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Abstract: Supporting Artificial Intelligence (AI)-enhanced intelligent applications on the resource-
limited Unmanned Aerial Vehicle (UAV) platform is difficult due to the resource gap between the two.
It is promising to partition an AI application into a service function (SF) chain and then dispatch the
SFs onto multiple UAVs. However, it is still a challenging task to efficiently schedule the computation
and communication resources of multiple UAVs to support a large number of SF chains (SFCs). Under
the multi-UAV edge computing paradigm, this paper formulates the SFC scheduling problem as a
0–1 nonlinear integer programming problem. Then, a two-stage heuristic algorithm is put forward to
solve this problem. At the first stage, if the resources are surplus, the SFCs are deployed to UAV edge
servers in parallel based on our proposed pairing principle between SFCs and UAVs for minimizing
the completion time sum of tasks. In contrast, a revenue maximization heuristic method is adopted
to deploy the arrived SFCs in a serial service mode when the resource is insufficient. A series of
experiments are conducted to evaluate the performance of our proposal. Results show that our
algorithm outperforms other benchmark algorithms in the completion time sum of tasks, the overall
revenue, and the task execution success ratio.

Keywords: edge computing; unmanned aerial vehicle; artificial intelligence; service function chain

1. Introduction

Artificial Intelligence (AI)—in particular Deep Learning (DL)—techniques have been
widely adopted as a powerful tool in wireless communications and mobile computation
areas due to their unique advantages such as automated feature extraction and high gener-
alizability [1]. DL has been utilized from different perspectives for intelligent applications,
e.g., wireless spectrum sensing, object tracking, and channel estimation [2–4]. Although
the advantages are brought by DL techniques, fulfilling their intensive computation needs
is a new challenge for resource-limited Internet of Things (IoT) devices. Mobile edge
computing (MEC) is seen as a promising technology for solving this challenge [5–8]. It can
make computation resources closer to IoT devices, so that the computation-intensive and
delay-sensitive tasks can be offloaded to edge computing servers for executing.

For the IoT devices distributed in a rural area or even a hostile environment, less
communications and computation infrastructures are available for processing the sensed
big data. Due to the low operational cost, deployment flexibility, and high mobility, un-
manned aerial vehicle (UAV) is considered to be the optimal temporary platform for
emergency scenarios without infrastructure [9,10]. With this backdrop, introducing multi-
UAV-empowered edge computing paradigm for processing edge-side big data is neces-
sary [11,12]. Multiple UAVs can cooperate with each other in the sky to accept the data
processing tasks from the IoT devices on the ground to conduct DL-involved tasks. Typi-
cally, the application of processing a DL-involved task can be treated as a service function
chain (SFC) [13], in which several service functions (SFs) are connected in a sequential
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order. For instance, each SF could be a modular in the DL-involved application, such as
data pre-processing functions, deep neural network components, and target tracking, etc.
An SF is a static software template that can derive instances on demand based on the virtual
machine (VM) or docker technology [13–15]. A corresponding SF instance (SI) has to be
created whenever the UAV decides to process a task. Once all the SIs of SFs contained in an
SFC are successfully created, a task can pass through each instance sequentially to obtain
its required services. In addition, in order to be able to run SFCs with AI algorithms, it
is necessary to equip UAVs with custom-made AI processors. Compared with graphics
processing unit (GPU), field programmable gate array (FPGA) has obvious characteristics
of low power consumption and small size [16,17], which has been treated as a promising
solution on the UAV platforms without violating size, weight, and power constraints
inherent to UAV design. Considering that the UAV has limited computation resources
and storage resources, the SFs contained in one SFC and their corresponding SIs can be
distributed on multiple UAVs. When a large number of tasks are offloaded onto the UAV
network at the same time stage, massive SIs corresponding to the required SFs will have
to be created. In order to make full use of the limited computation and communication
resources of UAVs, an efficient SFC scheduling strategy is indispensable. However, it also
faces many challenges: (1) There is a complex matching relationship between tasks, SIs, and
SFCs due to the heterogeneity of UAVs and the resource requirements of the tasks. (2) There
is a complex trade-off between the communication and computation resource scheduling.
(3) It is hard to achieve a long-term multi-objective optimization for the scenario with con-
tinuous task arrival and unknown SFC requirements. Tremendous efforts have been made
in designing task scheduling algorithms in multi-UAV edge computing paradigms [18–34].
However, they often assume that each task is served by only one UAV and less attention
has been paid to SFC scheduling in a multi-UAV edge computing scenario. A detailed
analysis of existing efforts is presented in Section 2. With this backdrop, this paper firstly
formulates the SFC scheduling problem as a 0–1 nonlinear integer programming problem.
Then, a two-stage heuristic algorithm is put forward to derive a sub-optimal solution of the
problem. The main contributions of this paper are threefold:

(1) The SFC scheduling problem in heterogeneous “CPU + FPGA” computation archi-
tecture is formulated as a 0–1 nonlinear integer programming problem. The overall
revenue of the system and the completion time sum of tasks are optimized with vari-
ous resource constraints. To the best of our knowledge, this is the fist paper that has
studied the SFC scheduling problem considering FPGA resources in the multi-UAV
edge computing network;

(2) To solve the NP-hard problem with coupling variables, a two-stage heuristic algorithm
called ToRu is put forward. At the first stage, i.e., when the resources are abundant,
the SFCs of all tasks are deployed to UAV edge servers in parallel based on our
proposed pairing principle between SFCs and UAVs for minimizing the sum of all
tasks’ completion time; at the second stage, i.e., when the resources are insufficient,
a revenue maximization heuristic method is adopted to deploy the arrived SFCs
in a serial service mode. In order to obtain the long-term optimization, a time-slot
partitioning protocol is designed, based on which ToRu can operate repeatedly in
each time-slot;

(3) A series of experiments are conducted to evaluate the performance of our proposal.
Experimental results show that our proposed ToRu algorithm outperforms other
benchmark algorithms in the the sum of all tasks’ completion time, the overall revenue,
and the task execution success ratio.

The remaining of this paper is organized as follows. Section 2 summarizes related
work. The model and problem formulation of the proposed system are introduced in
Section 3. Section 4 describes the details of our proposed ToRu algorithm. The experiments
and analysis of the results are presented in Section 5. Finally, Section 6 concludes this paper.
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2. Related Work

In the multi-UAV edge computing system, according to the granularity of services
provided to users, the existing work can be roughly divided into two categories: task
scheduling and SFC scheduling. The difference between the two is mainly reflected in
the matching process between offloaded tasks and UAVs. The former only considers
whether the UAV’s hardware computation resources (such as CPU, RAM, etc.) meet the
task requirements; the latter further considers whether the SFs deployed on UAVs match
the offload tasks requirements and is closer to the real situation.

2.1. Task Scheduling

Considering the high complexity of the multi-UAV edge computing system, most task
scheduling optimization problems need to be solved by jointly optimizing user association,
computation resource allocation, trajectories of UAVs, the number of offloaded task bits, etc.
Most corresponding optimization models are non-convex, and it is difficult to obtain the
optimal solution in polynomial time. An alternating iteration method is currently widely
used to solve such complex non-convex optimization problems. It decouples a complex
non-convex problem into multiple simplified sub-problems that can be solved by typical
convex optimization or heuristic algorithm. Based on the alternating iteration algorithm,
Yu et al. [18] jointly optimized the number of local computing tasks and offloaded tasks,
trajectories of UAVs, and offloading matching strategy between UAVs and user terminals
for minimizing the energy consumption of user terminals; Zhang et al. [19] jointly opti-
mized user association, allocation of CPU frequency, power and spectrum resources, as
well as trajectory of UAVs based on the proposed double-loop structure with the aim of
maximizing the computation efficiency maximization. Luo et al. [20] jointly optimized the
task scheduling, bit allocation, and UAV trajectory for minimizing the energy consumption
of ground users. Wang et al. [21] presented a two-layer optimization method for minimiz-
ing system energy consumption, through jointly optimizing the deployment of UAVs and
offloading decision. Moreover, some scholars formulated the task scheduling problem as a
Markov decision process (MDP). A series of methods based on deep reinforcement learning
(DRL) are proposed: Chang et al. [22] proposed a reinforcement learning framework with
applying synthetic considerations of the terminals’ demand, risk, and geometric distance,
so as to provide better Quality-of-Service and path planning; Ren et al. [23] proposed a
real-time scalable scheduling approach in the dynamic edge computing environments
based on a DRL method; Xue et al. [24] established the User, UAV cost, and UAV revenue
model and then jointly optimized power control, resource allocation, and UE association for
minimizing the system energy consumption by a multi-agent reinforcement deep learning
algorithm (MADRL). Seid et al. [25] deployed a clustered multi-UAV to provide computing
services to users’ devices and proposed a MADRL-based approach for minimizing the
overall network computation cost while ensuring the quality of service. Wu et al. [26]
designed a pre-dispatch UAV-assisted vehicular edge computing networks to cope with
the demand of vehicles in multiple traffic jams, and then proposed a DRL-based energy
efficiency autonomous UAV deployment strategy. Furthermore, strategies based on game
theory [27,28] are also adopted to solve optimization problems. Each UAV was considered
as an individual player with private interests, the optimization problem was formulated as
an offloading game with at least one Nash equilibrium. Asheralieva et al. [29] presented a
novel game-theoretic and reinforcement learning framework for task offloading. A Stackel-
berg game approach is adopted in [30,31] for maximizing utilities.

2.2. SFC Scheduling

Qu et al. [32] studied the service provisioning in the UAV-enabled MEC networks,
where the SFs placement, UAV trajectory, task scheduling, and computation resource
allocation were jointly optimized, so as to minimize the overall energy consumption of all
users. A sub-optimal solution was achieved based on a proposed two-stage alternating
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optimization algorithm. However, the application considered in [32] only contains one SF,
so that SFC scheduling is not involved.

Wang et al. [33] proposed a reconfigurable service provisioning framework based
on SFCs for Space–Air–Ground-Integrated Networks (SAGINs), where the computation
and communications resource consumptions are balanced. Li et al. [34] investigated the
online mapping and scheduling of dynamic virtual network functions (VNFs) in SAGINs,
in which an Internet of Vehicles (IoV) service can be represented by a SFC formed with a
set of chained VNFs. However, in the proposed SFC construction process, only the capacity
constraints of CPU and buffer on NVF nodes are considered, and the channel resources
constraints between NVF nodes are ignored. In fact, the channel resources between NFV
nodes are very scarce in the wireless environment, and it often becomes the bottleneck factor
affecting the SFC construction. In addition, the SFC scheduling mentioned in [33,34] aims
to establish an end-to-end route for servicing data, where the data source and destination
nodes are separately located in different geographical regions. However, in the edge
computing scenario considered in this paper, the SFC scheduling aims to provide services
for requesting users, where the input of raw data and the output of computing results are
all located in the same access node. Moreover, dedicated hardware resources (such as GPU,
FPGA, etc.) supporting AI algorithm operation are also not considered in [33,34].

In summary, it is difficult to solve the SFC scheduling problem involved in this paper
with existing algorithms. To the best of our knowledge, compared with existing works,
this is the first paper that considers the SFC scheduling problem in a multi-UAV edge
computing network with FPGAs resources, which can provide services for complicated
intelligent application-oriented tasks in the weak infrastructure areas.

3. System Model and Problem Formulation
3.1. Network Model

In order to achieve a long-term SFC scheduling optimization, the management and
allocation of UAV network resources is particularly important. Inspired by [35], a two-layer
UAV network architecture is designed, in which one UAV with relatively high computing
and communication resource capability is used as the master, other UAVs as the slavers. As
shown in Figure 1, the edge computing network consists of one master UAV and M slave
UAVs with heterogeneous computation resources, which evenly hovers over the mission
area in a fully interconnected manner for performing time-sensitive AI tasks. The master
UAV controls all the computation and communication resources on the slave UAVs, and
it is responsible for instantiating the required SFCs. The slave UAVs are mainly used to
cover devices on the ground, receive the SFC requests and offloaded time-sensitive AI tasks.
When a slave UAV receives the SFC requirement of a ground device, it immediately reports
to the master UAV. Then, the master UAV creates an SFC instance for the requiring ground
device based on the resource of one or multiple salve UAVs. Eventually, the task offloaded
from the requiring ground device is processed on the created SFC instance. For simplicity of
description, the “heterogeneous Multi-UAV edge computing network” will be referred to as
“UAV network” for short in the rest of this paper. The slave UAV network can be denoted
by an directed complete graph G = (U ,L), where U is the slave UAV set, denoted as
U = {U1, U2, . . . , Um, . . . , UM}, 1 ≤ m ≤ M. Several SFs are deployed on each slave UAV,
which can be run by virtual machines (VMs) or docker technology [13–15]. L is the set of
wireless links between slave UAVs, denoted as L = {L1, L2, . . . , Lm, . . . , LM}, 1 ≤ m ≤ M.
Lm = {Lm,1, Lm,2, . . . , Lm,m′ , . . . , Lm,M} represents the wireless link sets of Um transmitting

data to other UAVs, in which Lm,m′ (1 ≤ m
′ ≤ M) indicates the wireless link of Um to

Um′ . We assume that UAVs use orthogonal frequency channels for communication without
collisions (e.g., OFDMA [36]). Thus, Lm,m′ is represented as a two-tuple: {rm,m′ , Nc

m}. rm,m′

is the data transmission rate on one sub-channel, Nc
m represents the current idle sub-channel

number. We define Nc
max as the maximum number of sub-channels on each slave UAV.

Nc
m ≤ Nc

max always holds.
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UU

U U

U

U

Figure 1. A heterogeneous Multi-UAV edge computing scenario. Each UAV deploys several SFs and
can receive the SFC required from the devices on the ground. The master UAV controls the resources
of the edge computing network, which can instantiate the required SFCs.

Considering that UAVs have the characteristics of line-of-sight (LoS) communication,
a free space attenuation model is adopted [36]. Then, rm,m′ can be expressed as:

rm,m′ = B log2(1 +
pmβ0

N0Bd2
m,m′

), 1 ≤ m, m
′ ≤ M, m 6= m

′
. (1)

where β0 is the transmit power gain at a reference distance of one meter. pm is the trans-
mission power of Um. N0 is the noise power spectrum density. B is the bandwidth of a
sub-channel. dm,m′ is the distance between Um and Um′ . Note that when m = m

′
, rm,m′ = ∞.

In other words, this paper ignores the data exchanging time between two SF instances at
the same UAV. For ease of description, the main notations used in this paper are listed in
Table 1.

Table 1. Notations.

Notation Definition

Un The n-th UAV in U
SF Service Function
SI SF instances
SFC Service Function Chain
SFn The n-th SF
S̃1 The set of FPGA-independent SFs
S̃2 The set of FPGA-dependent SFs
Q1 The number of FPGA-independent SFs in S̃1
Q2 The number of FPGA-dependent SFs in S̃2
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Table 1. Cont.

Notation Definition

Sm The set of SF deployed on Um
SF∗m,q The q-th SF deployed on Um
T The set of tasks currently requesting services
Tn The n-th requesting task
Ncpu

m The number of CPU cores on Um

N f pga
m The number of FPGAs on Um

Ncpu
m,a The number of the current idle CPU cores on Um

N f pga
m,a The number of the current idle FPGAs on Um

nsi
m,q The number of SIs currently created corresponding to SF∗m,q

fm,q The frequency of CPU core on Um
am,q The processing speed of CP when running SI of SF∗m,q
Lm,m′ The wireless link of Um to Um′

rm,m′
The data transmission rate on one sub-channel of the link Lm,m′

Nc
m The number of current idle sub-channels on the link Lm,m′

on The source UAV that receives Tn
sn The required SFC of Tn
sk

n The k-th SF contained in the SFC required by Tn
ln The properties of Tn before its entering into an SFC
lk
n The properties of Tn when arriving at the instance of sk

n in its SFC
lk,0
n The length of Tn when arriving at sk

n
lk,1
n The number of CPU cycles required for processing one bit task on sk

n
lk,2
n The number of AI accelerator operations required for processing one bit task on sk

n

rn
The minimum requirement set for the transmission rate between the instances of SFCs
required by Tn

rk,k+1
n The minimum transmission rate requirement from the instance of sk

n to sk+1
n

cn The minimum computation resources requirement set of Tn for the instances of SFC.
ck,0

n The minimum CPU processing speed requirement of Tn on the instances of sk
n.

ck,1
n The minimum AI accelerator processing speed requirement of Tn on the instances of sk

n.
vn The revenue obtained through completing Tn
Tc

n The completion time of Tn
Xm

n,k The decision variable of creating the instance of sk
n

3.2. Service Model

In this paper, SFs are divided into two categories based on their resource requirements:
FPGA-independent SFs and FPGA-dependent SFs [15]. An SI corresponding to the FPGA-
independent SF is created only based on CPU resource. In contrast, only the combination
of CPU and FPGA resources can support the SI corresponding to the FPGA-dependent
SF. The set of FPGA-independent SFs are denoted by S̃1 = {SF1, SF2, . . . , SFn, . . . , SFQ1}.
SFn represents the n-th type of FPGA-independent SF, Q1 represents the number of
FPGA-independent SF types. Moreover, the set of FPGA-dependent SFs are denoted
by S̃2 = {SFQ1+1, SFQ1+2, . . . , SFn′ , . . . , SFQ1+Q2}. SFn′ represents the n

′
-th type of FPGA-

dependent SF, Q2 is the number of FPGA-dependent SF types. Considering the heterogene-
ity of UAVs, the SF set deployed on each UAV may be different. Therefore, the set of SFs de-
ployed on Um are denoted by Sm = {SF∗m,1, SF∗m,2, . . . , SF∗m,q, . . . , SF∗m,Qm

}, Qm ≤ (Q1 + Q2)

and Sm ⊆ (S̃1 ∪ S̃2). SF∗m,q is the q-th SF deployed on Um.
As shown in Figure 2, a general computation model for UAVs is considered in this

paper, which includes two parts: CPU and FPGA resources. The former includes several
CPU cores of the same type; the latter refers to some FPGAs, which can assist CPUs in per-
forming AI workload, such as FPGA-based convolutional network accelerator (CNN) [17].
The connection between CPU cores and FPGAs can be established dynamically through
internal bus (e.g., PCIe bus) [37]. The number of CPU cores and FPGAs on Um are denoted
by Ncpu

m and N f pga
m , respectively. Accordingly, Ncpu

m,a and N f pga
m,a separately represent the

number of current idle CPU cores and FPGAs. As shown in Figure 2, when creating an SI
of SF∗1,1, U1 firstly assigns idle CPU core #1 and FPGA #1 to it; then, the corresponding SF
software is separately loaded onto them. In contrast, only idle CPU core #4 is assigned to
SF∗1,4 before loading its SF software. The processing capacity of an SI corresponding to SF∗m,q
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is expressed as a two-tuple: { fm,q, am,q}. fm,q is the frequency of CPU core on Um, measured
in GHz; am,q is the processing speed of FPGA when running the SI of SF∗m,q, measured in
GOP/s [38]. Note that am,q = 0 when SF∗m,q is an FPGA-independent SF.

CPUs

FPGAs FPGA

#3

SIs  created 

on U1

FPGA

#1

FPGA

#2

CORE

#1

CORE

#2

CORE

#3

CORE

#4

SF
*

1,1 SF
*

1,2 SF
*

1,3 SF
*

1,4SFs software

PCIe

an SI of SF
*

1,1 an SI of  SF
*

1,3 an SI of  SF
*

1,4

1 1

1

2

U1 loads the software components of  SF
  
to CPU cores and FPGAs

U1 loads the software components of  SF
  
to CPU cores

an SI of  SF
*

1,2

1 2

Figure 2. The creation process of SIs on U1. The SI of FPGA-dependent SF (i.e., SF∗1,1, SF∗1,2, and
SF∗1,3) occupies a CPU core and an FPGA. Moreover, the SI of FPGA-independent SF (i.e., SF∗1,4) only
occupies a CPU core.

From the perspective of information security, we stipulate that an SI independently
occupies a CPU core or a combination of ‘CPU + FPGA’. Therefore, the maximum number
of SIs that can be created simultaneously on one UAV is bounded. Define nsi

m,q to represent
the number of currently created SIs corresponding to SF∗m,q on Um, and the following
constraints must be satisfied [15].

nsi
m,q ≤ Ncpu

m , SF∗m,q ∈ S1, 1 ≤ m ≤ M. (2)

nsi
m,q ≤ N f pga

m , SF∗m,q ∈ S2, 1 ≤ m ≤ M. (3)

∑
SF∗m,q∈(Sm∩S̃2)

nsi
m,q ≤ N f pga

m , 1 ≤ m ≤ M. (4)

∑
SF∗m,q∈Sm

nsi
m,q ≤ Ncpu

m , 1 ≤ m ≤ M. (5)

Equation (2) ensures that the number of currently created SIs corresponding to any
FPGA-independent SF on Um does not exceed the number of CPU cores on it. Equation (3)
means that the number of currently created SIs corresponding to any FPGA-dependent SF
on Um does not exceed the number of FPGAs on it. Equation (4) guarantees that the total
number of currently created SIs corresponding to all FPGA-dependent SFs on Um does
not exceed the number of FPGAs on it. Equation (5) restricts the total number of currently
created SIs on Um to not exceed the number of CPU cores on it.

3.3. Task Model

The tasks currently requesting service are denoted as a set T = {T1, T2, . . . , Tn, . . . , TNt}.
Nt = |T | denotes the total number of tasks. We define a six-tuple for Tn as follows:
Tn = {on, sn, ln, rn, cn, vn}, 1 ≤ n ≤ Nt. on shows the source UAV that receives Tn. sn

indicates its required SFC, denoted as sn = {s0
n, s1

n, . . . sk
n, . . . , sNs

n
n , sNs

n+1
n }, 0 ≤ k ≤ Ns

n + 1.
s0

n is the SF that receives the tasks from the ground and transmits it to the s1
n, which has to

be instantiated at the source UAV, as shown in Figure 1. sNs
n+1

n is the SF that receives the
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computing result from sNs
n

n and transmits it to the ground, which also has to be instanti-
ated at the source UAV. Ns

n represents the total number of SFs contained in the required
SFC. When 1 ≤ k ≤ Ns

n, sk
n ∈ S represents the k-th SF contained in the required SFC,

which can be instantiated on any slave UAV that satisfies its resource requirements. ln
means the current properties of Tn when it arrives at each SF contained in sn, denoted
as ln = {l0

n, l1
n, l2

n, . . . lk
n, . . . , lNs

n
n , lNs

n+1
n }, 0 ≤ k ≤ Ns

n + 1. lk
n is the property of Tn when it

arrives at sk
n, denoted as lk

n = {lk,0
n , lk,1

n , lk,2
n }. lk,0

n is the current length of Tn; lk,1
n is the number

of CPU cycles required for processing one bit task; lk,2
n is the number of AI accelerator

operations required for processing one bit task. The computation resources consumed by
s0

n and sNs
n+1

n are considered to be negligible in this paper, since their instances require far
less computation resources than other AI instances. Therefore, l0,0

n and lNs
n+1,0

n represents
the initial length of Tn and its computing result, respectively; l0,1

n , l0,2
n , lNs

n+1,1
n and lNs

n+1,2
n

are equal to 0. rn represents the minimum transmission rate requirement between the SFs
contained in the required SFC, denoted as rn = {r0,1

n , r1,2
n , . . . , rNs

n−1,Ns
n

n , rNs
n ,Ns

n+1
n }. rk,k+1

n
(0 ≤ k ≤ Ns

n) indicates the minimum transmission rate requirement from sk
n to sk+1

n . cn
represents the minimum computation resources requirement when creating the instances
of SFs contained in the required SFC, denoted as cn = {c0

n, c1
n, c2

n, . . . , ck
n, . . . , cNs

n
n , cNs

n+1
n },

0 ≤ k ≤ Ns
n + 1. ck

n is the minimum computation resource requirement of initiating sk
n,

denoted as ck
n = {ck,0

n , ck,1
n }. ck,0

n is the minimum processing speed requirement for CPU,
measured in GHz; ck,1

n is the minimum processing speed requirement for AI accelerator,
measured in GOP/s. For c0

n and cNs
n+1

n , their values are 0. vn represents the revenue
obtained through completing Tn.

As shown in Figure 1, an SFC is unidirectional, and the task goes through each SF
sequentially. Furthermore, UAVs adopt the communication mode of orthogonal frequency
division multiple access. Therefore, the communication resources consumed between
adjacent SFs belong to the UAV instantiating the upstream SF. To sum up, for task Tn, it
is more reasonable to create the SF instances in the reverse order of the required SFC, i.e.,
the instance of sNs

n+1
n is created first, and the instance of s0

n is created last. Assume that the
instance of sk+1

n (0 ≤ k ≤ Ns
n) has been created on Um′ . If we want to continue creating the

instance of sk
n on Um, the following conditions have to be satisfied at the same time:

sk
n = SF∗m,q, 1 ≤ m ≤ M, 1 ≤ q ≤ Qm (6)

ck,0
n ≤ fm,q, 1 ≤ m ≤ M, 1 ≤ q ≤ Qm (7)

ck,1
n ≤ am,q, 1 ≤ m ≤ M, 1 ≤ q ≤ Qm (8)

d rk,k+1
n

rm,m′
e ≤ Nc

m, m 6= m
′
. (9)

Equation (6) means that Um has to deploy the SF matching sk
n. Equations (7) and (8)

ensure that the SI of sk
n on Um can satisfy the computing requirement of Tn. Equation (9)

guarantees that Um has enough idle sub-channels for transmitting Tn to Um′ at a rate no
smaller than the required. Moreover, define tk

n as the stay time of Tn on the SI of sn,k, which
includes the executing time tk,1

n and transmitting time tk,2
n . tk,1

n can be expressed as:

tk,1
n =

{
lk,0
n lk,1

n
fm,q

+ lk,0
n lk,2

n
am,q

, 1 ≤ k ≤ Ns
n.

0, k = 0, k = Ns
n + 1.

(10)
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tk,2
n =


lk+1
n

d rk,k+1
n

r
m,m′

er
m,m′

, m 6= m
′
, 0 ≤ k ≤ Ns

n

0, m = m
′
, 0 ≤ k ≤ Ns

n.

(11)

We define the binary variable Xm
n,k to represent the decision of creating the SI of sk

n,
which can be expressed as:

Xm
n,k =


1, i f the SI o f sk

n is created on Um with satis f ying the constraints
o f Equations (6) to (9)

0, otherwise.
(12)

Considering that the SI of each SF contained in the required SFC is created at most one
time, the following constraints must be satisfied:

m=M

∑
m=1

Xm
n,k ≤ 1 (13)

Note that Xon
n,0 = 1 and Xon

n,Ns
n+1 = 1 always hold, since the SIs of s0

n and sNs
n+1

n have to
been created on the source UAV. Tn can be successfully executed only if the SIs of all SFs
contained in its required SFC have been successfully created. At this time, the following
formula holds.

k=Ns
n+1

∏
k=0

m=M

∑
m=1

Xm
n,k = 1. (14)

Lastly, we define Tc
n as the completion of Tn, which is expressed as follows:

Tc
n =

m=M

∑
m=1

k=Ns
n+1

∑
k=0

Xm
n,k(t

k,1
n + tk,2

n ), 1 ≤ n ≤ N

s.t. : Equations (1) to (14).

(15)

3.4. Problem Formulation

For the required SFC, there may be multiple strategies of creating its SIs. For a task,
it wants to be executed on the UAVs that can minimizes its completion time. On the
other hand, the UAV network wants to process all received tasks by making full use of
their limited computation resources and communication resources, so as to maximum
the revenue. In this paper, we aim at minimizing the completion time sum of all task
while maximizing the overall revenue of the UAV network by optimizing X = {Xm

n,k|1 ≤
n ≤ N, 1 ≤ m ≤ M, 0 ≤ k ≤ Ns

n + 1}.
Therefore, the first optimization goal is formulated as:

F1 =
n=N

∑
n=1

Tc
n

k=Ns
n+1

∏
k=0

m=M

∑
m=1

Xm
n,k (16)

The second optimization goal is formulated as:

F2 =
n=N

∑
n=1

vn

k=Ns
n+1

∏
k=0

m=M

∑
m=1

Xm
n,k (17)
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According to Equations (16) and (17), a multi-objective optimization problem can be
formulated as:

P1 : min
{X}

(F1,−F2)

s.t.C1 : 1 ≤ n ≤ N, 1 ≤ m ≤ M, 1 ≤ q ≤ Qm, 0 ≤ k ≤ Ns
n + 1

C2 : sk
n = SF∗m,q, ∀Xm

n,k = 1

C3 : Xon
n,0 = 1, Xon

n,Ns
n+1 = 1

C4 : Equations (1) ∼ (15)

(18)

Constraint (C1) specifies the valid ranges of the involved variables in Constraint
(C2)∼(C4). Constraint (C2) guarantees that the UAV of instantiating the required SF should
deploy this SF in advance. Constraint (C3) restricts that the SIs of the first SF and last SF of
an SFC have to be created on the source UAV. Constraint (C4) includes several constraints
related to the resource requirements and the resource capacities, which are the described in
detail after Equations (1)∼(15).

4. Proposed Approach

In P1, minimizing F1 is a 0–1 nonlinear integer programming problem. Minimizing
−F2 is equivalent to maximizing F2, which is also a 0–1 nonlinear integer programming
problem. At the same time, there is a close coupling relationship between F1 and F2.
Furthermore, the task properties considered in this paper are not known in advance.
Therefore, it is difficult to solve P1 effectively with traditional optimization algorithms in
an online manner. To tackle this problem in an online manner, we propose an efficient
online two-stage heuristic algorithm named ToRu with much lower complexity. In ToRu,
the minimization of the completion time sum of tasks is pursued in the case of abundant
resources (i.e., the first stage); on the contrary, when the resources are insufficient (i.e., the
second stage), the maximization of the UAV network revenue is pursued.

4.1. The ToRu Framework

The proposed ToRu is deployed on the master UAV. In order to providing a long-term
service for unknown tasks in an online manner, a time-slot partition protocol is designed,
as shown in Figure 3. The mission period is divided into time-slots with equal length.
One time-slot is the basic unit for SFC scheduling. At the beginning of each time-slot,
the master UAV starts ToRu with the requesting tasks arriving in the previous time-slot
and the current idle resources on the UAV network as input parameters. ToRu completes
SFC scheduling before the end of a time-slot and exits. According to the above process,
ToRu is executed repeatedly in each time-slot, thus enabling the UAV network to provide
the long-term service. Note that ToRu must complete SFC scheduling before the end of a
time-slot, otherwise the time-slot length needs to be increased, which indicates that the
number of task requesting service is too large. If ToRu completes SFC scheduling very
early before the end of the time-slot, it means that the number of tasks requesting service
is small and the time-slot length should be shortened, thus reducing the service waiting
time of tasks. Therefore, the time-slot partition protocol proposed in this paper has good
dynamic scalability.
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Figure 3. The time-slot partitioning protocol. The ToRu algorithm is started by the master UAV at
the beginning of each time-slot and ends at the end of each time-slot, which is repeatedly executed
in each time-slot to provide services for the requesting tasks in the previous time-slot. For example,
ToRu is executed in time-slot #2 to only provide services for requesting tasks in time-slot #1.

The pseudocode of the ToRu algorithm is illustrated in Algorithm 1. Firstly, it calls
Algorithm 2 with the task set T , the idle communication resource set L and idle com-
putation resource set R in the current time-slot as the input arguments. Note that R
is expressed as R = {R1, R2, . . . , Rm, . . . , RM}. The Rm = {Ncpu

m,a , N f pga
m,a ,Sm} means the

current idle computation resource and deployed SFs on Um. Then, the result returned
by Algorithm 2 is denoted as a four-tuple: {X̃, S̃u, F̃1, F̃2}. X̃ indicates a sub-optimal of
problem P1. S̃u means the task execution success ratio based on X̃, that is, the ratio of the
number of successfully completed tasks to the total number. F̃1 and F̃2 shows the sum
of the task completion time and the overall revenue based on X̃, respectively. If S̃u = 1,
the UAV network obtains the complete revenue from all tasks, and tasks also obtain the
approximate minimum completion time sum; otherwise, it indicates that the UAV resources
are insufficient, and Algorithm 3 is called for maximizing the overall revenue, regardless
of the task completion time. This is reasonable, since when resources are insufficient, the
number of the successfully completed tasks is more important than the task completion
time. Algorithm 3 has the same type of the input parameters and output results with
Algorithm 2. However, the F̃1 returned by Algorithm 3 only represents the completion
time sum of tasks that have been executed successfully.

Algorithm 1: General Framework of ToRu.
Input: the task set T , the idle communication resource set L, and the idle
computation resource setR.
Output: {X, Su,F1,F2}.

1: Initialize: X = 0, Su = 0,F1 = 0,F2 = 0;\\Su represents the task execution success
ratio based on X.

2: Obtain {X̃, S̃u, F̃1, F̃2} by calling Algorithm 2 with T , L andR as the input
parameters.

3: if Su < 1 then
4: Obtain {X̃, S̃u, F̃1, F̃2} by calling Algorithm 3 with T , L andR as the input

parameters.
5: end if
6: {X, Su,F1,F2} = {X̃, S̃u, F̃1, F̃2}.
7: return {X, Su,F1,F2}.
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Algorithm 2: Minimizing the completion time sum.
Input: the task set T , the idle communication resource set L, the idle computation resource setR.
Output: {X, Su,F1,F2}.
1: Initialize: X = 0, Su = 0,F1 = 0,F2 = 0, Lmax = 0, Nt = 0, sp = 0,n = 0, k = 0.
2: Nt = |T |.
3: Lmax = the maximum length of SFCs in T .
4: Instantiate the last SF of the SFC on its source UAV for each task.
5: Ttemp = Null.\\ Define a temporary set.
6: for p = 0 to p = Lmax − 2 do
7: for n = 1 to Nt do
8: k = Ns

n − p.
9: if k < 0 then

10: Continue.\\The SFC of Tn has been successfully instantiated.
11: else
12: Add the Tn to the set Ttemp.
13: end if
14: end for
15: while Ttemp != NULL do
16: for i = 1 to |Ttemp| do
17: Extract the i-th task Ti∗ from the set Ttemp, Ti∗ ∈ T .
18: Compute the candidate UAVs of the SF sk

i∗ for task Ti∗ according to C2∼C4.
19: if no the candidate UAVs then
20: Su = 0.
21: return {X, Su,F1,F2}.\\There are tasks that cannot be completed as required.
22: end if
23: end for
24: Select one task Tn∗ from the set Ttemp and instantiate its SF sk

n∗ on its optimal candidate UAV Um∗

based on our proposed principle in Section 4.2.
25: The remaining resources of Um∗ are refreshed through subtracting the resources consumed by

the instance of sk
n∗ .

26: Xm∗
n∗ ,k = 1, and delete Tn∗ from Ttemp.

27: end while
28: end for
29: Su = 1.
30: Obtain the value of F1 and F2 according to Equation (16) and Equation (17).
31: return {X, Su,F1,F2}.

Algorithm 3: Maximizing the overall revenue.
Input: the task set T , the idle communication resource set L, and the idle computation resource setR.
Output: {X, Su,F1,F2}.
1: Initialize: X = 0, Su = 0,F1 = 0,F2 = 0, Nt = 0, N f ail = 0,n = 0, k = 0;
2: Nt = |T |;
3: Sort the tasks in T according to the value of vn/Ns

n. The larger the value, the higher the ranking.
4: for n = 1 to Nt do
5: Instantiate the SF sNs

n+1
n of the task Tn

6: for k = Ns
n to 0 do

7: Compute the candidate UAVs of the SF sk
n for the task Tn according to C2 ∼ C4;

8: if no the candidate UAVs then
9: N f ail ++;

10: Release the resources previously allocated to the task Tn, and clear the corresponding
decision variable in X;

11: Continue;
12: end if
13: Select an optimal candidate UAV U∗m based on the principle proposed in Section 4.3 for

instantiating the SF sk
n;

14: The remaining resources of Um∗ are refreshed through subtracting the resources consumed by
the instance of sk

n∗ .
15: Xm∗

n,k = 1;
16: end for
17: end for
18: Su = (Nt − N f ail)/Nt;
19: Obtain the value of F1 and F2 according to Equation (16) and Equation (17).
20: return {X, Su,F1,F2}.
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4.2. Suboptimal Solution to Minimize the Completion Time Sum

When instantiating an SFC for a requesting task, the UAV network not only needs to
provide sufficient computation resources for each SF instance, but also to ensure that there
are sufficient wireless link resources between adjacent SF instances. In order to improve the
efficiency of SFC instantiation, this paper implements SF instantiation one-by-one according
to the reverse order of SFC. As shown in Figure 4, the downstream SF is first instantiated on
a UAV; then, the candidate UAVs that can instantiate the upstream SF are found according
to C2∼C4; finally, in order to efficiently match SFCs and computing resources, so as to
minimize the completion time sum of all tasks, this paper instantiates the SFCs of all tasks
in parallel mode with sufficient UAV network resources. This parallel mode refers to the
fact that only one SF in each SFC can be instantiated in a round of SF instantiation. After
multiple rounds of SF instantiation, the instantiations of all SFCs can be completed. If all
SFCs have the same length, the instantiations of all SFCs are completed at the same time.
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Figure 4. Workflow chart of Algorithm 2. The last SF of the SFCs of T1∼T7 is simultaneously
instantiated on the source UAV in the 1-st round. In the 2-nd round, according to our proposed
principle, the candidate UAVs for the upstream SFs (i.e., s3

1, s2
2, s3

3, s4
4, s3

5, s2
6 and s4

7) is obtained,
respectively; then, these upstream SFs is instantiated one by one; next, go into the next round. When
the 6-th round is successfully completed, the SFCs of all tasks are successfully instantiated and
Algorithm 2 exits.

A typical process of the SFCs instantiation in parallel mode is shown in Figure 4.
Assume that the SFCs of task T1∼T7 need to be instantiated. The last SF of each SFC is first
simultaneously instantiated on the source UAV (i.e., 1-st round). Then, according to C2∼C4,
we separately identify candidate UAVs that can instantiate the upstream SF (i.e., 2-nd
round). Furthermore, we calculate the corresponding task stay time and the number of
sub-channels occupied when the upstream SF is instantiated on different candidate UAVs.
Finally, we select one optimal UAV for each upstream SF from the candidates based on our
proposed principle, which is described below:

1. The upstream SF with only one candidate UAV firstly are instantiated, which is
beneficial to maximizing F2. As shown in Figure 4, s3

1 contained in T1 has one
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candidate UAV, so it is firstly instantiated. When facing multiple such upstream SFs
(like s3

1), randomly select one of them for instantiation;
2. When all upstream SFs have multiple candidate UAVs, select the upstream SF with

the candidate UAV that does not occupy the sub-channel, and instantiate it on this
candidate UAV. As shown in Figure 4, s2

2 contained in T2 has multiple candidate UAVs,
and if it is instantiated on the candidate U8, no sub-channel is occupied. Therefore, s2

2
should be first initialized in the current situation. When facing multiple such upstream
SFs (like s2

2), randomly select one of them for instantiation;
3. If there is no upstream SF that satisfies the above principle 1 or principle 2, the

candidate UAVs of each upstream SF are divided into two categories based on the
number of idle channels: the candidate UAVs with the number of idle channels
greater than Ne are called “rich candidate UAVs”, the remaining UAVs are called
“poor candidate UAVs”. Considering the shortage of UAV wireless link resources, the
upstream SFs should be instantiated preferentially on candidate UAVs with abundant
link resources, i.e.,“rich candidate UAVs”, which is beneficial to maximizing F2.
Therefore, we first select an optimal UAV for the upstream SF with “rich candidate
UAVs”, the specific principles are as follows:

(a) The upstream SFs with only one “rich candidate UAV” are first instantiated. As
shown in Figure 4, s3

3 contained in T3 has only one “rich candidate UAV”, so it is
instantiated first. When facing multiple such upstream SFs (e.g., s3

3), randomly
select one of them for instantiation;

(b) When the remaining upstream SFs have multiple “rich candidate UAVs”, we rank
their candidate UAVs according to the stay time of a task executed on them, and
the candidate UAV with short stay time is ranked higher. The upstream SF with
the largest gap in the stay time between its first-ranked candidate UAV and its
second-ranked candidate one will first be instantiated on the first candidate one,
which is beneficial to minimizing F1. As shown in Figure 4, both s4

4 contained
in T4 and s3

5 contained in T5 have two “rich candidate UAV”. The gap in the
stay time of s4

4 (s3
5) on its different candidate UAVs is 10 ms (20 ms), so s3

5 is first
instantiated on the candidate U9. When the gap is the same, select one of them at
random for instantiation

In addition, when all upstream SFs with “rich candidate UAVs” have been instantiated
and there are still uninstantiated upstream SFs, i.e., the upstream SFs with only “poor
candidate UAVs”, we regard the “poor candidate UAVs” as “rich candidate UAVs” and
select the optimal UAVs for the uninstantiated SFs according to the above principle (a)
and (b). As shown in Figure 4, both s2

6 contained in T6 and s4
7 contained in T7 have only

“poor candidate UAV”, so they are lastly instantiated according to the above principle (a)
and (b). Note that once an SF is successfully instantiated, all candidate UAVs belonging
to uninstantiated SFs must be updated immediately before starting to select the optimal
UAV for the next uninstantiated SF (i.e., step 16∼25 in Algorithm 2). Repeat the above
operations until the SFCs of all tasks are instantiated, whose pseudocode is as shown in
Algorithm 2.

4.3. Suboptimal Solution to Maximize the Overall Revenue

When the UAV network resources are insufficient, in order to obtain more revenue,
UAVs naturally give priority to serving tasks that can pay more on average for each
SF instance, i.e., the task with the greatest value of vn/Ns

n is given priority. Different
from Algorithm 2, we adopt a serial service mode, that is, only after completing the SFC
instantiation of one task, we start to instantiate the SFC of the next task. Thus, the principle
of selecting one optimal UAV for each SF is also different from that in Section 4.2, which is
described as follows:

1. The UAV network first instantiates the SFC for a task with the greatest value of vn/Ns
n.

When facing multiple tasks with the same payment, the UAV randomly selects one
to serve;
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2. An SF is preferentially instantiated on the candidate UAV that does not occupy the
sub-channel;

3. If there is no task that satisfies the above principle 2, the candidate UAVs of each task
are divided into “rich candidate UAVs” and “poor candidate UAVs“ according to the
principle in Section 4.2. Then, we do the following:

(a) When the number of “rich candidate UAVs” is greater than 0, the candidate UAV
with the lowest performance is selected, and the high-performance UAVs are left
for subsequent tasks with higher computation requirement, which is beneficial
to maximizing F2;

(b) When the number of “rich candidate UAVs” is equal to 0, the above operations
are performed among “poor candidate UAVs”.

Repeat the above operations for the required SFCs of all tasks are instantiated, whose
pseudocode is as shown in Algorithm 3.

4.4. Computational Complexity Analysis

In order to show the feasibility and efficiency of the proposed ToRu algorithm, we
focus on its time computational complexity in this section. As shown in Algorithm 1,
when the idle resources of the UAV network are rich and the number of tasks requesting
service is small, ToRu only executes Algorithm 2; otherwise, it first executes Algorithm 2,
and then executes Algorithm 3. Next, we analyze the time complexity of Algorithm 2
and Algorithm 3, respectively. As shown in Algorithm 2, the maximum value of variable
|Ttemp| is equal to Nt, and its value decreases with the increase of the control variable p.
Therefore, the worst time complexity of Algorithm 2 is O(Lmax.Nt), where Lmax represents
the maximum number of SFs contained in an SFC, Nt represents the number of tasks
requesting service. Similarly, the maximum value of variable Ns

n in Algorithm 3 is equal to
Lmax, so that the worst time complexity of Algorithm 3 is also O(Lmax.Nt). To sum up, the
worst time complexity of the proposed ToRu algorithm is O(Lmax.Nt), which can obtain
the sub-optimal solution to the problem P1 in polynomial time.

5. Simulation and Results Analysis

This section first presents the experimental settings, then analyzes the results.

5.1. Experimental Settings

Platform Settings. All experiments were conducted on a PC that runs Ubuntu 18.04
with 3.2 GHz CPU and 16 GB RAM. The proposed ToRu algorithm was designed and
implemented using C++ language.

Parameter Settings. Consider a service scenario with 25 UAVs that are 500 m apart.
The number of tasks input into the simulation environment varies from 10 to 190. The main
parameter settings are included in Table 2.

Table 2. Parameter settings.

Parameter Value Parameter Value

M 25 Q 30
fm,q [1, 10] GHz am,q [2, 20] GOPS
Pm 1 W N0 10−20 W/Hz
B 1 MHz β0 1.42× 10−4

rk,k+1
n 10 Mbit Nc

m 8
lk,0
n [0.1, 10] Mbit lk,1

n [100, 1, 000, 000] Cycles
Ns

n [2, 5] lk,2
n [200, 2, 000, 000] OPs

Ncpu
m [10, 20] N f pga

m [10, 20]
dn,m 500 m vn [2, 20]

Experimental process. When the number of input tasks is given, the geographic
location of each task is generated randomly, and then the attributes of each task (such as
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task length, required SFC, task complexity, etc.) are generated randomly. Finally, each task
randomly requests service from a UAV that covers it. In addition, for a given number of
input tasks, we simulate 100 times and take the average of the simulation results as the
final value.

Comparison Benchmarks. To validate the necessity of each component of the compari-
son benchmarks design, we adopt a step-by-step evaluation philosophy in the experimental
design. For each benchmark algorithm, there are two steps: the order in which these SFCs
are instantiated, and the principle of instantiating SI contained in an SFC. For the first
step, similar to the greedy algorithm [20], two sorting strategies are chosen as comparison
benchmarks: (1) Revenue: the task with highest payment is firstly served; (2) Length: the
task with the shortest SFC length is firstly served. For the second step, three strategies
are chosen as comparison benchmarks: (1) Random: an SF is instantiated on a random
candidate UAV, similar to the random algorithm [32]; (2) Greedy: an SF is instantiated on a
candidate UAV with the best performance, similar to the greedy algorithm [20]; (3) Local:
an SF is only instantiated on a local UAV, similar to the local algorithm [32]. Similar to these
step-wise algorithms [20,32], we have 6 combination algorithms for comparison, marked
as “Revenue + Random”, “Revenue + Greedy”, “Revenue + Local”, “Length + Random”,
“Length + Greedy”, and “Length + Local”.

1. “Revenue + Random”: it first selects the task with the highest payment and performs
SFC scheduling for it; next, when instantiating one SF contained in an SFC, it always
randomly selects one from the candidate UAVs to instantiate this SF.

2. “Revenue + Greedy”: this algorithm first selects the task with the highest payment
and performs SFC scheduling for it; next, when instantiating one SF contained in an
SFC, it always selects the best performance one from the candidate UAVs to instantiate
this SF.

3. “Revenue + Local”: this algorithm first selects the task with the highest payment and
performs SFC scheduling for it; next, when instantiating one SF contained in an SFC,
it always selects the local one from the candidate UAVs to instantiate this SF.

4. “Length + Random”: this algorithm first selects the task with the shortest SFC length
and performs SFC scheduling for it; next, when instantiating one SF contained in an
SFC, it always randomly selects one from the candidate UAVs to instantiate this SF.

5. “Length + Greedy”: this algorithm first selects the task with the shortest SFC length
and performs SFC scheduling for it; next, when instantiating one SF contained in an
SFC, it always selects the best performance one from the candidate UAVs to instantiate
this SF.

6. “Length + Local”: this algorithm first selects the task with the shortest SFC length and
performs SFC scheduling for it; next, when instantiating one SF contained in an SFC,
it always selects the local one from the candidate UAVs to instantiate this SF.

5.2. Results and Analysis
5.2.1. The Completion Time Sum of Tasks

Figure 5 shows the completion time sum under the different tasks offloaded to the
UAV network. We can see that our proposed ToRu algorithm significantly outperforms
other algorithms in the completion time sum of tasks at the first stage, i.e., the stage before
the number of tasks reaches critical point. Figure 6 shows the simulation results of the first
stage in more detail. This is mainly because on the one hand, we instantiate each SF of the
SFCs of all tasks in a parallel mode; on the other hand, the pairing rules between SFs and
their candidate UAVs are designed from the global perspective, and each SF considers the
impact on other SFs when selecting candidate UAVs. Then, the performance of “Revenue +
Greedy” and “Length + Greedy” comes second. It is also reasonable, since both algorithms
greedily choose the UAV with the highest processing performance to instantiate the SFC.
Lastly, the Algorithm “Revenue + Random”, “Revenue + Local”, “Length + Random”, and
“Length + Local” have the worst performance because they do not consider the effect of
UAVs on the completion time when making their choices. However, with the increase
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of the number of tasks, the completion time sum of tasks also increases. This is because
the length and type of newly added tasks are random, so UAV computation resources are
used more fully and more tasks are executed successfully. Furthermore, as the number of
tasks continues to increase, the completion time sum of tasks in all algorithms no longer
increases, it even starts to decrease (e.g., “Length + Greedy”). The reason is that tasks
with less execution time are prioritized. To sum up, when the number of tasks exceeds
the critical point (i.e., tasks can not be executed 100%), it is meaningless to evaluate the
completion sum of tasks.
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Figure 5. The completion time sum with different algorithms during the whole simulation phase.

10 20 30 40 50

The number of tasks

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
h

e 
to

ta
l 

co
m

p
le

ti
o

n
 t

im
e 

(m
s)

×10
4

ToRu

Revenue + Random

Revenue + Greedy

Revenue + Local

Length + Random

Length + Greedy

Length + Local

Figure 6. The completion time sum with different algorithms in the stage of abundant resources.



Drones 2023, 7, 132 18 of 23

5.2.2. The Task Execution Success Ratio

Figure 7 shows the average execution success ratio of algorithms under different tasks.
The result shows that algorithm ToRu has the highest success ratio, especially with the
gradual increase of tasks, it can still maintain a high success ratio. This is mainly because
ToRu only selects candidate UAVs with low performance to meet the requirements when
instantiating SF, in other words, the improvement in the task execution success ratio comes
at the expense of individual task execution performance. The algorithms “Length + Local”
and “Revenue + Local” show the worst performance before the critical point, because they
do not fully utilize the resources of the UAV network. With the increase of the number of
tasks, “Length + Greedy” has the highest task execution success ratio. This is reasonable
since it serves tasks with the shortest SFCs first, which consume less computation and
communication resources. Finally, the algorithms “Length + Random” and “Revenue +
Random” shows the poor performance when the network load is heavy.
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Figure 7. The task execution success ratio with different algorithms.

5.2.3. The Overall Revenue

Figure 8 presents the overall revenue under different tasks. As can be seen in Figure 7,
when the number of tasks is small, the task execution success ratios of the algorithms except
“Length + Local” and “Revenue + Local” are all 100%. Therefore, they have equal revenue.
With the increase of tasks, the overall revenue of each algorithm increases rapidly before the
critical point, then, the growth becomes slow. Moreover, the overall revenue of algorithm
ToRu is always the largest among the seven algorithms because it not only ensures that
tasks with higher payments are executed, but also ensures a higher task execution success
rate. The algorithm “Revenue + Greedy” performs better, which is mainly because it first
completes tasks that pay more. In addition, we can see that the performance of algorithms
based on revenue sorting principle is better than that of algorithms based on length sorting,
which is reasonable.
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Figure 8. The overall revenue with different algorithms.

5.2.4. The Resources Utilization

Figures 9 and 10 show the utilization of channel and computation resources of different
algorithms, respectively. We can find that the channel resources consumed by the algorithm
ToRu increase with the number of tasks before the critical point. This is because the
resources are sufficient before the critical point, and the algorithm ToRu seeks to minimize
the completion time sum of tasks without caring about resource consumption. Due to
the limited communication resources between UAVs, it often becomes the bottleneck of
the task execution success ratio. When the number of tasks requesting service is small,
Algorithm 2 is executed. It instantiates each requested SFC in parallel mode, that is, it
selects the most preferred UAV for each SF contained in different SFCs at the same time,
which will lead to the premature consumption of the most preferred UAVs early. Therefore,
the probability that all SFs contained in one SFC are deployed on the same UAV will be
reduced. Different SFs contained in one SFC have to interact with each other, resulting in
the high channel utilization. On the contrary, when the number of tasks requesting service
is large, Algorithm 3 is executed. It instantiates each requested SFC in serial mode, that
is, it starts to instantiate the next SFC after having instantiated all SFs contained in the
previous SFC, so that the probability that all SFs contained in one SFC are instantiated
on the same UAV will be greatly increased. The interaction between different SFs on the
same UAV will no longer consume channel resources, thus, the channel utilization will be
rapidly reduced. As shown in Figure 9, after the critical point, the channel utilization in
the algorithm ToRu decreases greatly and remains stable at a low value. This inevitably
leads to the increase of the completion time sum of tasks (as shown in Figure 5), but it can
improve the task execution success ratio (as shown in Figure 7). The algorithms “Revenue
+ Local” and “Length + Local” do not consume channels because they only execute tasks
on the local UAV. The channel utilization of other algorithms increases sharply with the
increase of the number of tasks, so that their computation resources cannot be fully utilized,
as shown in Figure 10. This will reduce the task execution success ratio and the overall
revenue, as shown in Figures 7 and 8. It is obvious that the computation utilization of the
algorithm ToRu has reached 100%, which is the reason why its task execution success ratio
and overall revenue are the highest.
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Figure 9. The channel utilization with different algorithms.
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Figure 10. The computation resource utilization with different algorithms.

5.2.5. The Operation Time

Table 3 provides the operation time results of our proposed ToRu algorithm on average
under different number of tasks requesting service. We can see that the operation time of
ToRu is relatively small in the first stage (that is, before the number of tasks requesting
service reaches “critical point”, as shown in Figure 5). This is because as there are sufficient
resources at this stage, ToRu can exit after executing Algorithm 2. When the number
of tasks requesting service exceeds the “critical point” (i.e., 50), ToRu can judge that the
resources are insufficient after executing Algorithm 2, and it then continues to execute
Algorithm 3 for rescheduling SFCs. This undoubtedly increases the operation time, as
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shown in Table 3. However, as the number of tasks requesting service continues to increase,
the shortage of resources will become more obvious, which can be easily judged by several
loop operations of Algorithm 2. Therefore, the operation time of Algorithm 2 can be
ignored, and the operation time of ToRu only includes the one of Algorithm 3. As shown in
Table 3, the operation time of the ToRu algorithm decreased sharply after the number of
tasks requesting service exceeds 110, and then maintained a stable small increase. This is
consistent with our complexity analysis results in Section 4.4, indicating that our proposed
algorithm has good execution efficiency and scalability.

Table 3. Operation time of ToRu algorithm.

Number of Tasks Operation Time Number of Tasks Operation Time

Nt = 20 ∼ 2 ms Nt = 110 ∼ 34 ms
Nt = 30 ∼6 ms Nt = 120 ∼36 ms
Nt = 40 ∼14 ms Nt = 130 ∼38 ms
Nt = 50 ∼32 ms Nt = 140 ∼40 ms
Nt = 60 ∼50 ms Nt = 150 ∼46 ms
Nt = 70 ∼90 ms Nt = 160 ∼50 ms
Nt = 80 ∼95 ms Nt = 170 ∼56 ms
Nt = 90 ∼110 ms Nt = 180 ∼62 ms

Nt = 100 ∼126 ms Nt = 190 ∼74 ms

6. Conclusions

This paper formulates the SFC scheduling problem as a 0–1 nonlinear integer program-
ming problem in the multi-UAV edge computing network with CPU + FPGA computation
architecture. A two-stage heuristic algorithm named ToRu is put forward to derive a
sub-optimal solution of the problem. At the first stage, the SFCs of all tasks are scheduled
to UAV edge servers in parallel based on the our proposed pairing principle between SFCs
and UAVs for minimizing the completion time sum of tasks; at the second stage, a revenue
maximization heuristic is adopted to schedule the arrived SFCs in a serial service method.
A series of experiments were conducted to evaluate the performance of our proposal. The
results show that our algorithm outperforms other benchmark algorithms in the completion
time sum of tasks, the overall revenue, and the task execution success ratio.

The main limitation of ToRu algorithm lies in the fact that it is designed to realize
the online long-term SFC scheduling based on the stable UAV network topology. In other
words, it cannot be applied directly in the scenario where UAVs frequently join and exit.
In our future work, we plan to design a supplemental algorithm with network topology
prediction capability, which can help ToRu adapt to the dynamic scenario.

Author Contributions: Conceptualization, Y.W. and H.W.; methodology, Y.W. and X.W.; software,
K.Z.; validation, J.F. and J.C.; formal analysis, Y.H.; investigation, R.J.; resources, K.Z.; data curation,
K.Z.; writing—original draft preparation, Y.W.; writing—review and editing, X.W.; visualization, J.C.;
supervision, H.W.; project administration, Y.H.. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the Natural Science Foundation of China under Grant
No. 62171465.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank all coordinators and supervisors involved
and the anonymous reviewers for their detailed comments that helped to improve the quality of
this article.

Conflicts of Interest: The authors declare no conflict of interest.



Drones 2023, 7, 132 22 of 23

References
1. Chen, W.; He, R.; Wang, G.; Zhang, J.; Wang, F.; Xiong, K.; Ai, B.; Zhong, Z. Ai assisted phy in future wireless systems: Recent

developments and challenges. China Commun. 2021, 18, 285–297. [CrossRef]
2. Sarikhani, R.; Keynia, F. Cooperative spectrum sensing meets machine learning: Deep reinforcement learning approach. IEEE

Commun. Lett. 2020, 24, 1459–1462. [CrossRef]
3. Zheng, S.; Chen, S.; Qi, P.; Zhou, H.; Yang, X. Spectrum sensing based on deep learning classification for cognitive radios. China

Commun. 2020, 17, 138–148. [CrossRef]
4. Xie, J.; Liu, C.; Liang, Y.-C.; Fang, J. Activity pattern aware spectrum sensing: A cnn-based deep learning approach. IEEE Commun.

Lett. 2019, 23, 1025–1028. [CrossRef]
5. Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge intelligence: The confluence of edge computing and artificial

intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [CrossRef]
6. Wang, J.; Wei, X.; Fan, J.; Duan, Q.; Liu, J.; Wang, Y. Request pattern change-based cache pollution attack detection and defense in

edge computing. Digit. Commun. Netw. 2022. [CrossRef]
7. Liu, Z.; Cao, Y.; Gao, P.; Hua, X.; Zhang, D.; Jiang, T. Multi-uav network assisted intelligent edge computing: Challenges and

opportunities. China Commun. 2022, 19, 258–278. [CrossRef]
8. Wu, W.; Zhou, F.; Wang, B.; Wu, Q.; Dong, C.; Hu, R.Q. Unmanned Aerial Vehicle Swarm-Enabled Edge Computing: Potentials,

Promising Technologies, and Challenges. IEEE Wirel. Commun. 2022, 29, 78–85. [CrossRef]
9. Zhao, N.; Lu, W.; Sheng, M.; Chen, Y.; Tang, J.; Yu, F.R.; Wong, K.K. Uav-assisted emergency networks in disasters. IEEE Wirel.

Commun. 2019, 26, 45–51. [CrossRef]
10. Cao, B.; Li, M.; Liu, X.; Zhao, J.; Cao, W.; Lv, Z. Many-Objective Deployment Optimization for a Drone-Assisted Camera Network.

IEEE Trans. Netw. Sci. Eng. 2021, 8, 2756–2764. [CrossRef]
11. Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of edge computing and deep learning: A

comprehensive survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [CrossRef]
12. Dong, C.; Shen, Y.; Qu, Y.; Wang, K.; Zheng, J.; Wu, Q.; Wu, F. Uavs as an intelligent service: Boosting edge intelligence for

air-ground integrated networks. IEEE Netw. 2021, 35, 167–175. [CrossRef]
13. Behravesh, R.; Harutyunyan, D.; Coronado, E.; Riggio, R. Time-sensitive mobile user association and sfc placement in mec-enabled

5g networks. IEEE Trans. Netw. Serv. Manag. 2021, 18, 3006–3020. [CrossRef]
14. Xu, Z.; Gong, W.; Xia, Q.; Liang, W.; Rana, O.F.; Wu, G. Nfv-enabled iot service provisioning in mobile edge clouds. IEEE Trans.

Mob. Comput. 2021, 20, 1892–1906. [CrossRef]
15. Wang, Y.; Wei, X.; Wang, H.; Fan, J.; Chen, J.; Zhao, K.; Hu, Y. Joint UAV deployment, SF placement, and collaborative task

scheduling in heterogeneous multi-UAV-empowered edge intelligence. IET Commun. Early Access Artic. 2023. [CrossRef]
16. Xu, C.; Jiang, S.; Luo, G.; Sun, G.; An, N.; Huang, G.; Liu, X. The case for fpga-based edge computing. IEEE Trans. Mob. Comput.

2022, 21, 2610–2619. [CrossRef]
17. Li, J.; Un, K.-F.; Yu, W.-H.; Mak, P.-I.; Martins, R.P. An fpga-based energy-efficient reconfigurable convolutional neural network

accelerator for object recognition applications. IEEE Trans. Circuits Syst. Express Briefs 2021, 68, 3143–3147. [CrossRef]
18. Yu, X.; Niu, W.; Zhu, Y.; Zhu, H. UAV-assisted cooperative offloading energy efficiency system for mobile edge computing. Digit.

Commun. Netw. 2022. [CrossRef]
19. Zhang, J.; Zhou, L.; Zhou, F.; Seet, B.-C.; Zhang, H.; Cai, Z.; Wei, J. Computation-efficient offloading and trajectory scheduling for

multi-uav assisted mobile edge computing. IEEE Trans. Veh. Technol. 2020, 69, 2114–2125. [CrossRef]
20. Luo, Y.; Ding, W.; Zhang, B. Optimization of task scheduling and dynamic service strategy for multi-uav-enabled mobile-edge

computing system. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 970–984. [CrossRef]
21. Wang, Y.; Ru, Z.-Y.; Wang, K.; Huang, P.-Q. Joint deployment and task scheduling optimization for large-scale mobile users in

multi-uav-enabled mobile edge computing. IEEE Trans. Cybern. 2020, 50, 3984–3997. [CrossRef]
22. Chang, H.; Chen, Y.; Zhang, B.; Doermann, D. Multi-uav mobile edge computing and path planning platform based on

reinforcement learning. IEEE Trans. Emerg. Top. Comput. Intell. 2022, 6, 489–498. [CrossRef]
23. Ren, T.; Niu, J.; Dai, B.; Liu, X.; Hu, Z.; Xu, M.; Guizani, M. Enabling efficient scheduling in large-scale uav-assisted mobile-edge

computing via hierarchical reinforcement learning. IEEE Internet Things J. 2022, 9, 7095–7109. [CrossRef]
24. Xue, J.; Wu, Q.; Zhang, H. Cost optimization of UAV-MEC network calculation offloading: A multi-agent reinforcement learning

method. Ad Hoc Netw. 2022, 136, 102981. [CrossRef]
25. Seid, A.M.; Boateng, G.O.; Mareri, B.; Sun, G.; Jiang, W. Multi-Agent DRL for Task Offloading and Resource Allocation in

Multi-UAV Enabled IoT Edge Network. IEEE Trans. Netw. Serv. Manag. 2021, 18, 4531–4547. [CrossRef]
26. Wu, Z.; Yang, Z.; Yang, C.; Lin, J.; Liu, Y.; Chen, X. Joint deployment and trajectory optimization in UAV-assisted vehicular edge

computing networks. J. Commun. Netw. 2022, 24, 47–58. [CrossRef]
27. Moura, J.; Hutchison, D. Game Theory for Multi-Access Edge Computing: Survey, Use Cases, and Future Trends. IEEE Commun.

Surv. Tutor. 2019, 2, 260–288. [CrossRef]
28. Liu, L.; Zhang, S.; Zhang, L.; Pan, G.; Yu, J. Multi-UUV Maneuvering Counter-Game for Dynamic Target Scenario Based on

Fractional-Order Recurrent Neural Network. IEEE Trans. Cybern. Access Artic. 2022. [CrossRef]

http://doi.org/10.23919/JCC.2021.05.019
http://dx.doi.org/10.1109/LCOMM.2020.2984430
http://dx.doi.org/10.23919/JCC.2020.02.012
http://dx.doi.org/10.1109/LCOMM.2019.2910176
http://dx.doi.org/10.1109/JIOT.2020.2984887
http://dx.doi.org/10.1016/j.dcan.2022.03.019
http://dx.doi.org/10.23919/JCC.2022.03.019
http://dx.doi.org/10.1109/MWC.103.2100286
http://dx.doi.org/10.1109/MWC.2018.1800160
http://dx.doi.org/10.1109/TNSE.2021.3057915
http://dx.doi.org/10.1109/COMST.2020.2970550
http://dx.doi.org/10.1109/MNET.011.2000651
http://dx.doi.org/10.1109/TNSM.2021.3078814
http://dx.doi.org/10.1109/TMC.2020.2972530
http://dx.doi.org/10.1049/cmu2.12570
http://dx.doi.org/10.1109/TMC.2020.3041781
http://dx.doi.org/10.1109/TCSII.2021.3095283
http://dx.doi.org/10.1016/j.dcan.2022.03.005
http://dx.doi.org/10.1109/TVT.2019.2960103
http://dx.doi.org/10.1109/TCCN.2021.3051947
http://dx.doi.org/10.1109/TCYB.2019.2935466
http://dx.doi.org/10.1109/TETCI.2021.3083410
http://dx.doi.org/10.1109/JIOT.2021.3071531
http://dx.doi.org/10.1016/j.adhoc.2022.102981
http://dx.doi.org/10.1109/TNSM.2021.3096673
http://dx.doi.org/10.23919/JCN.2021.000026
http://dx.doi.org/10.1109/COMST.2018.2863030
http://dx.doi.org/10.1109/TCYB.2022.3225106


Drones 2023, 7, 132 23 of 23

29. Asheralieva, A.; Niyato, D. Hierarchical game-theoretic and reinforcement learning framework for computational offloading
in uav-enabled mobile edge computing networks with multiple service providers. IEEE Internet Things J. 2019, 6, 8753–8769.
[CrossRef]

30. Wu, Q.; Chen, J.; Xu, Y.; Qi, N.; Fang, T.; Sun, Y.; Jia, L. Joint Computation Offloading, Role, and Location Selection in Hierarchical
Multicoalition UAV MEC Networks: A Stackelberg Game Learning Approach. IEEE Internet Things J. 2022, 9, 18293–18304.
[CrossRef]

31. Zhou, H.; Wang, Z.; Min, G.; Zhang, H. UAV-aided Computation Offloading in Mobile Edge Computing Networks: A Stackelberg
Game Approach. IEEE Internet Things J. Early Access Artic. 2022. [CrossRef]

32. Qu, Y.; Dai, H.; Wang, H.; Dong, C.; Wu, F.; Guo, S.; Wu, Q. Service provisioning for uav-enabled mobile edge computing. IEEE J.
Sel. Areas Commun. 2021, 39, 3287–3305. [CrossRef]

33. Wang, G.; Zhou, S.; Zhang, S.; Niu, Z.; Shen, X. SFC-Based Service Provisioning for Reconfigurable Space-Air-Ground Integrated
Networks. IEEE J. Sel. Areas Commun. 2020, 38, 1478–1489. [CrossRef]

34. Li, J.; Shi, W.; Wu, H.; Zhang, S.; Shen, X. Cost-Aware Dynamic SFC Mapping and Scheduling in SDN/NFV-Enabled
Space–Air–Ground-Integrated Networks for Internet of Vehicles. IEEE Internet Things J. 2022, 9, 5824–5838. [CrossRef]

35. Xia, J.; Wang, P.; Li, B.; Fei, Z. Intelligent task offloading and collaborative computation in multi-UAV-enabled mobile edge
computing. China Commun. 2022, 19, 244–256. [CrossRef]

36. Liu, S.; Yang, T. Delay aware scheduling in uav-enabled ofdma mobile edge computing system. IET Commun. 2020, 14, 3203–3211.
[CrossRef]

37. Tan, G.; Shui, C.; Wang, Y.; Yu, X.; Yan, Y. Optimizing the linpack algorithm for large-scale pcie-based cpu-gpu heterogeneous
systems. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 2367–2380. [CrossRef]

38. Kowsalya, T. Area and power efficient pipelined hybrid merged adders for customized deep learning framework for FPGA
implementation. Microprocess. Microsyst. 2020, 72, 102906. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JIOT.2019.2923702
http://dx.doi.org/10.1109/JIOT.2022.3158489
http://dx.doi.org/10.1109/JIOT.2022.3197155
http://dx.doi.org/10.1109/JSAC.2021.3088660
http://dx.doi.org/10.1109/JSAC.2020.2986851
http://dx.doi.org/10.1109/JIOT.2021.3058250
http://dx.doi.org/10.23919/JCC.2022.04.018
http://dx.doi.org/10.1049/iet-com.2020.0274
http://dx.doi.org/10.1109/TPDS.2021.3067731
http://dx.doi.org/10.1016/j.micpro.2019.102906

	Introduction
	Related Work
	Task Scheduling
	SFC Scheduling

	System Model and Problem Formulation
	Network Model
	Service Model
	Task Model
	Problem Formulation

	Proposed Approach
	The ToRu Framework
	Suboptimal Solution to Minimize the Completion Time Sum
	Suboptimal Solution to Maximize the Overall Revenue
	Computational Complexity Analysis

	Simulation and Results Analysis
	Experimental Settings
	Results and Analysis
	The Completion Time Sum of Tasks
	The Task Execution Success Ratio
	The Overall Revenue
	The Resources Utilization
	The Operation Time


	Conclusions
	References

