratory, where a dose of 1 mL/m2 resulted in
a median lethal time to death of 0.98 (95% CI = 0.75–1.20) days for Anopheles gambiae s. s. [35]
and a dose of 1.35 mL/m2 (95% CI 1.09–1.75) resulted in complete larval mortality of
An. arabiensis [37]. In an open field study in Kenya, in which AMF was poured into paddies
by hand at 1 mL/m2, a reduction in anopheline emergence of 93.2% was monitored [36].
Within 3–4 weeks after AMF application, similar reductions were observed in the current
trial. Therefore, the application of AMF from the air by drone or manually on the ground
does not, as expected, make a difference in terms of the impact on mosquito numbers and
the different life stages. The slowly increasing numbers of larvae by week 6 indicate the
necessity for retreating the rice paddies in week 6 irrespective of the amount of larvicide
used per unit area and is similar to what was reported from a field study in Kenya, where
a single dose of AMF at 1 mL/m2 inhibited emergence by 85% (95% CI 82–88%) for
6 weeks [36]. Thus, not only can drones be used for applying AMF with similar impact
to ground application but this impact also lasts equally long (ca. 6 weeks at a dose of
1 mL/m2) compared to previous studies. It is noteworthy that the untreated paddies,
despite having received no larvicide, also exhibited a reduction in mosquito larval densities
over the eight weeks of observation, which can be explained by the fact that crop growth
during the tillering stage leads to an increase in shade covering the water surface, thereby
making it less attractive for gravid mosquitoes to oviposit their eggs, which they preferably
do so in sunlit water bodies. Alternatively, due to the proximity between treated and
control fields, lower mosquito densities due to treatments could also have affected the
numbers in control paddies.

A major aim of this study was to perform cost-benefit analyses querying the effective-
ness of drones as a method for applying mosquito larvicides in rice paddies. Although it
was difficult to measure the application speed of AMF by hand, since this varies between
individuals and paddy conditions (deep mud inhibits fast walking), we can draw some
conclusions. On the assumption that a person spraying from a knapsack would cover 6 m
in 10 s, we inferred that the drones as used in this study were 2–6 times faster and less
costly than manual application of AMF, underscoring their superiority and suitability for
this purpose. These findings could even be enhanced by using newer, more efficient model
drones with a larger carrying capacity and flight times. For instance, DJI’s T30 drone (DJI,
Shenzhen, China; carrying capacity 30 L) with integrated mechanical pumps is almost eight
times faster than hand spraying. Their edge over hand spraying also resides in the fact that
drones ensure continuous and precise dosing at pre-set flight speeds. This ensures more
efficient and accurate application of AMF. Furthermore, drones can easily access edges and
muddy areas in rice paddies that cannot easily be accessed on foot and without causing
damage to the rice crop. Finally, spraying by hand cannot be carried out similarly due
to unsteady spraying rates and a varying walking speed. Hence, an application rate of
at least double what was sprayed with the drone could be assumed for manual spraying.
Due to the rather high purchase price of AMF, the application efficiency has a significant
impact on the price comparison between the application by drones or by hand. Given the
fact that the pumps installed on the drones are the limiting factor for the spray rate (in
our case, 33 mL/s), the drone cannot play out its maximum possible speed. Consequently,
with the installation of more powerful pumps, more area could be covered per second,
which would further reduce the operating and re-fueling times, and thus the cost of drone
application. For instance, an increase in the pumping speed of 50% would result in 49 mL/s
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and would increase the application speed of the drones in comparison to hand spraying to
9 times faster.

Although the results presented here are the outcome of an initial pilot trial and need
further expansion, they do present a very attractive option to augment the limited number
of tools to control malaria mosquitoes, notably outdoors. Paddies are generally well
demarcated, and coordinates can easily be uploaded on the drones’ operating software to
enable precise and recurrent treatments over time. Some of the intricacies experienced with
coverage path planning in the built environment do not apply due to the openness of and
generally sparsely vegetated rice irrigation schemes [49]. Especially in large rice irrigation
schemes, this can result in the treatment of very large areas over a very short period of
time. Rice is the fastest growing food in Africa; harvested areas increased by over 600%
from 1961 to 2019 [50,51], but this simultaneously increases the risk of mosquito-borne
disease, notably malaria [52]. When rice cooperatives bundle resources, this could provide
opportunities for entrepreneurs to develop drone application of anti-mosquito products
on a commercial basis. As a result, it is anticipated that a reduced malaria incidence will
benefit the rice farming communities and result in less absenteeism from work, in turn
resulting in higher yields and income.

The World Health Organization suggests the regular application of insecticides to
water bodies (larviciding) for the prevention and control of malaria in children and adults as
a supplementary intervention to LLINs or IRS in areas with ongoing malaria transmission
where aquatic habitats are few, fixed, and findable [53]. This mostly follows an earlier
WHO report [17] and the outcome of a systematic review [54] that outlines that at present,
there is still too little evidence of the true value of this vector control tool. We would argue
here that with regards to rice irrigation schemes, these are both ‘fixed’, ‘findable’, and ‘few’
if one considers the entire scheme as one (massive) breeding site. This is surely not what
was meant with ‘few’ but given the speed at which aerial application of larvicides can be
undertaken with drones, this warrants a re-evaluation. Similarly, the use of drones for
area-wide larval source management could be extended to other large open areas such
as floodplains or estuaries, for which large-scale larviciding has proved too difficult in
the past due to access problems [55,56]. Future studies should focus on broadening the
applications of this approach for larval source management of mosquitoes, should assess its
direct impact on malaria transmission intensity, and provide more details on the economics
of drone use in similar settings.

5. Conclusions

Drones have previously been used for mosquito habitat surveillance. In this experi-
mental study, we showed that commercially available drones and mosquito-killing agents
can be used to effectively reduce mosquito population densities for up to 1.5 months after
a single application of AMF (at 1 mL/m2). Given the urgent need for outdoor malaria
mosquito control measures, this approach warrants further development in terms of cost
and application in rice irrigation schemes in Zanzibar and beyond.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/drones6070180/s1, Raw data file. Video of drone spraying of
AMF in a rice paddy. For a visual impression of the trial, see: https://www.youtube.com/watch?v=
Vo9Sn2kFDo4&ab_channel=DJI (accessed on 20 May 2022).
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