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Abstract: The penetration of unmanned aerial vehicles (UAVs) is an essential and important link in
modern warfare. Enhancing UAV’s ability of autonomous penetration through machine learning has
become a research hotspot. However, the current generation of autonomous penetration strategies
for UAVs faces the problem of excessive sample demand. To reduce the sample demand, this paper
proposes a combination policy learning (CPL) algorithm that combines distributed reinforcement
learning and demonstrations. Innovatively, the action of the CPL algorithm is jointly determined by
the initial policy obtained from demonstrations and the target policy in the asynchronous advantage
actor-critic network, thus retaining the guiding role of demonstrations in the initial training. In a
complex and unknown dynamic environment, 1000 training experiments and 500 test experiments
were conducted for the CPL algorithm and related baseline algorithms. The results show that the CPL
algorithm has the smallest sample demand, the highest convergence efficiency, and the highest success
rate of penetration among all the algorithms, and has strong robustness in dynamic environments.

Keywords: UAV penetration; demonstrations; distributed reinforcement learning; asynchronous
advantage actor-critic

1. Introduction

The autonomous penetration of UAVs refers to the ability of UAVs to break through the
enemy’s defenses, which is an essential function of military UAVs. In the actual battlefield
environment, once a UAV is found by the enemy, it will be intercepted and destroyed
continuously. Therefore, one of the key factors for UAVs to successfully perform tasks is
being able to break through the enemy’s multi wave interception. For this reason, many
scholars have done intensive research on UAV penetration.

Based on the Dubins curve, Bares P et al. designed a 3D path following algorithm,
so that the UAV can avoid static obstacles while meeting the kinematic and dynamic
constraints [1]. Based on the performance index of minimum energy, Han S C et al.
designed an optimal/suboptimal proportional guidance method to enable the UAV to
avoid linear motion obstacles. However, when approaching the target, this method has
the problem of divergent overload instructions [2]. Based on nonlinear model predictive
control theory, Singh L designed a flight trajectory that can automatically avoid incoming
missiles, however, it is practical when the overload of the aircraft itself can reach infinity, the
computational efficiency of this algorithm is limited [3]. Based on model prediction theory,
Gagnon E et al. designed corresponding penetration trajectories for several situations in an
unknown environment, but the assumed obstacle situation is relatively simple [4]. Based
on the given midpoint, Watanabe Y et al. designed the optimal avoidance trajectory with
the least energy, but in the complex obstacle type, this method can hardly give the required
midpoint [5]. Based on the orthogonal configuration method, Smith NE et al. estimated the
flight range of the intruder and designed the avoidance corridor, but the result turned out
to be probabilistic [6].
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In general, research in the field of UAV penetration has been emerging, and the meth-
ods used are becoming more and more intelligent. With the development of computer
hardware and artificial intelligence technology, machine learning methods such as deep
learning and reinforcement learning are gradually being applied to the field of UAV pene-
tration. This type of method is usually based on a large number of sample data generated
by confrontation, iterating the neural network repeatedly and constantly updating the
internal parameters of the network to obtain autonomous strategies for UAV penetration.
The above methods greatly enhance the autonomy and rapidity of UAV penetration, but
the disadvantage is that the sample demand is too large. For UAV penetration, generating a
large amount of real data for confrontation requires significant time and money. In addition,
the process of sample generation requires UAVs to constantly engage in confrontation,
resulting in incalculable equipment losses, which is almost unacceptable for costly UAVs.
Aiming at the problem of excessive sample demand, this paper proposes a combination
policy learning method to reduce the sample demand in UAV penetration. Based on the
combination of demonstrations and distributed reinforcement learning, this paper is ded-
icated to achieve online penetration with less sample requirements, which can provide
some ideas for online penetration of UAV.

The structure of this paper is shown below.

(a) Introduction. This section mainly describes the research status of UAV penetration
strategies, summarizes the existing problems, and then leads to the theme and purpose
of this paper.

(b) Problem Description. This section first introduces the application scenario of UAV pen-
etration in detail, and then describes the modeling of the UAV guidance system. On
this basis, it describes and models the UAV penetration problem from the perspective
of Reinforcement Learning.

(c) CPL Algorithm for UAV penetration. This section derives the theoretical formula
of the proposed algorithm. The related algorithms mainly include a pre-training
algorithm—Adversarial Inverse Reinforcement Learning (AIRL), distributed rein-
forcement learning algorithm—Asynchronous Advantage Actor-Critic (A3C), and the
Combination Policy Learning (CPL) algorithm, formed by combining the former two.

(d) Environmental results and discussion. This section mainly analyzes and discusses the
experimental results. For the CPL algorithm and other related algorithms, this section
conducts training and testing experiments and compares the results, so as to conduct
a detailed analysis of the sample requirements, convergence efficiency, success rate of
penetration, and other indicators of each algorithm.

(e) Conclusions and future work. This section mainly summarizes the full text and
prospects for future work in this paper.

2. Problem Description
2.1. UAV Penetration

As shown in Figure 1, the application scenario of this paper is: during the flight of the
UAV, it is found and continuously tracked by the enemy in state 1, then it is intercepted by
interceptor 1 in state 2, which is launched by the enemy. If the UAV successfully evades
interceptor 1 at this time, during the subsequent flight, the enemy will continue to launch
interceptor 2, so as to conduct the second interception in state 3.

In the above process, the problem to be solved in this paper is to make a real-time
penetration decision during the two times of interception, guiding the UAV to break
through the enemy’s defense.
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2.2. Modeling of the UAV Guidance System

Before the design of UAV penetration algorithm, the first step is to build a six degree
of freedom UAV model, providing simulation support for subsequent experiments. Taking
the glider as an example, a six degree of freedom UAV model is built with its parameters
derived from real data. The main reference for the establishment of dynamic and kinematic
models is Ref. [7], which will not be repeated here. This paper focuses on its guidance
system modeling, which will provide a basis for the action space design of the subsequent
algorithm.

Based on the current flight state and mission, the task of the guidance system is to
generate the corresponding guidance command, which needs to meet a variety of terminal
constraints. The current state [8] includes speed v, speed inclination θ, speed azimuth σ,
longitude λ, latitude φ, and altitude h. The terminal constraint is shown in Formula (1).

x f =
(

v f , θ f , λ f , φ f , h f

)
(1)

where x f is the constraint vector, v f is the speed constraint, θ f is the speed inclination
constraint, λ f is the longitude constraint, φ f is the latitude constraint, and h f is the altitude
constraint.

In this paper, the longitudinal overload command is defined as n∗y and the lateral
overload command is defined as n∗z . During the guidance process of UAV, it is necessary to
eliminate heading errors in a timely manner. Heading errors are defined as the included
angle between the line-of-sight azimuth from the current position of the aircraft to the target
and speed azimuth. This paper defines σLOS as the line-of-sight azimuth from the current
position to the target, then the heading errors are equal to σLOS − σ. For longitudinal
guidance and lateral guidance, the methods for obtaining the optimal lateral overload and
optimal lateral overload are shown in Formula (2).{

u∗y = n∗y = k(ChLR − Cθ) + 1
u∗z = n∗z = σLOS−σ

k(LR f−LR)
(2)

where u∗y is the optimal overload required longitudinally, u∗z is the optimal overload
required laterally, k = g0

v2 ≈
g
v2 , LR is the current range, and LR f is the range constraint
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of the glide section. Ch and Cθ are the guidance coefficients obtained based on optimal
control [9], and their calculation method is shown in Formula (3).

Ch =
6[(LR−LR f )(θ f−θ)−2h+2h f ]

k2(LR−LR f )
3

Cθ =
2[LR LR f (θ−θ f )−LR f

2(2θ+θ f )+LR
2(2θ f +θ)+3(LR+LR f )(h f−h)]

k2(LR−LR f )
3

(3)

For the glider, if the overload command is taken as the control command, the method
for calculating the control angles [10] of attack α and bank β is shown as Formula (4).

ρv2SmCL(Ma ,α)
2g0

=
√

n∗ 2
y + n∗ 2

z

β = arctan
(

n∗z
n∗y

) (4)

where ρ is the atmospheric density at the current altitude, Sm is the aircraft reference area,
CL is the lift coefficient determined by the Mach number and angle of attack, and g0 is
the gravitational acceleration at sea level. According to the first equation in Formula (4),
the angle of attack α can be obtained by inverse interpolation, and the second equation in
Formula (4) can directly calculate the angle of bank β.

2.3. Reinforcement Learning for UAV Penetration

For the penetration process of UAV, the state of the next moment depends on the state
and action of the current moment. Furthermore, the penetration process of UAV can be
modeled as a Markov process [11]. On this basis, the decision-making problem of UAV
penetration can be solved by reinforcement learning method. This method can update
its own network iteratively by constantly interacting with the environment, in order to
learn a good strategy for UAV penetration. The first step of this method is to design the
corresponding action space, state space, and reward function, which are related to the
UAV’s own model, combat tasks, and battlefield environment, etc.

In this paper, the upper control command of the guidance system is overload and the
lower command is the angles of attack and bank. Moreover, when using the Reinforcement
Learning algorithm to control UAV flight, the command output by the algorithm can be
either overload (longitudinal overload and lateral overload) or attitude angle (angles of
attack and bank). Both commands can replace the command of the guidance system. (1)
The overload control method can quickly achieve the required overload for UAVs, and
is widely used in aircraft control systems that require rapid maneuvers; (2) The attitude
angle control method has good stability margins, but excessive stability margins lead
to insufficient maneuverability. The purpose of this paper is to study the maneuvering
penetration methods of UAVs, so it is necessary for UAVs to have high maneuverability.
Based on the above considerations, this paper selects overload command as the action
variable of the Reinforcement Learning Network.

According to the current battlefield situation, the Reinforcement Learning Network
outputs the values of longitudinal overload command and lateral overload command that
control the UAV flight, thus replacing the overload command value of the original guidance
system, controlling the UAV to fly along the new trajectory and avoid interception.

In addition, the longitudinal and lateral limit overloads of the 6-DOF glider UAV
constructed in this paper are 10G, respectively. Therefore, the action vector a is shown in
Formula (5).

a =
(

n∗y , n∗z
)

(5)

The value ranges of longitudinal overload command n∗y and lateral overload command
n∗z are: n∗y ∈ (0, 10), n∗z ∈ (0, 10), which can ensure the smooth flight of the UAV.

For the state space of the reinforcement learning network, the purpose of the network
is to guide the UAV to break through the defense of the interceptor, so the situation
information that the network needs to observe should include: the position and speed
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information of both the UAV and the interceptor. The network judges the next action of the
UAV according to the appeal information. The state vector s of UAV penetration network
is shown in Formula (6).

s =
(

BUAV , LUAV , HUAV , vx,UAV , vy,UAV , vz,UAV , BINT , LINT , HINT , vx,INT , vy,INT , vz,INT
)

(6)

where, BUAV , LUAV , and HUAV are the longitude, latitude, and altitude of the UAV, respec-
tively, vx,UAV , vy,UAV , and vz,UAV are the component velocities of the UAV on the x, y, and
z axes in the ECEF coordinate system, BINT , LINT , and HINT are the longitude, latitude and
altitude of the interceptor, respectively, and vx,INT , vy,INT , and vz,INT are the component
velocities of the interceptor on the x, y, and z axes in the ECEF coordinate system.

In a real scenario, (1) the position and speed information of the UAV can be directly
obtained from the UAV’s navigation system. For example, both inertial navigation systems
and GPS navigation systems can obtain the position and speed information of the UAV; (2)
the position and speed information of the interceptor is integrated by our detection system
(seeker, ground radar, space-based satellite, etc.).

The reward function of the reinforcement learning network is designed based on
the state space. Since the purpose of the network is to guide UAV to break through the
interceptor’s defense, the main return focus on the successful penetration of UAV is, when
the UAV successfully penetrates, it gives the agent a positive reward. Under the assumption
that the interceptor is equipped with an antipersonnel warhead, the sign of successful
penetration is that the UAV has passed the interceptor and the relative distance between
the above two is always greater than 400 m. However, if there is only main return, the UAV
will face the problem of sparse reward, which leads to difficult convergence of the network.
In addition to the main return, this paper adds intermediate return to guide the UAV to
explore in the process of penetration.

For the intermediate return, the farther the relative distance between the UAV and the
interceptor is, the easier it is for the UAV to evade the interceptor successfully. The greater
the relative distance between the two, the greater the intermediate return. In addition, the
greater the relative velocity between the UAV and the interceptor, the more difficult it is for
the interceptor to intercept the UAV. Therefore, the greater the relative velocity between the
two, the greater the probability of successful penetration, and the greater the intermediate
return.

Combined with the above analysis and various performance parameters of the UAV
model constructed in this paper, the reward function r is shown in Formula (7), whose
value at each time is controlled between [−1,1] for easy convergence.

r =


1 , Situation 1
−1 , Situation 2

arctan(dR−400)
100 + edV

50 , Situation 3
(7)

where Situation 1 represents the successful penetration of UAV, Situation 2 represents
the failure of UAV penetration, Situation 3 represents that the UAV is in the process of
penetration, dR represents the relative distance between UAV and interceptor, and dV
represents the relative velocity between UAV and interceptor.

The interaction process between the network and the environment in training is
shown in Figure 2: (1) the network first obtains the state information from the environment,
including the position and speed information of the UAV and Interceptor; (2) the network
outputs the corresponding action command (the longitudinal overload command and
lateral overload command) according to the above state information, for controlling UAV
flight; (3) the UAV executes the above action command, the current state is changed, and
the corresponding reward value of this action command is obtained. Through continuous
interaction with the environment, the network gradually collects samples and updates
iterations, so as to continuously improve the reward value, and finally converges to obtain
a satisfied network of UAV penetration.
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3. CPL Algorithm for UAV Penetration
3.1. Pre-Training Algorithm

According to the demonstrations of UAV penetration, the initial policy of UAV pene-
tration is learned by pre-training. In this process, considering the high-dimensional and
continuous characteristics of the UAV penetration environment, the adversarial inverse
reinforcement learning (AIRL) algorithm [12] is selected as the pre-training network. The
specific illustrations of AIRL are as follows.

The general inverse reinforcement learning methods, such as generative adversarial
imitation learning (GAIL) [13] and generative adversarial network guided cost learning
(GAN-GCL) [14], are trajectory-centric. Moreover, these methods need to estimate a com-
plete trajectory, whose estimation variance is larger compared with estimating a single
state-action pair. The AIRL algorithm directly estimates a single state-action pair [12], so its
estimation variance is smaller.

The AIRL algorithm introduces a sampling distribution, which naturally turns the
reinforcement learning problem into a generative adversarial network (GAN) optimization
problem. The AIRL algorithm iterates between the introduced sampling distribution
and the reward function, where the discriminator is the reward and the generator is the
sampling distribution. The original discriminator Dθ is shown as Formula (8).

Dθ(st, at) =
exp( fθ(st, at))

exp( fθ(st, at)) + π(at|st)
(8)

where π(at|st) is the policy of the sampling distribution to be updated and fθ(st, at) is the
learned function. The partition function is ignored in the above Formula (8). In practice, the
normalization of the probability value can be guaranteed by Softmax function or Sigmoid
function. It is proved that in the optimal case, f ∗(st, at) = logπ∗(at|st) = A∗(st, at) gives
the advantage function of the optimal policy [12]. However, the advantage function is a
highly entangled Reward Function minus a baseline value. The AIRL algorithm proposes
to disentangle the advantage function to obtain the reward function.

Theoretically, when the reward is state-only, it is more likely to be robust to dynamics,
and the reward shaping will reduce its robustness [12]. Therefore, it is necessary to multi-
parameterize a shaping term function hφ, whose parameters are φ. The discriminator Dθ,φ
in the AIRL algorithm is shown as Formula (9).

Dθ,φ(st, at, st+1) =
exp
(

fθ,φ(st, at, st+1)
)

exp
(

fθ,φ(st, at, st+1)
)
+ π(at

∣∣st)
(9)

where fθ,φ is limited to the reward approximator gθ and the shaping term hφ, which is
shown as Formula (10).

fθ,φ(st, at, st+1) = gθ(st, at) + γhφ(st+1)− hφ(st) (10)

Among them, additional fitting of hφ is needed.
The pseudo code of pre-training algorithm (AIRL) is shown as Algorithm 1.
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Algorithm 1. Pre-training algorithm (AIRL) Algorithm.

Obtain expert demonstrations τE
i

Initialize policy π and discriminator Dθ,φ
for step t in {1, . . . , N} do

Collect trajectories τi = (s0, a0, . . . , sT , aT) by executing π.
Train Dθ,φ via binary logistic regression to classify expert data τE

i from sample τi.
Update reward rθ,φ(st, at, st+1)← logDθ,φ(st, at, st+1)− log(1− Dθ,φ(st, at, st+1))

Update π with respect to rθ,φ using any policy optimization method.
end for

3.2. A3C Algorithm

Combining the results of the pre-training algorithm, the distributed reinforcement
learning algorithm can further reduce the sample demand, thus improving the speed of
training. As an excellent distributed reinforcement learning algorithm, the asynchronous
advantage actor-critic (A3C) algorithm [15] adopts asynchronous training, which is based
on the advantage actor-critic (A2C) algorithm [16]. The A3C algorithm greatly improves
the convergence efficiency, and is quite suitable for UAV penetration training, which needs
to reduce the time and capital cost as much as possible. Therefore, the A3C algorithm is
initially selected as the distributed reinforcement learning algorithm for UAV penetration.

As shown in Figure 3, in the A3C algorithm, the neural network model includes
multiple thread networks for interacting with the environment and a public network in
the parameter server. The thread networks are mainly responsible for interacting with
the environment, whose number is at most equal to the number of CPU cores of the
computer [17]. The actor-learner in each thread network interacts with the environment,
respectively [18]. Each thread network does not interfere with each other, but interacts with
the environment independently. each actor-learner calculates the gradient of loss function
in its thread network, and uploads the gradient to the parameter server, thus iteratively
updating the public network in the parameter server [19]. Every once in a while, these
thread networks will update their network parameters to the same parameters as the public
network, guiding the subsequent environment interaction [20–24].
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Figure 3. Architecture of the A3C algorithm.

The pseudo code of the A3C algorithm is shown in Algorithm 2. Since the train-
ing process of each actor-learner is the same, the algorithm can be interpreted from the
perspective of an actor-learner [25,26]. In each learning cycle, through asynchronous
communication, each actor-learner will first synchronize its network parameters from the
parameter server [27]. Based on the updated thread network, the actor-learner will make
decisions and interact with the environment at most tmax times [28]. The experience of
interactive exploration with the environment will be collected and used to train its own
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thread network, and the gradients dθ and dθv will be obtained, respectively [29]. After the
actor-learner interacts with the environment to Tmax times, the actor-learner will submit the
sum of all accumulated gradients to the parameter server, so that it can update the network
parameters θ and θv in the parameter server asynchronously.

Algorithm 2. Asynchronous Advantage Actor-Critic (A3C).

Initialize total number of exploration steps Tmax, number of exploration steps in each cycle tmax
Initialize thread step counter t = 1
while T ≤ Tmax do

Initialize network parameter gradient: dθ = 0,dθv = 0
Keep synchronization with the parameter server: θ′ = θ,θ′v = θv
tstart = t
Set the initial state of each exploration cycle to st
while the end state is reached or t− tstart == tmax do

Select decision behavior at based on decision strategy π(st|θ′)
Executing at in the environment and get reward rt and the next state st+1

end while
if the end state is reached, then

r = 0
else

r = V(st|θ′v)
end if
for i = t− 1, t− 2, . . . , tstart do

Update discount rewards r = ri + γr
Cumulative parameter gradient θ′, dθ = dθ +∇θ′ logπ(si|θ′)(r−V(si|θ′v))
Cumulative parameter gradient θ′v, dθv = dθv + ∂ (r−V(si|θ′v))

2/∂θ′v
end for
Asynchronous update θ and θv based on gradient dθ and dθv

end while

3.3. CPL Algorithm

The exploration space of UAV penetration is huge, so if the A3C algorithm is used
simply to explore from scratch, until a better strategy for UAV penetration is obtained,
the sample size required in this process may be quite large, and the network may not
even converge [30,31]. Therefore, this paper proposes to conduct pre-training before the
training of the A3C algorithm. The pre-training algorithm gets the policy obtained from the
expert demonstrations, then the policy will be the initial policy of the A3C algorithm, so
as to reduce invalid exploration and improve training efficiency [32]. The policy obtained
from pre-training does not need to be optimal; it only needs to be good enough compared
with the conventional initial policy, which is usually obtained by the random generation
method [33].

When pre-training is combined with the reinforcement learning process, the conven-
tional initial policy of reinforcement learning is usually directly replaced by the policy
obtained from pre-training, which is also called the direct replacement method. However,
the initial policy for UAV penetration obtained through expert demonstrations is still of
great reference value. If the direct replacement method is simply used, the initial policy will
soon be covered with the exploration of the network, resulting in its inability to maximize
its value. Therefore, this paper proposes a combination policy learning (CPL) algorithm,
which can retain the performance of the initial policy to the greatest extent in the subsequent
training.

In the CPL algorithm, the action a follows a combined strategy. That is, a is obtained
by combining the initial policy πini and the target policy πtar, as shown in Formula (11).

a = ρaini(s) + atar(s) (11)
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where ρ is equal to the reciprocal of the number of iterations, which is shown in Formula
(12).

ρ =
1
E

(12)

where E is the number of iterations.
The training process includes two parts of the policies: one is the Initial Policy obtained

from pre-training, which will be fixed after initialization; the other is the Target Policy that
will be trained in the later learning process. That is, the initial policy obtained from the
pre-training is fixed, and only the target policy is iterated. Formula (11) illustrates that
the action consists of the above two policies, and the weight of the initial policy decreases
with the increase of the training times. Moreover, at the initial stage of training, the initial
policy can play a greater guiding role; later, with the increase of training times, the target
policy gradually takes shape; at the end of training, the action decision depends more on
the target policy, which is the ultimate policy. In this way, the CPL algorithm can maintain
the performance of the initial policy as much as possible.

Combining the above CPL algorithm, the complete training process is as follows.

(a) Initialize all networks in the A3C algorithm in the way of combination policy learning;
(b) Let the actor-learner interact with the environment. The action is the combination of

the initial policy and target policy, i.e., formula (11), and the samples are stored in the
form of (st, atar, st+1, rt);

(c) Sample from the replay buffer and get (st, atar, st+1, rt), then update the Target Policy
πtar;

(d) Repeat steps (b) and (c) above until the UAV penetration strategy converges to near
optimal.

Compared with the general A3C algorithm, the CPL algorithm has two differences:
(1) its initial policy is not randomly generated, but obtained by pre-training according to
expert demonstrations; (2) its action is the combination of initial policy and target policy,
but not the entire action atar of the target policy. The pseudo code of the CPL algorithm
shown in Algorithm 3.

The structure of the CPL algorithm is shown in Figure 4. First, the demonstrations of
the UAV penetration are used to obtain the pre-training Network, which will be the initial
policy of the CPL algorithm. In the subsequent training of reinforcement learning, the
action of UAV penetration is composed of the fixed initial policy and learned target policy.
Target policy is in the public network of A3C algorithm. After iterative updating, the target
policy gradually converges, and the final decision network of UAV penetration is obtained.
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Algorithm 3. Combination Policy Learning (CPL) Algorithm.

Obtain expert demonstrations τE
i

Initialize policy πini and discriminator Dθ,φ
for step t in {1, . . . , N} do

Collect trajectories τi = (s0, a0, . . . , sT , aT) by executing πini
Train Dθ,φ via binary logistic regression to classify expert demonstrations τE

i from sample τi
Update reward rθ,φ(st, at, st+1)← logDθ,φ(st, at, st+1)− log(1− Dθ,φ(st, at, st+1))

Update πini with respect to rθ,φ using any policy optimization method
end for
Obtain the initial policy πini from the above training, and obtain its corresponding neural network
parameters θini
Initialize total number of exploration steps Tmax, number of exploration steps in each cycle tmax
while T ≤ Tmax do

Initialize network parameter gradient: dθ = 0,dθv = 0
Keep synchronization with the parameter server: θ′ = θini,θ′v = θini
tstart = t
Set the initial state of each exploration cycle to st
while the end state is reached or t− tstart == tmax do

at = ρaini(st) + atar(st)
Take decision behavior at in the environment and get reward rt and the

next state st+1
end while
if the end state is reached, then

r = 0
else

r = V(st|θ′v)
end if
for i = t− 1, t− 2, . . . , tstart do

Update discount rewards r = ri + γr, where γ is the discount factor
Cumulative parameter gradient θ′, dθ = dθ +∇θ′ logπ(si|θ′)(r−V(si|θ′v))
Cumulative parameter gradient θ′v, dθv = dθv + ∂ (r−V(si|θ′v))

2/∂θ′v
end for
Asynchronous update θ and θv based on gradient dθ and dθv

end while

4. Environmental Results and Discussion
4.1. Training Experiment

According to the above analysis, this paper compares the pre-training algorithm, A3C
algorithm, pre-training-A3C algorithm, and CPL algorithm, to analyze the performance of
four algorithms in the UAV penetration environment. The pre-training-A3C algorithm is a
combination of the A3C algorithm and pre-training algorithm using the direct replacement
method. Specifically, the average reward of the above four algorithms in the training
process is shown in Figure 5 and the success rate of penetration in the training process is
shown in Figure 6.

In the training process, the UAV model and Interceptor model are first exported to the
Dynamic Link Library form, then the above models are applied by invoking the logic of
the Dynamic Link Library using Python language. The maximum number of episodes for
each algorithm and interactions per episode are 1000 and 2000, respectively. This paper
sets the seed to change from 0 to 9, that is, each algorithm conducts 10 groups of training,
and then averages the results of these 10 trainings, so as to obtain the average reward value
represented by the dark curve in Figure 5 and the success rate of penetration represented
by the dark curve in Figure 6.
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In Figure 5, (1) when the A3C algorithm is used for training alone, the value of the
average reward is almost unchanged, indicating that the network has hardly learned valu-
able strategies. (2) When the pre-training algorithm generated by expert demonstrations
is applied separately, the network can stably output the UAV penetration strategy. The
average reward value of the pre-training algorithm is higher than that of the A3C algorithm,
indicating that the strategy obtained by pre-training can output a more reasonable strategy.
However, the average reward value is not high enough, and there are better penetration
strategies that are worth exploring. (3) When the A3C algorithm is simply combined with
the pre-training algorithm by using the direct replacement method, the pre-training-A3C
algorithm can explore on the basis of the original pre-training strategy, quickly learning a
better strategy, which rises its average reward value. However, the above strategy has a low
utilization of expert demonstrations and its learning speed is low. When 1000 episodes are
over, the average reward is still in the rising stage, so the algorithm has not converged in
the end. (4) When using the CPL algorithm proposed in this paper, the algorithm converges
when the episodes are about 700, and its convergence result is the best among the above
algorithms. This is because this algorithm can not only explore beyond pre-training, but
also retain the weight of pre-training to a large extent at the early stage of training, which
can guide the algorithm to explore in a more valuable direction.

The changing trend of the success rate of penetration in Figure 6 is in accordance with
that of the average reward in Figure 5, which also shows the correctness and rationality of
reward shaping. From the training results in Figures 5 and 6, the CPL algorithm proposed
in this paper has the highest convergence speed and the best convergence performance,
thus verifying its feasibility and effectiveness. However, the above results are only the
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performance in the training process. To objectively verify the apply effect of each algorithm,
a test experiment should be conducted after the training.

4.2. Test Experiment

After fixing the network parameters of each algorithm obtained from the above
training, this paper randomly sets the positions of both launch point and target point
so as to randomly generate 500 different initial environments, and conduct 500 UAV
penetration test experiments for each algorithm (pre-training; A3C; pre-training-A3C; CPL).
The statistical data of these 500 experiments are shown in Table 1. For the convenience
of the description, this paper defines the numbers of test as NT, numbers of penetrating
interceptor 1 as NP1, numbers of penetrating interceptor 2 as NP2, and success rate of
penetration as SRP. SRP is obtained by dividing NP2 by NT. the success rate of penetration
(SRP) of each algorithm is further shown in Figure 7.

Table 1. Statistics of the 500 test experiments.

Algorithm NT NP1 NP2 SRP

Pre-training 500 178 163 32.6%
A3C 500 19 11 2.2%

Pre-training-A3C 500 234 197 39.4%
CPL 500 273 234 46.8%
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Table 1 shows that (1) the pre-training algorithm successfully penetrated Interceptor 1
a total of 178 times, Interceptor 2 a total of 163 times, and the final success rate of penetration
was 32.6%, which shows that the penetration strategy obtained through pre-training played
a role. (2) The A3C algorithm successfully penetrated Interceptor 1 a total of 19 times,
Interceptor 2 a total of 11 times, and the final success rate of penetration was 2.2%. This
group of data shows the worst penetration performance among all algorithms, indicating
that it is difficult to learn a good penetration strategy when using the reinforcement learning
algorithm alone. (3) The pre-training-A3C algorithm successfully penetrated Interceptor 1 a
total of 234 times, Interceptor 2 a total of 197 times, and the final success rate of penetration
was 39.4%. Compared with the previous two groups, the performance of this algorithm
was significantly improved, indicating that the reinforcement learning algorithm finally
learned a better penetration strategy with pre-training. (4) The CPL algorithm successfully
penetrated Interceptor 1 a total of 273 times, Interceptor 2 a total of 234 times, and the
final success rate of penetration was 46.8%. The performance of this algorithm is the best
among all algorithms, indicating that the CPL algorithm proposed in this paper performs
best in the UAV penetration environment. In addition, the success rate of penetration
for each algorithm in Figure 7 is consistent with Table 1, which also shows that the CPL
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algorithm has the strongest penetration ability in all algorithms. The above results verify
the effectiveness and robustness of CPL algorithm.

Three groups of experimental results were randomly selected from the above 500 test
results, as shown in Figure 8. It can be seen from Figure 8 that only the CPL algorithm can
completely break through the defense of Interceptor 1 and Interceptor 2 in Test environ-
ments 1, 2, and 3, while the other three algorithms cannot completely break through the
defense of the two interceptors, which also shows the excellent performance of the CPL
algorithm in UAV penetration.Drones 2023, 7, x FOR PEER REVIEW 14 of 17 
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5. Conclusions and Future Work

In order to reduce the sample demand of UAV penetration training, this paper first
conducts pre-training based on expert demonstrations and uses the obtained network as
the initial policy of the A3C algorithm. Then, based on the pre-training algorithm and
A3C algorithm, the CPL algorithm is designed. The CPL algorithm innovatively retains
the guidance role of the demonstrations more in the early stage of training, and that of
reinforcement learning network more in the late stage of training. The training experiment
shows that the convergence speed and result of the CPL algorithm have been greatly
improved, compared with the pre-training algorithm, A3C algorithm, and pre-training-
A3C algorithm. The test experiment shows that the CPL algorithm has the best performance
among all algorithms in the randomly generated complex and unknown environment,
which verifies the effectiveness and robustness of the CPL algorithm.

In the future, our work will be devoted to studying a new sampling method of the
reinforcement learning algorithm, which will assist the network in exploring more valuable
strategies, and thus achieve better performance of UAV penetration.
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