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Abstract: Path planning is a crucial component of autonomous mobile robot (AMR) systems. The
slime mould algorithm (SMA), as one of the most popular path-planning approaches, shows excellent
performance in the AMR field. Despite its advantages, there is still room for SMA to improve due to
the lack of a mechanism for jumping out of local optimization. This means that there is still room for
improvement in the path planning of ARM based on this method. To find shorter and more stable
paths, an improved SMA, called the Lévy flight-rotation SMA (LRSMA), is proposed. LRSMA utilizes
variable neighborhood Lévy flight and an individual rotation perturbation and variation mechanism
to enhance the local optimization ability and prevent falling into local optimization. Experiments in
varying environments demonstrate that the proposed algorithm can generate the ideal collision-free
path with the shortest length, higher accuracy, and robust stability.

Keywords: autonomous mobile robots (AMRs); path planning; slime mould algorithm; rotation
transformation

1. Introduction

With the rapid development of artificial intelligence technology, the intelligence and
automation of autonomous mobile robots (AMRs) have advanced significantly. AMRs
are widely used in many high-tech aspects, such as smart homes, intelligent logistics, and
autonomous vehicles. Path planning, which is a crucial component of the AMR system,
aims to generate a feasible, safe, and smooth path from the starting point to the target point
in an unknown or known environment [1]. However, with the increasing types and scales
of AMR applications, existing path-planning approaches cannot fulfill all demands due to
constraints such as complexity and nonlinearity [2]. As a challenging research hotspot, it
has attracted several studies on performance improvement in terms of effectiveness and
efficiency [3].

Many traditional path-planning methods do not consider complexity and randomness,
resulting in locally optimal solutions [4]. Meta-heuristic algorithms, on the other hand,
utilize global search to find the best approximate solution by exploring and exploiting
the overall search space [5]. Meta-heuristic algorithms can be categorized into evolution-
ary algorithms, such as simulated annealing, and swarm intelligence algorithms (SIAs),
which simulate the behavior of biological groups in nature and exchange information and
experience to solve global optimization problems [6].

In recent years, researchers have used many algorithms based on swarm intelligence
to solve the path-planning problem of robots. Commonly used meta-heuristic algorithms
include the genetic algorithm (GA) [7], particle swarm optimization (PSO) [8], ant colony
optimization (ACO) [9], monarch butterfly optimization (MBO) [10], whale optimization
algorithm (WOA) [11], grey wolf optimization (GWO) [12], and slime mould algorithm
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(SMA) [13]. SIAs are a combination of a stochastic algorithm and local search and perform
well in solving highly nonlinear and multi-modal optimization problems [14]. However,
SIAs still face some challenges, such as local optimization and slow convergence. GA
simulates the evolution laws of the biological world. Although GA has great global
optimization capability, it requires a large population and broad search space, which can
result in local optimization and slow convergence in the search process [7]. In PSO, the
flying process of particles is the individual’s search process. The flying speed of particles
can be dynamically adjusted based on the individual’s historical best position and the
population’s historical best position. PSO is prone to early convergence when solving
complex optimization problems [13]. ACO divides the search space into grids in the field of
path planning and utilizes the state transition probability and pheromone updating method
to solve the algorithm [15]. However, the convergence speed of ACO can be slow, resulting
in an extensive calculation [16]. MBO, WOA, and SMA are also known to experience slow
local convergence, while GWO exhibits poor population diversity and slow convergence
speed in later stages. In the robot path-planning field, PSO, WOA, GWO, and SMA are
generally used algorithms for comparison. This paper will also compare these algorithms,
which are common in mainstream practice.

The SMA is a meta-heuristic algorithm that was first proposed by Nagataki in 2000 [17].
It has been successfully applied to various areas, such as the selection of traffic network
nodes [18], economic emission dispatch [19], robot path planning [20], medical image
classification [21], and feature selection [22]. In 2020, Li et al. [23] proposed an SMA opti-
mization for studying the activity and dynamics of slime moulds. Due to the excessive
randomness in the meta-heuristic optimization process, it is essential to strike a proper
balance between exploration and exploitation to optimize the algorithm effectively. In
various studies, it has been found that SMA achieves excellent exploitation, while main-
taining a significant balance with exploration. In multiple benchmark functions, SMA has
shown outstanding performance compared to other algorithms, such as WOA, GWO, and
PSO [14]. However, there is still limited research on using the SMA algorithm for AMR
navigation. Additionally, in some cases or functions, SMA may present defects, such as
failure to converge to the global optimal or slow convergence, and it may lack an effective
escape mechanism.

This paper builds upon the work of Agarwal and Bharti [20] and proposes a path-
planning algorithm called Lévy flight-rotation SMA (LRSMA) that updates the variable
neighborhood Lévy mechanism to improve the algorithm’s convergence accuracy. It also
introduces a real-time convergence stagnation monitoring strategy based on tolerance,
which guides the population out of local optima using individual rotation perturbation
and mutation mechanisms. The mobile robot considered in this paper is autonomous, a
type of dynamic remotely operated navigation equipment (DRONE). Besides, it is easy to
apply to other types of drones, such as aerial robots. The main contributions of this study
are summarized as follows:

(a) A path-planning solution is proposed to generate the shortest no-collision curve
path with robustness for AMRs.

(b) A perturbation mutation method based on rotation transformation is applied to
increase the probability of finding the best solution near the suboptimal solution.

This paper is structured as follows. The first chapter introduces the research back-
ground, as mentioned above. The second chapter discusses related work. The third chapter
introduces the SMA. The fourth chapter presents path planning based on the proposed
LRSMA. The fifth chapter compares the LRSMA with other algorithms to verify its effec-
tiveness in path planning. The last chapter provides the conclusion.

2. Related Work

Traditional path-planning algorithms, such as the A star algorithm [24], the artificial
potential field method [25], the rapidly exploring random tree (RRT) algorithm [26], fuzzy
logic [27], and neural networks [28], are widely used in robot path planning. However,
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these algorithms face challenges in complex environments due to poor adaptability and
slow convergence. The A star algorithm requires prior information about the environment,
which can optimize the path but is inefficient under large-scale complex conditions [24].
The artificial potential field method is often used in real-time dynamic environments but can
easily fall into planning stagnation and local optimization in complex environments with
obstacles [25]. The RRT can quickly search an unknown space and solve complex constraints
with few parameters through a simple structure, but there are still issues in improving
search efficiency and obtaining the optimal path [26]. The fuzzy logic algorithm is applied
to handle scenarios with uncertain environment information, but the rule database needs
to be updated frequently during path planning, and it has a high computational cost under
complex conditions [27]. The neural network method does not require prior information
about the environment and has broad applicability to real-time dynamic scenarios, but
in complex environments with obstacles, the processing of massive networks results in a
significant computational burden [28]. Although traditional path-planning algorithms have
shown excellent performance in solving path planning under specific conditions [29], they
cannot adequately satisfy the requirements for path planning in complex environments
due to inadequate adaption, slow convergence, and other factors [30].

The path-planning problem can be transformed into the problem of finding the optimal
path with the minimum cost function value [31]. Thanks to the optimization advantages in
solving discontinuous, non-smooth, and discrete variable problems, SIAs have been com-
monly applied to path planning. Researchers are continuously improving these algorithms
and exploring ones with higher planning efficiency, better optimization ability, and greater
robustness [32].

For example, Wang et al. [33] proposed an ant colony path-planning algorithm in a
3D environment, which improves the global pheromone and designs a heuristic function
with a safe value. This solves the problems of easily falling into local optimization and
having a long search time in 3D path planning. Teng et al. [34] proposed a GWO based on
PSO and used nonlinear control parameters to balance the local and global search. They
also introduced PSO to update the positions of grey wolves, preventing the algorithm
from falling into local optimization. Fernandes et al. [35] proposed a Quantum-behaved
Particle Swarm Optimization (QPSO) algorithm that can produce a diverse population of
peak values, effectively avoiding stagnation in the optimization process and solving path
planning in both static and dynamic scenarios. Dai et al. [11] proposed an optimized WOA,
adopted adaptive technology to improve the convergence speed, and set virtual obstacles
and improved potential field factors to enhance the dynamic obstacle avoidance ability of
AMRs. The WOA has a strong search ability despite its slow computation.

Slime molds belong to the Polycephalum family. The Physarum polycephalum algo-
rithm requires numerous iterations and initial parameters, making it redundant for complex
problems. The SMA proposed by Li et al. [23] simulates the behavior and morphological
changes of Physarum polycephalum myxomycetes during foraging. The front end of
slime molds is fan-shaped, and the back is an interconnected venous network. When the
venous network approaches food, the biological oscillator of the slime mold produces a
diffusion wave that changes the flow of cytoplasm in the vein, and the slime mold moves
to a higher-quality food. The SMA adjusts search modes according to the fitness value.
Additionally, slime molds will shrink to the optimal position and separate into multiple
individuals to explore other spaces.

The SMA has strong global optimization due to a multiple exploration mechanism.
It has diverse applications, such as the selection of traffic network nodes [18], robot path
planning [20], medical image classification [21], and feature selection [22]. However, the
SMA has unstable optimization and can easily fall into local optimization due to its simple
optimization mechanism. Achievable improvements are applied to solve this problem,
which can divide into three categories. The first is optimizing the population position
update mechanism. Yu et al. [36] applied the quantum rotation gate and water cycle strate-
gies, keeping the population balanced between exploration and exploitation, thus solving
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local optimization and slow convergence problems in later iterations. Nguyen et al. [37]
proposed an improved SMA that adjusted the weight coefficient and introduced a reverse
learning strategy to enhance optimization performance when updating the positions of
slime molds. The second category is expanding the search space of the population. Rizk-
Allah et al. [38] adopted the chaos-opposition-enhanced strategy to expand the search space
and avoid premature algorithm convergence. Houssein et al. [39] integrated improved
opposition-based learning and orthogonal learning mechanisms to prevent the algorithm
from falling into local optimization due to rapid population assimilation. The third ap-
proach is introducing mutation operators. Houssein et al. [40] employed an adaptive
guided differential evolution algorithm to improve the population’s local search ability,
increase the population’s diversity, and avoid premature convergence. Liu and Liu [41]
used quasi-reverse and quasi-reflective learning to expand the search space and introduce
an unscented transformation sigma point to guide the search of the SMA, thereby solving
the problems of search stagnation and poor stability.

While previous research has improved the performance of the SMA, optimizing the
multi-objective function in path planning remains unsolved. Additionally, few studies have
reported on robot path planning with obstacle avoidance in various environments. In other
words, it is necessary to develop practical applications and further improvements in path
planning. Hence, this paper proposes the LRSMA to achieve the shortest and collision-
free path with robustness and efficiency for AMRs. The effectiveness and efficiency of
the LRSMA are compared with those of the GWO, WOA, PSO, and SMA to validate
its performance.

3. Overview of the SMA

The SMA uses a mathematical model to simulate the slime molds’ foraging behavior
and morphological changes when approaching and surrounding food [23]. If slime molds
find food while foraging, they generate interconnected vein networks of varying thicknesses
between multiple food sources based on the quality and density of the food source. Slime
molds spread into food, creating positive and negative feedback through diffusion waves,
enabling them to search for higher-quality food. The whole process contains three stages.

• Approach food stage

Slime mold individuals approach food based on odor. Suppose the population of
slime molds in a D-dimensional searching space is N. The updated position of a slime
mold X(t + 1) at the tth iteration when approaching food can be expressed as follows:

X(t + 1) =
{

X_best(t) + vb× (W × Xr1(t)− Xr2(t)), rand1 < p,
vc× X(t), rand1 ≥ p,

(1)

where t is the current iteration index, X(t) is the position of a slime mold, and X(t + 1) is
the new updated position of the slime mold. X_best(t) is the position of the best solution at
the tth iteration. Xr1(t) and Xr2(t) are the positions of two slime molds randomly selected
from the population. vc is a control parameter that evaluates the changes in the use of
historical data by slime molds, whose value decreases linearly from 1 to 0. rand1 is a
random number in the range [0, 1].

p is a control parameter that determines the position update mode of slime molds and
can be obtained as follows:

p = tanh|S(i)− DF|, i ∈ {1, 2, . . . , N}, (2)

where i is the slime mold index, S(i) is the fitness of the ith slime mold, and DF is the
fitness of the best solution.
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vb is a random number in the range [−a, a] regarded as a control parameter; its value
range decreases with the decrease in a. Parameter a, used to simulate the gradual and
dynamic contraction of veins when slime molds approach food, is expressed as follows:

a = arctanh
(
− t

ITmax
+ 1
)

, (3)

where ITmax is the maximum number of iterations.
The weight coefficient W represents the oscillation frequency of the biological oscillator,

which changes with food concentration when the slime molds approach food. If the food
where the slime molds are located has a high concentration, there is positive feedback to
the slime molds, and vice versa. W is defined as

W(SIndex(i)) =


1 + r2 × lg

(
bF−S(i)
bF−wF + 1

)
, condition,

1− r2 × lg
(

bF−S(i)
bF−wF + 1

)
, others,

SIndex(i) = sort(N),

(4)

where r2 is a random number in the range [0, 1]; SIndex(i) is the sort index of the slime
mold, and bF and wF indicate the best fitness and the worst fitness, respectively. lg is used
to reduce the change rate of the fitness, condition indicates slime molds with the fitness
ranking of the first half of the population, and others denotes the remaining slime molds.

• Wrap food stage

When slime molds wrap around food, if the concentration of the searched food is
greater than that of the current food, the oscillation wave of the biological oscillator becomes
stronger, and the flow speed of the cytoplasm increases. Although slime molds may find
the current best food sources, it is necessary to adjust search strategies and randomly assign
a portion of the slime molds to explore other search spaces to locate better food sources.
The random mechanism helps maintain the diversity of the slime mold population. The
positions of slime molds are updated as follows:

X(t + 1) =


rand× (UB− LB) + LB, rand < z,
X_best(t) + vb× (W × Xr1(t)− Xr2(t)), rand ≥ z and rand1 < p,
vc× X(t), rand ≥ z and rand1 ≥ p,

(5)

where UB and LB indicate the upper and low bound constraints of the search space, respec-
tively; rand and rand1 are two random numbers in the interval [0, 1]; and z represents the
proportional parameters of randomly distributed slime mold individuals in the population.

• Oscillation stage

In the oscillation process, slime molds dynamically adjust the width of a vein based on
the quality and density of the food. They then use the oscillation of the biological oscillator
to adjust the flow speed of cytoplasm in the vein and adjust the oscillation mechanism
through parameters W, vb, and vc. This completes the search for optimal food in the
search space.

4. Path Planning Based on the LRSMA
4.1. Elite Learning Strategy Based on Variable Neighborhood Lévy Flight

Lévy flight can describe the foraging path of many creatures in nature [42]. The
random walk mode of Lévy flight is special, mixing short and long distances. The random
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distance follows the Lévy distribution, and the Lévy distribution follows the power function
distribution, which is given by

Levy(β) =
µ

|ν|1/β ,

µ ∼ N
(

0, σ2
µ

)
,

ν ∼ N
(
0, σ2

ν

)
,

σµ = { Γ(1+β)×sin(πβ/2)
Γ[(1+β)/2]×β×2(β−1)/2},

1/β

(6)

where Levy(β) is the random distance processed by the Mantegna algorithm [43], Γ(∗) is
a gamma function, and β is a constant. µ and ν are two normal stochastic variables with
standard deviations σµ and σν, σν = 1, respectively.

To ensure effective algorithm convergence without compromising optimization pre-
cision, the elite learning strategy based on variable neighborhood Lévy flight is applied.
The elite slime mold is the global best solution, and variable neighborhood Lévy flight is
adopted to generate the elite mutation. Selecting the positions of the elite before and after
the Lévy flight provides a better position with more suitable fitness.

Variable neighborhood Lévy flight is given byX_best(t)l = α×
(

Xbest(t) + stepsize× Levy(β)
)

,

α = 1 + index× rl ,
(7)

where t is the index of the iteration, α is the variable neighborhood coefficient, X_best(t)l
is the new position of the best solution after Lévy flight, and X_best(t)i is the position
of the best solution. stepsize is a step factor whose goal is simply to adjust the random
search range. Levy(β) is the random Lévy flight distance. index={0, 1, 2}. If the fitness of
X_best(t)l is less than the fitness of X_best(t)i, or if index is equal to 2, the search of index
is abandoned, and Lévy flight is stopped. rl is a random number in the range [0, 0.5].

4.2. Tolerance-Based Rotation Perturbation Mutation Mechanism of Slime Mold Individuals

The SMA can obtain the optimization solution, but local exploration can be further
improved. In the later stages of the iteration, the SMA converges slowly and may even
stagnate. To address this issue, this paper proposes a rotation perturbation mutation
mechanism based on the tolerance of slime mod individuals. First, a convergence stagnation
monitoring strategy based on tolerance is proposed. Then, a perturbation mutation method
based on rotation transformation is introduced to aid in the search for the best solution in
the hypersphere zone for slime molds with higher fitness ranks. The probability of finding
the best solution near the suboptimal solution is increased to enhance the algorithm’s local
search capabilities during the local search.

Tolerance parameter τ denotes the count variable for convergence state monitoring.
After completing one iteration, the tolerance parameter τ can be updated according to the
following formula:

τ(t + 1) =

{
τ(t) + 1, i f T(t) < Tmax and |4F(t)| < Fmin,

0, i f (T(t) == Tmax and |4F(t)| < Fmin) or |4F(t)| > Fmin,
(8)

where t is current iteration index and τ(t + 1) is the newly updated tolerance parameter.
τ(t) is the tolerance parameter at the tth iteration. Here, t ∈ {0, . . . , Tmax}, and Tmax = 2.
|4F(t)| is the absolute value of the best solution’s fitness difference at the tth iteration and
(t− 1)th iteration and is calculated by |4F(t)| = |F(t)− F(t− 1)|. The threshold value of
fitness difference Fmin is a fixed value.

When τ(t) ≥ 0, the algorithm may or may not be in the stagnation state. When
T(t) == Tmaxand|4F(t)| < Fmin, it can be considered that the algorithm falls into local
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optimization. Furthermore, the slime mold needs to be redirected to improve the diversity
of the distribution. Rotation transformation is used to conduct stochastic perturbation
of slime mold individuals within the ω radius of the self-centered hypersphere, which is
expressed as follows:

X(t)r = X(t) + ω× 1
‖X(t)‖2

× (R·X(t)), (9)

where X(t) is the position of the slime mold individual at the t-th iteration. X(t)r represents
its new rotated position. The rotation transformation factor ω is in the range of [0.1, 1]. Let
D be the dimension of the search space and R be a uniform random 1× D vector in [−1, 1].
R·X(t) is the dot product of the R vector and the position X(t), while ‖X(t)‖2 represents
the 2-norms (Euclidean norms).

Since there is no guarantee that the fitness values of slime molds after perturbation are
more optimal, the greedy principle is adopted to select the positions of slime molds. When
comparing the fitness values of slime molds before and after perturbation, if the fitness
value after the perturbation is better, the position of the slime mold will be replaced with
the new position after the perturbation. Otherwise, the position will not be replaced.

4.3. Elite Simulated Annealing Strategy

To enhance the population’s diversity and fully utilize the evolutionary potential of
the current best solution, the simulated annealing algorithm introduces the Metropolis
criterion [44] to generate suboptimal solutions with probabilities. The elite slime mold
currently possesses the current best solution. A new best solution is obtained through a
perturbation mutation method based on rotation transformation. Let DFr represent the
new fitness of the best solution after rotation transformation, DF represent the fitness of
the global best solution, and randS be a random number within the range of [0, 1]. If DFr
is less than DF, the position of the global best solution is replaced with the new position.
However, if DFr is greater than or equal to DF, a random number randS is generated. If
exp−(DFr−DF)/T < randS, then DFr is accepted, and the position of the global best solution
is replaced with the new position. The default value for T is set to 1000.

4.4. Fitness Function Construction

Cubic spline interpolation is a classic method of piecewise interpolation that gen-
erates a smooth curve based on several interpolation point intervals defined by a cubic
polynomial [45]. The resulting curve is smooth, which is ideal for the dynamic char-
acteristics of AMRs. Therefore, this paper combines the LRSMA with the cubic spline
interpolation method to solve optimal path-planning problems for AMRs. The turning
point of each interpolation segment is the path node, and each slime mold individual
represents all path nodes on one path. Assume that the coordinates of m path nodes are
(xn_1, yn_1), (xn_2, yn_2), . . . , (xn_m, yn_m). There is a start point (xs, ys) and an end point
(xe, ye). By applying cubic spline interpolation in the x and y directions, the coordinates of
n interpolation points are produced, i.e., (x1, y1), (x2, y2), . . . , (xn, yn). These start points, n
interpolation points, and end points are then connected to form a smooth, continuous path.

The fitness values are used to evaluate paths and are determined by the fitness function.
To search for the shortest collision-free path, the fitness function is defined as follows:

S = η1 × f1 + η2 × f2 (10)

where S is the fitness function designed to find the minimum value in this work. f1 is the
path length, which represents the length of the curve connecting the start point and the end
point by each interpolation point in sequence. η1 is the path length penalty coefficient and
is set as 1. f2 is the average distance between all interpolation points and all obstacles. If
there is a collision in the path, f2 > 0. If the path does not pass through the coverage area
of obstacles, f2 = 0. η2 is the collision penalty coefficient and is set as 1000. Note that the
higher the value of η2, the lower the collision of the final path.
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4.5. Path-Planning Process Based on the LRSMA

The flow diagram of LRSMA is shown in Figure 1. The detailed steps of the LRSMA
are shown as follows.
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(1) Initialize the algorithm parameters and population, including the population size
N; the maximum number of iterations Tmax; the upper and lower bound constraints of
the search space UB and LB, respectively; the start point (xs, ys); the end point (xe, ye);
the proportion of slime molds perturbed by the perturbation mutation method based
on rotation transformation pr; and the path nodes (the position of a slime mold)
(xn_1, yn_1), (xn_2, yn_2), . . . , (xn_m, yn_m).

(2) Obtain the coordinates of interpolation points (x1, y1), (x2, y2), . . . , (xn, yn) between
the start point, path nodes, and end point using cubic spline interpolation.

(3) Calculate and rank the fitness of each slime mold. Determine the best fitness bF
and the worst fitness wF.

(4) Update the weight coefficients of slime molds W(SIndex) using Equation (4).
(5) Update the positions of all slime molds according to Equations (1)–(5).
(6) Apply the variable neighborhood Lévy flight strategy using Equations (6) and (7),

and select and save the best solution.
(7) Monitor whether the population is in a state of convergence stagnation. If the

population is stagnating, rotate the positions of the slime molds with higher fitness ranks
using Equation (9) based on rotation transformation. If the new fitness of a slime mold after
perturbation is less than its past fitness, update the position of the slime mold.

(8) Compare the new fitness of the best solution after perturbation with the past fitness,
update the global best solution using the simulated annealing mechanism, and save the
fitness and positions of the global best solution.
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(9) Repeat Steps (2)–(8) until the maximum number of iterations is reached. Once
reached, terminate the iteration, obtain the fitness and positions of the best solution, and
output the optimal path.

The pseudocode for the LRSMA is shown in Algorithm 1.

Algorithm 1 LRSMA pseudocode

1: Initialize the population
2: while it < no. of iterations do
3: for each slime mold individual do
4: Calculate the fitness of each slime mold individual
5: Calculate the local best by Equation (4)
6: end for
7: Update the local and global best by Equation (7)
8: If T(t) == Tmax and |4F(t)| < Fmin then
9: Update a portion of the population individuals by Equation (4)

10: Update the global by annealing algorithm
11: end if
12: Update the population
13: end while

5. Simulation Results and Analysis

The goal of the LRSMA is to plan the shortest path without collision. To verify its
performance, the path length and planning time were taken as the evaluation indicators,
and the minimum, mean, and standard deviation of these indicators were compared.

5.1. Experimental Environment

To simplify the calculation, circles with different radii were used as obstacles, while
the center points of the robot were used to represent the AMR. The size of the mobile was
ignored during path planning. All simulations were carried out in Visual Studio Code1.68.1
on a laptop (Windows 10 64-bit, Intel Xeon E3-1231 v3 CPU, 16GB RAM). To verify the
robustness of the algorithm, three scenarios with different numbers and distributions of
obstacles were designed. Moreover, a light blue circle denotes obstacles in Figures 2–4.
There were 12 obstacles in the first and second scenarios, and 24 in the third scenario.
Detailed parameters are shown in Table 1.

Table 1. Type of scenario.

Start Point End Point Obstacle
Number Obstacle Coordinate and Size (x, y, r)

Scenario 1 [−10, −10] [10, 10] 12
Coordinate x: [−5.3, 7.6, 5.0, 3.5, −4.4, 0.0, −2.9, 0.0, 7.3, −3.6, 0.4, 2.4]
Coordinate y: [−6.3, −7.0, 6.1, −1.4, −1.9, 2.6, −5.2, 6, 4.4, 2.3, −3.1, 1.4]
Size r: [0.5, 1.0, 1.0, 0.5, 1.0, 1.0, 0.5, 0.5, 0.5, 1.0, 1.0, 1.0]

Scenario 2 [−10, −10] [10, 10] 12
Coordinate x [−2.5, −7.6, 6.7, 6.6, −6.5, 0.0, −2.0, 0.0, 3.5, −3.6, 2.6, 2.4]
Coordinate x [−6.4, −7.0, 3.5, −1.1, −1.1, 2.6, −2.2, 6, 7, 2.3, −3.8, 1.4]
Size r: [1.0, 1.0, 2.0, 2.0, 1.0, 1.0, 2.0, 0.5, 2.0, 2.0, 1.0, 1.0]

Scenario 3 [−10, −10] [10, 10] 24

Coordinate x: [−7.0, −6.7, −2.5, −2.5, 2.0, 1.6, 6.8, 7.1, −6.2, −5.9, 1.0, 0.8,
−4.0, 4.2, 4.1, 5.1, 5.6, −3.7, −8.6, −8.1, −8.7, −4.5, −3.7, 6.0]
Coordinate y: [−7.0, −6.7, −2.5, −2.5, 2.0, 1.6, 6.8, 7.1, −6.2, −5.9, 1.0, 0.8,
−4.0, 4.2, 4.1, 5.1, 5.6, −3.7, −8.6, −8.1, −8.7, −4.5, −3.7, 6.0]
Size r: [0.5, 0.5, 0.5, 1.0, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1, 1.0, 1.0, 1.0]



Drones 2023, 7, 257 10 of 19Drones 2023, 7, x FOR PEER REVIEW 12 of 19 
 

 
Cost = 29.15 

(a) GWO. 

 
Cost = 29.10 
(b) WOA. 

 
Cost = 29.37 

(c) PSO. 

 
Cost = 29.10 

(d) SMA. 

 
Cost = 29.11 
(e) LRSMA. 

Figure 2. Optimal paths for the first scenario: (a) GWO, (b) WOA, (c) PSO, (d) SMA, and (e) 
LRSMA. 
Figure 2. Optimal paths for the first scenario: (a) GWO, (b) WOA, (c) PSO, (d) SMA, and (e) LRSMA.



Drones 2023, 7, 257 11 of 19

Drones 2023, 7, x FOR PEER REVIEW 13 of 19 
 

 

 
Cost = 30.03 

(a) GWO. 

 
Cost = 30.51 
(b) WOA. 

 
Cost = 31.52 

(c) PSO. 

 
Cost = 31.52 

(d) SMA. 

 
Cost = 29.11 
(e) LRSMA. 

Figure 3. Optimal paths for the second scenario: (a) GWO, (b) WOA, (c) PSO, (d) SMA, and (e) LRSMA.



Drones 2023, 7, 257 12 of 19
Drones 2023, 7, x FOR PEER REVIEW 14 of 19 
 

 
Cost = 29.99 

(a) GWO. 

 
Cost = 29.90 
(b) WOA. 

 
Cost = 30.10 

(c) PSO. 

 
Cost = 29.90 

(d) SMA. 

 
Cost = 28.91 
(e) LRSMA. 

Figure 4. Optimal paths for the third scenario: (a) GWO, (b) WOA, (c) PSO, (d) SMA, and (e) 
LRSMA. 
Figure 4. Optimal paths for the third scenario: (a) GWO, (b) WOA, (c) PSO, (d) SMA, and (e) LRSMA.



Drones 2023, 7, 257 13 of 19

5.2. Parameter Setting

The performance of the LRSMA was compared with those of the GWO [46], WOA [47],
PSO [35], and SMA [20]. The parameter settings of the comparison algorithms were
consistent with those in the reference papers. In GWO, a is a linear convergence factor. In
WOA, a is a linearly decreasing convergence factor. For the PSO, the individual experience
learning factor c1 and the group experience learning factor c2 determine the individual and
group experience effect on particle trajectories, respectively. The number of path nodes is
m = 3 for all of the algorithms. All of the algorithms were run 100 times in each scenario
and took the maximum number of iterations as the termination condition.

The detailed parameter settings are shown in Table 2.

Table 2. Detailed parameters of all algorithms.

Population Size Iteration Number Parameter Value

GWO 30 30 amax = 2, amin = 0
WOA 30 30 amax = 2, amin = 0
PSO 30 30 c1 = 0.4, c2 = 0.4, ω = 1, m = 3
SMA 30 30 z = 0.3, m = 3

LRSMA 30 30 z = 0.3, Fmin = 1, m = 3, pr = 0.5

5.3. Simulation Results and Discussion

Table 3 shows the overall performance of the four algorithms in three scenarios,
including the minimum, mean, and standard deviation of the path length for the best
solution, the planning time required to obtain the best optimal path, and the mean planning
time. Each scenario and algorithm were tested 100 times.

Table 3. Performance of the four algorithms.

Path Length Planning Time

Minimum Mean Standard
Deviation

Processing the Best
Optimal Path Mean

Scenario 1

GWO 29.15 30.14 0.71 2.00 2.00
WOA 29.10 29.92 0.38 2.08 2.07
PSO 29.37 30.25 0.37 1.73 1.76
SMA 29.10 29.88 0.62 2.02 2.01

LRSMA 29.11 29.81 0.55 2.16 2.18

Scenario 2

GWO 29.13 37.23 12.75 1.95 1.97
WOA 30.51 33.43 15.70 2.08 2.09
PSO 31.52 34.31 4.50 1.91 1.85
SMA 31.52 32.50 1.04 1.97 1.97

LRSMA 29.11 32.32 0.91 2.06 2.08

Scenario 3

GWO 30.03 42.52 22.78 2.80 2.81
WOA 29.90 37.38 93.64 3.11 3.04
PSO 30.10 37.61 9.46 2.81 2.68
SMA 29.90 35.82 9.04 2.97 2.94

LRSMA 28.91 34.58 4.81 2.97 2.98

Figures 2–4 show the collision-free shortest path results generated by each algorithm,
indicating that all algorithms can generate collision-free paths. In these figures, blue circles
represent obstacles, with larger radii indicating larger obstacles. Black dots represent the
coordinates of path nodes, while yellow diamonds represent the starting and ending points.
A comparison of path lengths between the LRSMA and other algorithms is shown in
Tables 4 and 5.
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Table 4. Comparison of the percentage change in the minimum path length for the best solution
among the LRSMA and three other algorithms.

GWO-LRSMA
% Change in Minimum

WOA-LRSMA
% Change in Minimum

PSO-LRSMA
% Change in Minimum

SMA-LRSMA
% Change in Minimum

Scenario 1 0.14 −0.03 0.82 −0.03
Scenario 2 0.07 4.59 7.65 7.65
Scenario 3 3.73 3.31 3.95 3.31

Table 5. Comparison of the percentage change in the mean path length for the best solution among
the LRSMA and three other algorithms.

GWO-LRSMA
% Change in Mean

WOA-LRSMA
% Change in Mean

PSO-LRSMA
% Change in Mean

SMA-LRSMA
% Change in Mean

Scenario 1 1.09 0.37 1.42 0.23
Scenario 2 13.19 3.32 5.80 0.55
Scenario 3 18.67 7.49 8.06 3.46

Figure 2a–d shows the best solutions generated by all the algorithms in the first sce-
nario. In the first scenario, the LRSMA had a slight difference in the minimum and mean
path length compared to the other algorithms. The PSO has the shortest solving time,
followed by the SMA, WOA, GWO, and LRSMA. This is because the LRSMA’s variable
neighborhood flight consumes time. In simple scenarios, the LRSMA has little advantage
over the other three algorithms. The SMA is less likely to fall into local optimization in sim-
ple scenarios, so the LRSMA’s rotation perturbation mechanism has difficulty functioning
effectively. The LRSMA’s planning time is greater than that of the SMA due to its need to
monitor the population state and perturb it if it is stagnating.

Figure 3a–d shows the best solution generated by all the algorithms in the second
scenario. In the second scenario, the LRSMA reduces the minimum of the path length by
0.07% compared with the GWO, 4.59% compared with the WOA, 7.65% compared with the
PSO, and 7.65% compared with the SMA. Meanwhile, the LRSMA reduces the mean of the
path length by 13.19% compared with the GWO, 3.32% compared with the WOA, 5.80%
compared with the PSO, and 0.55% compared with the SMA. Moreover, the LRSMA is
better than the GWO, WOA, PSO, and SMA in terms of the standard deviation of the path
length. In addition, the planning time of the GWO, SMA, PSO, and LRSMA differs by 0.1
and is less than that of the WOA. There is a difference of 0.2 between the planning time of
the best optimal path and the mean planning time for all algorithms. In complex scenarios,
the GWO, WOA, PSO, and SMA take longer as the scenario complexity increases. The
strategy proposed by LRSMA accelerates the algorithm’s convergence, making the planning
times similar across all algorithms. Furthermore, the time consumed by the LRSMA is
relatively stable in all scenarios. This indicates that the proposed rotation perturbation
mechanism in this paper can improve the algorithm’s global search and local exploitation
capabilities, therefore improving the convergence efficiency of the algorithm and finding
shorter paths.

Figure 4a–d shows the best solution generated by all the algorithms in the third
scenario. In the third scenario, the LRSMA reduces the minimum path length by 3.37%
compared with the GWO, 3.31% compared with the WOA, 3.95% compared with the PSO,
and 3.31% compared with the SMA. Meanwhile, the LRSMA reduces the mean of the
path length by 18.67% compared with the GWO, 7.49% compared with the WOA, 8.06%
compared with the PSO, and 3.46% compared with the SMA. Moreover, the standard
deviation of path length for the best solution obtained by the LRSMA is 4.81, which is
less than those of the GWO, WOA, SMA and PSO. Moreover, the LRSMA and SMA have
longer planning times than the GWO and PSO and shorter planning times than WOA. In
addition, there is a difference of 0.1 between the planning time of the best optimal path and
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the mean planning time for all algorithms. In complex scenarios, the GWO, WOA, PSO,
and SMA take longer time as the scenario complexity increases. The strategy proposed by
LRSMA accelerates the algorithm’s convergence, making the planning times similar across
all algorithms. Furthermore, the time consumed by the LRSMA is relatively stable in all
scenarios. This is because the Lévy algorithm enhances the global search capability of the
algorithm, while the rotation perturbation increases the local development capability of the
algorithm. This indicates that the path modification of LRSMA is the most stable, and the
rotation perturbation mechanism proposed in this paper can monitor the algorithm state
and jump out of local optima, finding a shorter path.

Overall, the LRSMA produces more stable, collision-free, and shorter paths in both
simple and complex scenarios compared with the other algorithms, especially in complex
scenarios with obstacles on the path from the starting point to the destination.

Figure 5 shows the iteration curves of the four algorithms in the third scenario, re-
vealing that LRSMA convergence requires more iterations than the SMA. GWO stopped
at the 26th iteration. The WOA suddenly finds the most optimal solution at 25 iterations.
The PSO has difficulty improving its results after 17 iterations, while SMA has difficulty
improving after 19 iterations. By contrast, the LRSMA slowly converges from the beginning
to the later stages of iteration, indicating that the strategy proposed by the LRSMA can
detect local optimal traps and achieve slow convergence.
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Figure 5. Iteration curves of (a) GWO, (b) WOA, (c) PSO, (d) SMA, and (e) LRSMA in the third
scenario.

Figure 6 illustrates the iterative path planning curve obtained using the LRSMA in both
the first and second scenario. The LRSMA demonstrates a gradual evolution throughout.
Moreover, the convergence times in the first scenario are shorter than those in the second
scenario. As per the LRSMA’s definition, it requires time to converge after detecting that
the population has entered the local optimum. The convergence then takes place after
a sufficient number of iterations. Figures 5 and 6 suggest that 30 iterations can achieve
satisfactory performance across all scenarios.
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6. Conclusions

This paper proposes a path-planning algorithm using the improved SMA for AMRs,
achieving shorter and more stable path solutions. The proposed algorithm addresses the
issues of local optima trapping and the lack of an effective escape mechanism in SMA
path planning. By introducing an elite learning strategy utilizing variable neighborhood
Lévy flight and an individual rotational perturbation and variation mechanism based on
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tolerance, the proposed algorithm enhances the SMA’s global search and local exploitation
capabilities and planning capabilities. The experiments conducted on three different
obstacle distributions demonstrate that the collision-free path generated by our algorithm
has the shortest length, highest accuracy, and greatest stability. However, the LRSMA does
not outperform the WOA, PSO, and SMA in terms of time consumption, especially in
optimizing the best position variation. The computational cost must be further improved.
Additionally, path planning based on SMA in dynamic environments is also an important
research direction. Moreover, the algorithm needs to be tested in multi-robot scenarios.

In terms of real-world applications, this algorithm can be applied to autonomous
vehicles or slow-moving robots in situations without no road constraints. For autonomous
vehicles, it can be used for mapping specific locations, monitoring, or filming scenes. For
robots, it can be used in logistics for sorting delivery routes, guiding underground parking
in transportation, and other applications. Since this algorithm requires convergence time, it
is suitable for situations that do not require urgent and quick responses. For instance, in
rescue missions, faster algorithms are needed.
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Abbreviations
Acronyms Definitions
3D 3-Dimension
AMR Autonomous Mobile Robot
ACO Ant Colony Optimization
DRONE Dynamic Remotely Operated Navigation Equipment
GA Genetic Algorithm
GWO Gray Wolf Optimization
LRSMA Lévy Flight-Rotation Slime Mould Algorithm
MBO Monarch Butterfly Optimization
NISI Naturally Inspired Swarm Intelligence
PSO Particle Swarm Optimization
QPSO Quantum-behaved Particle Swarm Optimization
RRT Rapidly-Exploring Random Tree
SIA Swarm Intelligence Algorithm
SMA Slime Mould Algorithm
WOA Whale Optimization Algorithm
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