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Abstract: End-to-end deep neural network (DNN)-based motion planners have shown great potential
in high-speed autonomous UAV flight. Yet, most existing methods only employ a single high-capacity
DNN, which typically lacks generalization ability and suffers from high sample complexity. We
propose a novel event-triggered hierarchical planner (ETHP), which exploits the bi-level optimization
nature of the navigation task to achieve both efficient training and improved optimality. Specif-
ically, we learn a depth-image-based end-to-end motion planner in a hierarchical reinforcement
learning framework, where the high-level DNN is a reactive collision avoidance rerouter triggered
by the clearance distance, and the low-level DNN is a goal-chaser that generates the heading and
velocity references in real time. Our training considers the field-of-view constraint and explores
the bi-level structural flexibility to promote the spatio–temporal optimality of planning. Moreover,
we design simple yet effective rules to collect hindsight experience replay buffers, yielding more
high-quality samples and faster convergence. The experiments show that, compared with a single-
DNN baseline planner, ETHP significantly improves the success rate and generalizes better to the
unseen environment.

Keywords: autonomous UAV flight; event-triggered; hierarchical reinforcement learning; collision
avoidance; unknown environment

1. Introduction

Autonomous navigation with collision avoidance plays a critical role in the safe opera-
tion of UAVs in unknown environments [1–4]. It is a challenging task since UAVs typically
have limited onboard sensing and computing ability, and the environmental information
can only be perceived locally. Common model-based navigation stacks follow the sensing–
mapping–planning pipeline [5], which is robust and highly interpretable. However, each of
these subtasks can be computationally demanding for onboard computation and introduces
significant latency that limits the flight speed and range.

End-to-end deep neural network (DNN)-based methods show great promise in de-
veloping portable onboard navigation solutions for autonomous flight [6–11]. Compared
with the traditional methods, the end-to-end DNN policy directly maps the raw sensing
inputs to navigation commands, skipping the mapping and many other intermediate heavy
processings [8]. The DNN policies are commonly trained under the frameworks of imitation
learning or reinforcement learning. Imitation-learning-based methods directly copy from
human experience [11] or expert algorithms [8], which lack the potential to achieve better
optimality. It is generally more difficult to train with reinforcement learning due to the
lack of supervision [9,10]. Efficient training with reinforcement learning requires “good”
data, which are those with high rewards, sufficient exploration of the environment, and
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somewhat representative of a good policy. However, such good data are scarce when learn-
ing from scratch, as collisions happen most of the time at the beginning of the training. In
addition, the aforementioned deep-learning-based methods all utilize a single high-capacity
DNN, which has relatively poor generalization ability.

In this paper, we view the navigation task as a bi-level optimization problem, which
naturally consists of two goals: reaching the goal point and avoiding collisions along the
way. This structural property is exploited to improve the design of the DNN policy. Specifi-
cally, we propose an event-triggered hierarchical reinforcement learning-based planner for
autonomous navigation. Different from other end-to-end learning-based methods, we train
two DNNs to focus separately on goal reaching and collision avoidance, respectively (see
Figure 1). In contrast to conventional hierarchical-based reinforcement learning [12], we
set different reward functions for the two levels to guide them to respond to obstacles and
waypoints, respectively. We consider navigation in unknown environments using a depth
camera. Hence, only local perception measurements with limited field-of-view are utilized.
Furthermore, we design the high-level policy to activate only if obstacles occur in the
range of the field of view. This event-triggered mechanism improves the training efficiency
and success rate by reducing the chance of generating wrong subgoals. On the training
aspect, the bi-level structure provides additional flexibility and improved efficiency as it
allows the reuse of data for the training of both DNNs, despite their different objectives.
In particular, we develop effective rules to generate good samples using the hindsight
transitions experience [13] for both levels of policies, which significantly improves the
training efficiency and optimality.

Figure 1. Event-triggered bi-level hierarchical planner (shown in the dashed frame). The planner
directly maps from depth images to velocity and heading references. The high-level policy is triggered
by the close obstacles and generates rerouting subgoals for collision avoidance. The low-level policy
chases the (sub)goal.
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Overall, the proposed event-triggered reactive planning offers a simple yet efficient
collision avoidance navigation strategy. To our knowledge, this is the first time hierarchical
reinforcement learning has been successfully applied to UAV autonomous navigation. We
conduct extensive simulations to demonstrate the significant performance improvement
over baseline single-DNN policies trained with state-of-the-art reinforcement algorithms
under similar settings. We also demonstrate the generalization to unseen and more complex
environments. Moreover, the real flight test shows that the proposed planner has the
potential to engender spatio–temporally optimized paths, which is generally difficult for
traditional model-based or imitation-learning-based methods.

2. Preliminaries

We briefly review the basics of hierarchical reinforcement learning, hindsight transi-
tions experience, and deep deterministic policy gradient algorithms below.

2.1. Hierarchical Reinforcement Learning

Hierarchical reinforcement learning (HRL) decomposes the challenging long-horizon
decision-making task into simpler subtasks of different objectives [14]. In reinforcement
learning, which is based on the assumption of the Markov decision process (MDP) [15],
only the sequential nature of the decision process is relevant, and the amount of time that
passes between decision stages is ignored. Different from that, most of the HRL approaches
are based on the assumption of the semi-Markov decision process (SMDP) [16], where the
system is treated as remaining in each state for a random waiting time. Following SMDP,
the Bellman equations are set as:

V(s) = max
a∈As

[
R(s, a) + ∑

s′ ,τ
γτ P

(
s′, τ | s, a

)
V
(
s′
)]

, (1)

and:

Q(s, a) = R(s, a) + ∑
s′ ,τ

γτ P
(
s′, τ | s, a

)
max
a′∈As′

Q
(
s′, a′

)
(2)

where the random variable τ denotes the waiting time for state s when action a is executed.
The transition probabilities generalize to give the joint probability that a transition from
state s to state s′ occurs after τ time steps when action a is executed.

A few different HRL frameworks have been proposed in the literature [12,17–22].
Among them, the goal-reach-based method provides stronger explainability for HRL [20].
This type of method expands the original V(s) and Q(s, a) into V(s, g) and Q(s, g, a),
respectively. The higher-level policy of the goal-reach-based method generates subgoals
with specific physical meanings for the lower-level policy to execute. Particularly, in many
applications, the state space of the lower-level policy is designed conveniently to be the
same as the action space of the higher-level policy [12,20–23].

In HRL, the policies at different levels are coupled. The lower-level policies are
constantly updated during training. This essentially results in a non-stationary environment
for training the higher-level policy, since the rewards received by the higher-level policies
depend on the lower-level policies’ changing behaviors. Consequently, the training of HRL
is typically very difficult. To improve training efficiency, the idea of Hindsight Experience
Replay (HER) [13] is utilized to generate sufficient “good” samples for training the multi-
level policies in HRL. In particular, hindsight transitions were first applied to HRL in the
work of Hierarchical Actor-Critic (HAC) [12], where the experience replay samples are
modified in a way that decouples the tasks of different levels. The samples are effectively
re-purposed to contribute to more efficient training. We explain in more detail in the
following subsection.
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2.2. Hindsight Transitions Experience

Off-policy reinforcement learning algorithms commonly utilize the experience replay
buffer to update the parameters more stably and efficiently. When the target in the training
environment is difficult to achieve, there can be insufficient good samples in the experience
replay buffer for effective training. This is especially the case for sparse-reward tasks, where
experiences that are conducive to learning are scarce. Hindsight goal transition mitigates
this problem by replacing the target with the agent’s current state:

[stateinitial => s0, action => a1, reward => R, statenext => s1, goalsub => s1] (3)

where the goalsub generated by the high-level policy is forced to set as s1, such that the
low-level policy is better rewarded from the environment, which significantly improves
the training efficiency.

As briefly mentioned in the last subsection, there exists a non-stationary issue faced by
the higher-level policy for the off-policy HRL method. For example, since the lower-level
policy is constantly changing while training, a sample observed for a certain high-level
action in the past may not yield the same low-level behavior in the future, and thus may
not be a valid experience for training [12]. The hindsight action transitions modify the
action generated by the high-level policy in the original sample to the one that leads to the
actual state that the agent has reached, despite the imperfect low-level policy:

[stateinitial => s0, action => a′1, reward => R, statenext => s1, goal => sn] (4)

where s1 is the real state that agent achieved, and a′1 is the modified action. Hence, the
modified sample is equivalent to that when the lower-level policy is optimal. Thus, the
optimal policy for the higher-level policy can be made independent of the lower-level one.

2.3. Deep Deterministic Policy Gradient

Deep deterministic policy gradient (DDPG) [24] is widely used in continuous control
tasks, particularly in robot planning and control. It is of the actor-critic architecture [25],
which employs a policy network and a value network. Unlike the stochastic policy network,
which outputs a conditional probability distribution over the action space [26], DDPG
generates deterministic actions according to the input state or observation. The object
function of DDPG can be described as:

J(θ) = ES[q(S, µ(S; θ); w)] (5)

where q and w are the parameter and the output of the critic network, respectively, and
µ(S; θ) is the action of actor network. DDPG maximizes the J(θ) through gradient descent
to achieve the best policy.

In off-policy learning, the behavior policy (i.e., the policy used to collect experiences)
of DDPG can be different from the target policy. Thus, collecting experiences and network
training can be carried out separately. Typically, noises are added to the behavior policy
action when collecting experiences, which ensures the exploration and avoids trapping in
local minimums. We employ DDPG as the basic learning algorithm to train the policies.

3. Event-Triggered Bi-Level Hierarchical Planner (ETHP)

For UAV autonomous navigation in unknown environments, the planner not only
needs to approach the target point but also needs to avoid obstacles that suddenly occur in
the field of view. Although an efficient framework for partially unknown environments [27]
has been proposed, most of the common outdoor task scenarios such as rescue and resource
exploration need to face a fully unknown environment.

Existing methods employ a single high-capacity DNN to deal with this challenge,
which lacks explainability and has poor generalization ability. In contrast, we propose a
novel event-triggered bi-level hierarchical planner (ETHP), where each level has a physi-
cally meaningful optimization goal. The hierarchical structure allows both levels to use
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a lightweight MLP (multilayer perceptron) network that contains only three layers of
(64, 32, 2) number of neurons, respectively, which significantly improves training efficiency.

Moreover, as shown in Figure 2b,c, we design the “event-trigger” rule, which plans
the collision avoidance path reactively. The high-level policy will be triggered to generate
intermediate waypoints only if obstacles appear in the field of view (we set the trigger
distance, β). The low-level policy tracks these subgoals in sequence to avoid obstacles.
Otherwise, the low-level policy will keep tracking the goal point. The “event-trigger” rule
improves the collision avoidance training efficiency and success rate by reducing the chance
of generating wrong subgoals. The whole pipeline of ETHP (Algorithm 1) is described
as follows:

Algorithm 1: ETHP
Data: gt(xg, yg), β
Episode start and get info from environment: st, depth
if depthmin < β then

Run high-level policy:(δφ, δd)← πh(st, gt)
Get subgoal g′t:
x′g = x + cos (δφ + ψt) · δφ

y′g = y + sin (δφ + ψt) · δd

while ∆φt >
π
2 do

Run low-level policy:(V, ψ̇)← πl(st, g′t)
Execute V and ψ̇
Get returns from environment: st+1, depth

end
end
if depthmin > β then

Run low-level policy:(V, ψ̇)← πl(st, gt)
Execute V and ψ̇
Get returns from environment: st+1, depth

end

Figure 2. (a) Observation is the concatenation of the (max-pooled) depth image and the distance
to the (sub)goal point. (b) If there is no obstacle in the depth image, then the high-level policy
is not triggered, and the low-level policy chases the goal point (left figure); In the “event trigger”
case, the high-level policy generates a collision avoidance subgoal, g′, for the low-level policy to
track. (c) Overall ETHP framework. Note that g̃ is the ideal subgoal by performing the hindsight
goal transition.
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3.1. The Low-Level Policy (Goal Chaser)

We consider the two-dimensional navigation task and choose the linear velocity and
yaw rate (V, ψ̇) as the output of the low-level policy, that is, the control command to the
UAV. We name the low-level policy goal-chaser, because it is trained to chase either the
goal point or the subgoal point generated by the high-level policy. Its policy network is
denoted by µ(O; θ), where O is the input to the policy network and θ are the parameters of
the network. We refer to O as the observation, which is constructed by the concatenation of
the (max-pooled) depth image and the distance to the (sub)goal (See Figure 2a). Specifically,
we have

O =

{
(depth, ‖s− g‖), no obstacle
(depth, ‖s− g′‖), triggered by obstacle,

(6)

where state s = (xt, yt, ψt, Vt) contains the current position (xt, yt), yaw angle, ψt, and
velocity, Vt, of the UAV, respectively. For convenience, we slightly abuse the notation to
denote the 2D Euclidean distance between the UAV and the (sub)goal by ‖s− g‖ (‖s− g′‖).
To distinguish the triggered and non-triggered cases better, we use ∆ψt and ∆φt to describe
the relative yaw angles with respect to the goal and subgoal, separately; see Figure 2b for
the illustration. The goal-chaser will know the distance and the size of obstacles from the
depth image. Based on the above input, the goal-chaser will determine when to reduce the
speed and whether to adjust the yaw angle in advance.

When in the triggered case, the high-level policy is designed to generate subgoals that
are always in the field-of-view of the depth camera. Such a constraint reduces not only the
action space of the rerouter but also the state space of the goal-chaser, which improves the
sampling efficiency significantly. The reward function for the goal-chaser is divided into a
sparse part and a dense part, as follows:

rlow
t = rsparse + rdense, (7)

where

rsparse =


Rreach, if goal is reached
Rwarn, if rerouter is triggerred
0, else

(8)

and

rdense = k1 ∗ (dt−1 − dt)− k2 ∗ ∆, (9)

where ∆ = ∆ψt or ∆φt is the relative yaw angle between the quadrotor and the (sub)goal.
The dense reward is used to incentivize the goal-chaser to reach the goal as fast as pos-
sible and keep heading toward the (sub)goal. In the training, we choose Rreach = 10.0,
Rwarn = −5.0, k1, k1 = 1.5, and k2 = 0.5.

3.2. The High-Level Policy (Rerouter)

As shown in Figure 2c, the high-level policy is a reactive collision avoidance rerouter
that is triggered by the clearance distance. We set the trigger distance β = 5 m during
our training. The action space of the rerouter consists of the search angle (the range of
angles in which subgoal is generated) and the forward distance (δφ, δd) of the subgoal point.
Since the maximum distance of the depth image is 20 m, and the field-of-view of the depth
camera is 90◦ in our simulation environment, we define a field-of-view constraint for these
two actions as δφ ∈ (−30◦, 30◦) and δd ∈ (0.5 m, 8 m). This is to make sure that the subgoal
generated by the rerouter is safe. Meanwhile, the size of the action space of the rerouter
is therefore reduced, which improves the training efficiency. The action of the rerouter is
transformed to a waypoint in the world frame easily as follows:
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xg = x + cos (δφ + ψ) · δφ

yg = y + sin (δφ + ψ) · δd
(10)

The input of the rerouter also contains the state and depth image. The rerouter
generates the waypoint mainly based on the distance and size of obstacles. The rerouter is
trained to react to obstacles based on the following reward function:

rhigh
t =

{
Rcrash, if crash
k3 ∗ (dobs

t − dobs
t−1), otherwise

(11)

where dobs
t is the distance between the UAV and obstacles at time t. In the training, we set

Rcrash = −20.0 and k3 = 2.5.

3.3. Hindsight Transitions for Bi-Level Hierarchical Planner

Inspired by HAC [12], in order to avoid the non-stationary problem for the high-level
policy training, we supplement the experience replay buffer of the high-level policy with the
hindsight action transitions. As shown on the right of Figure 2c, in the triggered case, if the
current position (xt+n, yt+n) is within the field-of-view, we will collect the experience with
hindsight action transitions at each timestep t + n after the high-level policy is triggered at
timestep t. Specifically, we collect the following tuple for the high-level policy:

[Ot = (depth, xt, yt, Vt, ∆φt), a = F(Ot, Ot+n), r = rhigh
t ,

Ot+1 = (depth, xt+n, yt+n, Vt, 0), g = (x, y)]
(12)

where the action a for the high-level policy is calculated by the current position (xt+n, yt+n)
and the last position (xt, yt) where the high-level policy is triggered:

F(Ot, Ot+n) = (δφt , δdt) (13)

and:

δφt = arctan
yt+n − yt

xt+n − xt
(14)

δdt =
√
(xt+n − xt)2 + (yt+n − yt)2 (15)

We also supplement the low-level policy with hindsight goal transitions, which sub-
stantially improves the proportion of good samples. The tuple of our hindsight action
transition for low-level policy can be described as follows:

[Ot = (depth, xt, yt, Vt, ∆φt), a = (Vt, ψ̇t), r = Rreach,

Ot+1 = (depth, xt+1, yt+1, Vt, ∆φt+1), g̃ = (xt+1, yt+1)]
(16)

where g̃ is the actual position achieved by the agent (ideal subgoal). We will demonstrate in
the next section that the hindsight transitions significantly increase the training efficiency
for both levels of policies.

4. Experiment

We train our algorithm in a simulation environment built upon the Microsoft Airsim
simulator [28]. It is shipped with high-fidelity quadrotor models and offers a propor-
tional–integral flight controller. To evaluate the merits of the proposed planner better, we
also train several other baseline planners using HAC, TD3, SAC, PPO, and DDPG, respec-
tively. These planners share the same network structure and inputs as those in ETHP. The
reward function for the baseline planners and each level of HAC planner is the same. The
reward function for these planners contains the main items from ETHP reward function:
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r̃t =


Rreach, if goal reach
Rcrash, if crash
r̃dense, otherwise

(17)

where:
r̃dense = k3 ∗ (dobs

t − dobs
t−1) + k1 ∗ (dt−1 − dt)− k2 ∗ ∆ψ (18)

with all the coefficients and hyperparameters the same as ETHP. For the training, the
learning rate is set as 10−4 for all the policies.

As shown in Figure 3, the training simulation environment is a square area with a
side length of 80 m. There are four types of obstacles randomly distributed in the training
environment, with all cuboids suspended in the air, and each type of geometry is of
different widths and heights. The evaluation environment in Figure 4 is a more complex
photorealistic residential area with a side length of 140 m, and there are different sizes of
trees, houses, and wire poles concentrated on both sides of the roads. For both training and
evaluation environments, the start point of the UAV is fixed at the center of the environment,
and the goal point is randomly sampled at a distance of 70 m or 90 m from the start point.

Figure 3. The simulation environment. (a) The simulator. (b) Depth image from the UAV view.
(c) Top view of the environment.

(a)

(b) (c) (d) (e)

Figure 4. The performance of ETHP without tuning in the high-reality evaluation environment
(includes different size of trees, houses, and poles). (a) Evaluation environment. (b) Trail 1 (success
trajectory). (c) Trail 2 (success trajectory). (d) Trail 3 (crash trajectory). (e) Trail 4 (crash trajectory).
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To evaluate the effectiveness of our algorithm better, we test our algorithm in another
simulation environment that is different from the training one. As shown in Figure 4, the
simulation environment used for testing contains houses and trees, obstacles that have
never appeared in the training environment. In addition, as shown in Figure 5, we also
deploy our algorithm on a quadrotor and test the performance of our algorithm in a real
environment. In the following sections, we will detail the performance of our algorithm in
the above environments.

Figure 5. Real flight test environment. (the white dots in the picture are the positions of the UAV at
different times captured by time-lapse photography, and the red line shows the entire flight trajectory).

4.1. Comparison Experiment

We compare the performances of ETHP, ETHP (without hindsight transitions), and
the other baseline planners in the training environment, shown in Figure 6. The proposed
algorithm ETHP achieves the best performance. We record the performance of the final
trained models of the different algorithms in Table 1, which shows that the ETHP achieves
the highest success rate of about 90% and the lowest crash rate of about 5%. These rates
indicate that ETHP has the best tracking performance and collision avoidance performance,
respectively. In contrast, the baseline planners have lower success rates and higher crash
rates. SAC has the best performance among the baseline planners. Due to the stochastic
exploration policy, SAC converges faster than all the other planners. However, it seems
difficult for SAC to achieve its best performance quickly, as the stochastic policy will
interfere with its evolutionary direction. Meanwhile, by comparing the performance
of ETHP with that of ETHP (without hindsight transitions), we found that, as the low-
level policy achieves fewer good samples, the success rate decreases significantly. But,
even without hindsight transitions, the learning speed and performance of our bi-level
hierarchical planner is still better than the baseline DDPG.
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(a)

(b)

Figure 6. The performance of ETHP, ETHP(without hindsight transitions), and the other baseline
planners in the training environment. (a) Success rate. (b) Crash rate.

Table 1. Comparison of different algorithms (Dates in bold are the performance of ETHP).

Algorithms Success Rate Crash Rate

ETHP (ours) 91% 5%
ETHP (wht) 62% 19%

SAC 73% 24%
PPO 58% 39%
TD3 56% 28%

DDPG 53% 47%
HAC 3% 88%

From Figure 7 we can see that the HAC planner achieves the result of failure training,
as its high-level policy’s actor and critic loss is divergence. This is mainly due to both
two levels of policies of HAC using the same reward function. Although there are many
chances for the low-level policy to achieve Rreach when it reaches the subgoal and starts a
virtuous cycle, the high-level policy somehow has few chances to achieve ‘good’ samples
and is easily stuck into the collision conditions since the low-level policy will quickly learn
to fly around the obstacles so that it can achieve more rewards. This result shows that it is
hard for the basic hierarchical reinforcement learning algorithm to succeed in this task.
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(a) (b)

(c) (d)

Figure 7. Training curves of ETHP, ETHP(without hindsight transitions), and the baseline HAC
planner in the training environment. (a) Actor loss of high-level policy. (b) Critic loss of high-level
policy. (c) Actor loss of low-level policy. (d) Critic loss of low-level policy.

To evaluate the contribution of hindsight transitions in more detail, we compare the
training losses of the two levels of policies. Figure 7c,d show that, with hindsight goal
transitions, the convergence of the low-level policy is significantly faster. The impact
of hindsight action transitions on the high-level policy is much more pronounced than
hindsight goal transitions on the low-level policy. As can be seen in Figure 7a,b, if there are
no supplies of hindsight action transitions for the high-level policy, the training does not
even converge for both actor and critic networks.

4.2. Evaluation Experiments

We evaluate ETHP in both training and evaluation environments. The performance
of ETHP in different training stages of the training environment is shown in Figure 8. We
can see from Figure 8a that, in the initial stage of training, the trajectory is almost directly
towards the goal, but the high-level policy in this stage cannot react to obstacles properly.
It also indicates that the low-level policy learns much faster than the high-level policy.
From Figure 8b, we can see that the high-level policy starts to generate waypoints for
avoiding collisions, but these waypoints are not good as they are too close to the obstacle.
In Figure 8c,d, new changes happen with the low-level policy, and it starts to ignore some
of the wrong waypoints generated from the high-level policy. Meanwhile, from these
two stages, we can see that the high-level policy’s ability to generate safe waypoints is
improving. At last, from Figure 8e, the low-level policy can follow the waypoints generated
by the high-level policy very well, and the subgoal generated by the high-level policy can
avoid the obstacle very well.
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(a) (b) (c) (d)

(e)

Figure 8. Performance of ETHP at different stages of training. The start point is located at the
center of each graph, the red line shows the trajectory of the flight, and the goal point (blue dot) is
randomly chosen in each episode. (a) 50 episodes. (b) 100 episodes. (c) 150 episodes. (d) 200 episodes.
(e) 700 episodes.

We record the dynamic state of the UAV in a random evaluation experiment under
the policy trained after 700 episodes (referred to as Model700 in the sequel) to analyze the
potential of ETHP in optimizing the path both spatially and temporally. As shown in
Figure 9, we can divide the whole flight into three typical stages. In stage one, since the
maximum distance of the depth image is 20 m, we can see that the yaw angles change
dramatically at first, which indicates that the planner is in the triggered mode to avoid
obstacles. The goal-chaser needs to adjust the yaw rate quickly to track the subgoals
generated by the high-level policy. At the same time, the velocity is commanded to decrease
monotonically for trajectory tracking accuracy. In stage two, we see that the change of yaw
angle is decreasing, but the velocity is becoming bigger, which indicates that the UAV has
passed the area with obstacles, so it accelerates to approach the target. As for the last stage
shown in the green area, when the UAV is close to the target point, the planner starts to
reduce the speed and adjust the yaw carefully to reach the target accurately.

Figure 9. Dynamic states of the UAV with Model700: (a) shows the change of distance to the target;
(b) shows the change in velocity; and (c) shows the change of yaw.
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To test the generalization ability of the trained ETHP further, the model learned in
the simple training environment is tested in the photorealistic evaluation environment
without any tuning (see Figure 4). This evaluation environment is much larger than the
training environment. It contains a large number of objects with various shapes, such
as branches, leaves, and thin poles in the environment. These cause collision avoidance
to be even more challenging. As can be seen from Figure 4b,c, the proposed ETHP can
still complete the task in these unseen environments. However, in cases where there are
too many trees or poles in the surrounding areas of the target, such as (d) and (e), the
high-level policy failed to generate rerouting waypoints to successfully reach the goal point.
More training in a variety of different types of environments is needed to further improve
collision avoidance performance.

4.3. Real Flight Test

We deploy our algorithm on a quadrotor and test the effect of flying in a real environ-
ment. As shown in Figure 10, the drone is equipped with a Pixhawk flight controller, a
GPS, an Nvidia TX2 on-board calculator, and a ZED Mini stereo camera. The stereo camera
continuously provides reliable depth images of the front environment, while the GPS and
Pixhawk provide the location and attitude of the drone. Meanwhile, the onboard computer
is running the ETHP and takes the above information as inputs and outputs the velocity
and yaw rate to Pixhawk.

Figure 10. Real flight test platform.

In order to ensure the safety of experimental equipment and personnel, we map the
velocity range of (0, 5 m/s) to (0, 1.5 m/s). Meanwhile, the maximum range of yaw rate is
mapped from (−60◦, 60◦) to (−40◦, 40◦). To implement the above mapping, the output of
the network is multiplied by a scaling matrix [ 3

10 , 2
3 ].

We set the UAV to start from different locations and finally reach different goals.
As shown in Figure 11, the UAV successfully reaches the goals in each test, and, in the
time-lapse photography, we can see that the flight trajectories are smooth and reasonable.

To show more details, we record the speed, position, and attitude data with the
Pixhawk Flight Log. We then plot these data with the outputs of the high-level policy
recorded by the onboard computer into Figure 11. As shown in Figure 11b,d,f, the
high-level policy plays an important role when the UAV approaches obstacles. From
the plotted trajectories, we can see that, whenever an obstacle appears forward, the
high-level policy will be triggered and output a subgoal, which causes the lower-level
policy to chase these subgoals, and ultimately the UAV will fly out a beautiful turning
curve to avoid all the obstacles.
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(a) Real Trail-1 (b) Plot Trail-1

(c) Real Trail-2 (d) Plot Trail-2

(e) Real Trail-3 (f) Plot Trail-3

Figure 11. Real flight trajectories. (a,c,e) show the top view and (b,d,f) show the Flight Log plot
trajectories of Trail-1, Trail-2, and Trail-3, respectively.

As shown in Figure 12, by plotting the changes of speed and yaw rate throughout
the whole flight mission, we can see the characteristics of the low-level policy and the
impact of the high-level policy more clearly. Due to the low-level policy being motivated
by shortening the distance between the current position to the goal, through the velocity
change curves in Figure 12a,c,e, it always trying to find the fastest way and output the
maximum speed to reach the goals. But, when obstacles occur, as the high-level policy
sends the low-level policy a new goal (which is the subgoal), the low-level policy will
decrease the velocity and chase the subgoal. Figure 12b,d,f also show that, when avoiding
the obstacles, the yaw rate changes frequently. But, when there is no obstacle in front, as no
subgoal will be sent to the low-level policy, the yaw rate will not have any big change and
the velocity will always keep the biggest value to reaching the final goal.
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(a) Velocity of Trail-1 (b) Yaw rate of Trail-1

(c) Velocity of Trail-2 (d) Yaw rate of Trail-2

(e) Velocity of Trail-3 (f) Yaw rate of Trail-3

Figure 12. Real flight attitude. (a,c,e) show the change of velocity and (b,d,f) show the change of yaw
rate of Trail-1, Trail-2, and Trail-3, respectively.

The real flight tests show that our method has consistent performance in both simu-
lation environments and unknown real environments. The above results prove that our
method has strong generalization ability and engineering application value.

5. Conclusions

In this work, we propose an event-triggered bi-level hierarchical planner (ETHP) for
UAV autonomous navigation in unknown environments. Compared with the traditional
end-to-end DNN-based motion planners, our method exploits the bi-level optimization
nature of the navigation task to achieve highly efficient training and better optimality. In
addition, the bi-level structure provides additional training flexibility and efficiency, as
it allows the reuse of the data for training both policies despite their different objectives.
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The rules developed for hindsight transitions significantly improve training efficiency.
We compared ETHP with several DNN-based baseline planners, and ETHP achieved
the highest success rate and lowest crash rate. The evaluation experiments in unseen
environments show that ETHP generalizes well and has great potential in spatio–temporal
path optimization. However, since the location of the UAV needs to be provided by GPS,
the application of our method in indoor environments is limited. In future research, we
will try to solve this problem so that our method has more application scenarios.
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