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Abstract: The accurate extraction of cropland distribution is an important issue for precision agri-
culture and food security worldwide. The complex characteristics in southern China pose great
challenges to the extraction. In this study, for the objective of accurate extraction and mapping of
cropland parcels in multiple crop growth stages in southern China, we explored a method based
on unmanned aerial vehicle (UAV) data and deep learning algorithms. Our method considered
cropland size, cultivation patterns, spectral characteristics, and the terrain of the study area. From two
aspects—model architecture of deep learning and the data form of UAV—four groups of experiments
are performed to explore the optimal method for the extraction of cropland parcels in southern China.
The optimal result obtained in October 2021 demonstrated an overall accuracy (OA) of 95.9%, a
Kappa coefficient of 89.2%, and an Intersection-over-Union (IoU) of 95.7%. The optimal method also
showed remarkable results in the maps of cropland distribution in multiple crop growth stages, with
an average OA of 96.9%, an average Kappa coefficient of 89.5%, and an average IoU of 96.7% in
August, November, and December of the same year. This study provides a valuable reference for
the extraction of cropland parcels in multiple crop growth stages in southern China or regions with
similar characteristics.

Keywords: unmanned aerial vehicle (UAV) data; deep learning algorithms; cropland parcels; multiple
crop growth stages; extraction

1. Introduction

Cropland is the continuously managed land that is dedicated to growing crops [1].
It is essential for the global food security needed for human survival and production [2].
Cropland can produce food and other products that are essential for everyday life [3,4].
Therefore, cropland plays a key role in human activities. However, most existing cropland
has been occupied or destroyed during the course of economic development, which has
gradually begun to threaten the world’s food security, and thus there is an urgent need
to protect cropland [5–7]. In the context of precision agriculture, accurate information
regarding the spatial distribution of cropland is the foundation of cropland protection
and a prerequisite for most agricultural efforts [8]. Accordingly, the accurate extraction of
cropland is essential for global food security.

In southern China, croplands are always surrounded by scrub and woodland. The
shape and size of cropland parcels differ from those characteristics in other regions of
the country, as well as Europe and the United States [9]. The shapes of cropland parcels
in southern China are mostly irregular, and the lengths of cropland parcel boundaries
are mostly <80 m (some boundaries are <30 m). Various types of crops are often grown
in adjacent cropland parcels, and occasionally more than one crop is grown in the same
cropland parcel. In addition, crops in the cropland parcels could be in different phenological
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periods on the same date, and some cropland parcels may be bare land. Furthermore, the
terrain of typical cropland in southern China is undulating, and many roads pass between
cropland parcels. The roads are narrow, with widths of approximately 3–5 m. Overall,
the characteristics of typical croplands in southern China are complex, which makes the
extraction of cropland parcels challenging.

The satellite remote sensing technology has been widely employed in the extraction
of cropland parcels. Various satellites, such as the Moderate-Resolution Imaging Spec-
troradiometer (MODIS) [10–12], Landsat [13–16], Satellite Pour l’Observation de la Terre
(SPOT) [17,18], Sentinel [19–22], WorldView [23], and QuickBird [24], have achieved good
results. Some studies have performed research in cropland extraction in southern China.
The application of satellite data has achieved high precision. However, considering the
challenges of cropland extraction in southern China and the limitation of the spatial resolu-
tion of satellite data, current satellite data are insufficient for accurate extraction. Therefore,
data with higher spatial resolution are needed for the extraction of cropland parcels in
southern China. In the past decade, unmanned aerial vehicles (UAVs) have been fitted
with sensors that can collect images with very high spatial resolution. Thanks to the very
high spatial resolution of UAV data, the more accurate extraction of cropland parcels can
be satisfied in southern China.

The main methods for extracting cropland parcels from remote sensing data include
object-oriented methods, traditional machine learning, and deep learning. The object-
oriented method requires pre-segmentation of individual objects, which makes it challeng-
ing to determine the optimal segmentation scale in southern China, where the croplands
are diverse in size [25–27]. In comparison to the object-oriented and the traditional ma-
chine learning methods, deep learning algorithms are capable of automatically extract-
ing deep features, without the need for prior knowledge or additional artificial feature
engineering [8,28]. Thus, in terms of efficiency and accuracy, deep learning algorithms
have greater advantages in southern China.

There are scholars who utilize UAV data to extract croplands and other agricultural
resources on small scales and complex features. Several studies have adopted the method
of manual visual survey, employing UAV data with the highest spatial resolution they can
afford, and visually delineating all cropland parcels [29,30]. However, this method will
consume a lot of time, labor, and electrical energy, resulting in a low efficiency. There are
studies experimenting with UAV images at different scales. For example, when perform-
ing cropland extraction, the spatial resolution of UAV data was modified, and different
results were obtained. The extraction is found to be better when the spatial resolution is
reduced. Such studies found that the accuracy of cropland extraction may be influenced
by variations in the spatial resolution of UAV data [31,32]. However, such studies did
not further explore the optimal spatial resolution, they only increased the diversity of
data. The optimal spatial resolution needs to be explored for the cropland extraction in
southern China to cope with the various sizes and shapes. In addition, some scholars have
adopted the methods of object-oriented and machine learning (such as random forest and
K-nearest neighbor), combined with auxiliary analysis (such as texture analysis and spectral
analysis) methods [33,34]. This method firstly explores the optimal segmentation scale
and subsequently segments various ground objects in the image based on the explored
scale. Next, auxiliary features, such as spectral and texture features, are artificially selected,
and finally, machine learning algorithms are employed to extract cropland. For instance,
UAV digital images and the object-oriented method were employed for the extraction of
cropland parcels. In such studies, texture, shape, and band information were analyzed
as auxiliary features to improve the accuracy [35–37]. However, previous studies have
mainly utilized spectral features as auxiliary data, with little exploration of more forms
of fused data, such as various compositions of spectral bands and terrain information.
The application of terrain information has provided a favorable auxiliary effect for the
extraction of cropland [14,17,38]; thus, it is necessary to apply it in this study, especially
in southern China, where the planting structure is complex, and the terrain is uneven.
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Furthermore, the artificial feature engineering in these studies requires additional time and
high subjectivity, and it may be difficult to determine the object-oriented segmentation
scale in southern China. Thus, with the object-oriented and machine learning methods, it
may be difficult to fully extract the complex cropland features in southern China. There
are also studies taking advantage of deep learning algorithms to extract cropland parcels
from UAV data [39–43]. In the field of deep learning, the convolutional neural network
(CNN) has shown outstanding results in the extraction of cropland parcels from UAV data
due to its capacity in extracting the shape features of ground objects [44–56]. Among CNN
algorithms, the U-Net-based model has gradually become one of the most popular models
in the applications of precision agriculture due to the ability to recover object boundary
information using the skip-connection in the decoder [57,58]. Nevertheless, most of the
existing studies compare different types of CNN models or add auxiliary modules to the
model, or change the optimizer to obtain different results, and few studies try to change
the down-sampling architecture of the models to explore the optimal receptive field for
specific ground objects. Therefore, the optimal down-sampling architecture of the model
should be explored for more accurate extraction of cropland parcels in southern China. As
mentioned above, the very high spatial resolution of UAV data presents great advantages in
the application of cropland extraction. However, few studies have simultaneously explored
the optimal extraction architecture of the model and the optimal data form (such as spatial
resolution, spectral composition of bands, and terrain information fusion). In addition,
most of the existing UAV-based extraction research utilizes single-period images, while in
southern China, cropland has large spectral differences in different crop growth stages, so
single-period image extraction studies may have poor robustness. Thus, it is necessary to
explore the optimal method for accurate extraction of cropland parcels with multiple crop
growth stages.

In summary, considering the challenges of cropland extraction in southern China,
the potential of UAV data, and the advantages of deep learning, this study explores a
method for accurate extraction of cropland parcels in southern China using very high
spatial resolution UAV data deep learning algorithms. The main objective of this study is
to explore the optimal method for accurate extraction of cropland parcels with multiple
crop growth stages in southern China from the aspects of deep learning model architecture
and the data form.

2. Materials and Methods
2.1. Selection of Study Area

An experimental station of South China Agricultural University, Guangzhou City,
Guangdong Province, China, with some villages around, was selected as the study area
(Figure 1a). Guangzhou belongs to the subtropical monsoon climate, characterized by
cloudy and rainy weather throughout the year. There are three main types of soils: red
soil, yellow soil, and paddy soil. Among them, red soil is the most common soil type,
which has the characteristics of acidity, low phosphorus, low potassium, and low organic
matter. Yellow soil has high fertility and good water permeability. Paddy soil has higher
fertility and better water retention. The study area is surrounded by hills, and the terrain
is undulating. The land use types in test sites were cropland, grassland, garden land,
woodland, storage land, residential land, roads, and bodies of water. The cropland parcels
in the test site were small, and some had an irregular shape. The area of cropland was
much smaller than in the northern regions of China; additionally, the cropland parcel
shape was mostly rectangular. The lengths and widths of typical cropland parcels were
65 × 35 m, 200 × 135 m, 85 × 50 m, 100 × 65 m, 130 × 45 m, 61 × 37 m, and 35 × 25 m.
Diverse categories of crops were planted in different parcels. The crops grown in cropland
parcels were rice, corn, soybeans, peanuts, pumpkins, vegetables, pepper, citrus, sugarcane,
bananas, and dragon fruit. Most of the cropland parcels were covered with rice, corn,
soybeans, and peanuts, and both rice and corn are biannual. The planting periods of typical
crops in the study area can be seen in Figure 2. Within some non-conventional cropland
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parcels, many small areas of the field trials were locally constructed and were separated by
concrete and plastic sheets. The concrete and plastic sheets caused some parcels to have
local spectral characteristics that were similar to the characteristics of roads (Figure 1b–d).
Large areas of woodland and scrub are distributed within the test site, and they have
spectral characteristics similar to the cropland parcels. As mentioned above, the cropland
features in this area are representative of the typical cropland features in southern China.
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Figure 2. Crop growth stages in the study area. Rice: (1) seedling, (2) tillering, (3) spikelet develop-
ment, (4) flowering and fruiting. Corn: (1) seedling, (2) spike, (3) flowering to maturity. Soybean:
(1) emergence, (2) seedling, (3) flower bud differentiation, (4) blooming and fruiting, (5) seed filling
period, (6) harvesting. Peanuts: (1) sowing and emergence, (2) seedling, (3) flowering needle, (4) pod,
(5) package maturity. Sugarcane: (1) sowing to infancy, (2) emergence, (3) tillering, (4) elongation,
(5) maturity. Banana: (1) seedling, (2) vigorous growth, (3) flower bud burst stage, (4) fruiting stages,
(5) fruit development and harvest. Citrus: (1) flower bud differentiation, (2) budding, (3) flower-
ing, (4) fruit growth and development, (5) fruit ripening, (6) flower bud differentiation. Pumpkin:
(1) emergence, (2) rambling, (3) flowering, (4) harvesting. Pepper: (1) germination, (2) seedling,
(3) flowering and fruit setting, (4) fruiting. Vegetables: vary from 60 to 120 days and grow all
year round.
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2.2. Data Acquisition and Preprocessing

In this study, a DJI Phantom 4 Multispectral quadrotor UAV (DJI Innovation Company
Inc., Shenzhen, China) was used to collect data. The UAV carried six cameras (and the
center wavelength of the single-band sensors): digital, blue band (450 ± 16 nm), green band
(560 ± 16 nm), red band (650 ± 16 nm), red-edge band (730 ± 16 nm), and near-infrared
band (840 ± 26 nm).

In order to achieve the purpose of extraction with multiple crop growth stages, the
original data covered five temporal phases in the study area: August, September, October,
November, and December 2021, which covered the complete key crop growth stages. To
match the size of the study area to the endurance of the UAV battery, the UAV was set to
fly at an altitude of 189 to 190 m, and the spatial resolution of the resulting data was 0.1 m.
Additionally, the higher solar altitude angle between 11:00 and 13:00 would minimize
shadow generation in the images, and therefore all original images were acquired during
this time period. To ensure the quality of image mosaicking, the heading overlap rate and
side-overlap rate were set to 75% and 70%, respectively. The flight speed was 8 m/s, the
sensor lens was perpendicular to the ground, and the shooting time interval was 2 s. After
the flight, the digital camera acquired the original images in joint photographic experts’
group (JPEG) format, and the other cameras obtained original images in tagged image file
(TIF) format. In this study, we only used images in TIF format.

In addition to the sensor that receives the reflected light from the ground, the un-
manned aerial vehicle (UAV) used in this study was equipped with a unique sensor that
receives incident light intensity, allowing users to perform radiometric calibration without
the need for a diffuse reflectance panel. According to the image processing guidelines of the
DJI Phantom 4 Multispectral quadrotor UAV published by DJI Innovations, we performed
radiometric correction on all bands of all collected raw images on a per-pixel basis. Thus,
the raw image data underwent reflectance. The reflectance data were mosaicked through
the Pix4DMapper software (Pix4D SA, Prilly, Switzerland). The acquired raw image data
were mosaicked to obtain blue (B), green (G), red (R), red-edge (RE), and near-infrared
(NIR) images of the study area, as well as a DSM raster map of the study area. The DSM
was processed to obtain the slope raster map (Slope), and then the data were fused (the
data fusion was directly added in this study). Two types of data were obtained from the
data fusion. The first type was a fusion of B, G, R, RE, NIR, and DSM images to obtain
multispectral fused data with DSM. The second type was a fusion of B, G, R, RE, NIR, and
Slope images to obtain multispectral fused data with slope information. The initial spatial
resolution of both types of fused data was 0.1 m.

To create the ground truth label used for model training, we first partially labeled the
fused data according to the visual interpretation of the land categories. For land categories
that could not be determined by visual interpretation, we conducted additional ground
surveys to determine them. We formed polygons by drawing the boundaries of the land
categories and assigned attributes to each polygon to label the land categories. Finally, we
converted the labeled land category polygons into raster data as the ground truth labels for
fused data.

2.3. Spectral Features of Data from UAV and Field Measurements

To better understand the spectral characteristics of the main types of ground objects in
the study area, we collected ground spectral data for some parcels in mid-October when the
crops were flourishing. The RS-8800 field spectroradiometer (Spectral Evolution, Haverhill,
MA, USA) with a spectral range of 350–2500 nm and a spectral resolution of 1 nm was
employed to measure the spectra of major crop types in cropland parcels and water bodies,
respectively. Ten sample points were measured for each land category, and for crops, the
canopy was measured and averaged, shown on a curve (Figure 3a). In addition, to compare
the spectral information of ground measurements and the UAV images, we also collected
10 sample points in the UAV data for each main land category and the main crop in the
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cropland parcels, respectively, and calculated the mean and the confidence interval (CI)
(Figure 3b,c).
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reflectance curves of some main crops in cropland parcels investigated through a spectroradiometer
(a), and spectral reflectance curves and the confidence interval (CI) of main land classes and some
main crops in the cropland parcels investigated through the UAV images (b,c).

According to the comparison between the spectral curves of measured data and the
UAV image (Figure 3a,c), for most crops, there was a gradual increase in reflectance from the
blue to the green band (450–560 nm), and peaks around the green band (560 nm). From the
green to the red band (560–650 nm), the reflectance decreased and reached a valley around
the red band (650 nm). In the range from the red to the near-infrared bands (650–840 nm),
the reflectance continuously increased, and the increase from the red to the red-edge band
(730 nm) was significantly higher than that from the red-edge to the near-infrared band.

In addition, it can be seen that the land categories within the study area had spectral
diversity (Figure 3b). Water bodies exhibited higher reflectance in the green band compared
to the other bands, with the lowest reflectance observed in the near-infrared band. Overall,
the reflectance was always low from the blue to the near-infrared band, without a significant
increase, and remained below 20%. The reflectance of constructions and roads was also
relatively stable across all bands of the UAV, and was higher than that of water bodies, with
little variation. Additionally, the reflectance of constructions and roads was higher than
that of vegetation in the visible band, and lower in the red-edge and near-infrared bands.
Forests and shrubs had similar spectral curves to the vegetation in cropland; especially,
forests occupied a large area in the study area, and shrubs were distributed along roads
between cropland parcels. Moreover, the reflectance of forests and shrubs (and other
vegetation) exhibited more distinct variations across different bands compared to water
bodies, constructions, and roads. Thus, it will be a great challenge to distinguish forests
and shrubs from cropland in this study.
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It can be seen that for the corresponding land category, the spectral features presented
by UAV data and ground spectral data had the same regularity. Therefore, the UAV data
collected in this study had high reliability.

2.4. Deep Learning Algorithms

U-Net-based CNN algorithms
Since the U-Net-based convolutional neural network (CNN) has been proven to obtain

better extraction results with limited training samples, this study utilized the U-Net model
as the basis for the experiments. The U-Net model (Figure 4a) is an end-to-end network
model proposed by Ronneberger et al. for image segmentation [57]. The U-Net model
is proposed for image segmentation tasks, as it effectively combines high-level semantic
information from the encoding path with detailed information from the decoding path.
The symmetrical architecture also enables the model to have a large number of trainable
parameters, allowing it to capture deep information from the input images.
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Figure 4. U-Net (a) and U-Net++ (b) architecture.

U-Net++ (Figure 4b) is a variant of the U-Net model [59], which was proposed to
overcome some of the limitations of the original U-Net. The main improvement of the
U-Net++ model lies in the encoding and decoding paths. The U-Net++ introduces the
concept of nested U-Net architecture and dense blocks, which allow it to better-capture the
multi-scale context information from input images, resulting in improved performance for
the applications in image segmentation.

Since this study is a small-scale study with a small number of samples, U-Net and
U-Net++ models were employed as the basic network models for the experiments.

Model training
In model training, the training dataset is used to train the model, while the validation

dataset is used to evaluate the performance of the model during training. During the train-
ing process, the model is iteratively trained using the training dataset and its performance
is evaluated using the validation dataset. The feedback from the validation dataset allows
the model to make changes that are beneficial for improving the accuracy during iterations
on the training dataset. This process continues until the model achieves satisfactory results
on the validation dataset.

When training the model, all pixel values of images were normalized into the range of
[0, 1] before they were input into the CNN model. Table 1 shows the related parameters of
model training. Weight parameters were saved after each epoch during model training.

Considering the deep learning algorithms and GPU memory limitations, the ground truth
labels overlapped with all multispectral fused data (5 temporal phases) were cropped into
slices consisting of 256 × 256 pixels. A total of 2444 slices, each consisting of 256 × 256 pixels,
were randomly shuffled and input into the training model, which was then divided into a
training dataset (1952 slices) and a validation dataset (492 slices) in a 4:1 ratio. The training
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dataset was used to guide the accuracy adjustment. The validation dataset was used to
assess the training performance of each algorithm.

Table 1. Related parameters of model training, among which: ‘learn rate decay = 0.9’: decaying the
learn rate to 90% when it is needed, ‘time-validation = 3’: making a prediction on the validation
dataset after every 3 training epochs, ‘patuence = 2’: decaying the learn rate if the effect of the
model did not improve after 2 predictions on the validation dataset, and ‘epsilon = 0.001’: when the
difference between the prediction loss function of the last two tests on the validation dataset is less
than 0.001, it is considered that the model cannot be improved under the current learning rate, and
the learning rate reduction mechanism needs to be triggered.

Item Parameter

Batch size 12
Optimizer Adam

Maximum epochs 350
Original learn rate 1 × 10−4

Learn rate decay 0.9
Minimum learn rate 1 × 10−7

Time-validation 3
Patuence 2
Epsilon 1 × 10−3

2.5. Experiment Design

To explore the optimal method for accurate extraction of cropland parcels with multiple
crop growth stages, a general experimental framework was designed (Figure 5). The UAV
data of five phases were collected to ensure multiple crop growth tests. According to the
characteristics of the study area, four groups of comparison experiments investigating
four factors (CNN architecture, spatial resolution, spectral band composition, and terrain
information) were successively carried out in this study. The optimal parameters in each
group of experiments were used as the basis for the next group of experiments. Finally, the
optimal overall method was obtained and applied to multiple crop growth stages.
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2.5.1. Exploration of Optimal Network Architecture

Distinct extraction tasks require diverse receptive fields. The down-sampling architec-
ture of a convolutional neural network serves as a key determinant of receptive fields. In
order to explore the optimal U-Net-based convolutional neural network architecture for
achieving the objective of this study, a group of experimental comparisons were performed
(experiment group A).

We first extracted cropland parcels using the original U-Net model, then made mod-
ifications to the original U-Net network architecture to explore the effects of network
architecture complexity. We also modified the U-Net++ model and compared it with
different modified forms of the U-Net model. The specific experimental code and the
comparisons are shown in Table 2.

Table 2. Exploration of different down-sampling architectures of networks.

Experiment Code Network Size of Max Pooling Number of
Down-Sampling Layers

A1 U-Net (2,2) 4
A2 U-Net (2,2) 5
A3 U-Net (2,2) 6
A4 U-Net (4,4) 3
A5 U-Net++ (2,2) 4
A6 U-Net++ (4,4) 3

2.5.2. Exploration of Optimal Spatial Resolution

In previous studies, almost no study explored the optimal spatial resolution for a
specific task. Moreover, due to the unique scale of typical cropland in southern China, it is
more necessary to explore the optimal spatial resolution. In order to explore the optimal
spatial resolution of the data for the objective of this study, based on the optimal network
architecture identified in Section 2.5.1, the preprocessed multispectral data were resampled
to generate data with various spatial resolutions. A group of experimental comparisons
were performed (experiment group B). The specific experimental code and the comparisons
are shown in Table 3.

Table 3. Exploration of the spatial resolution of different data.

Experiment Code Network Spatial Resolution of Image
(meters)

B1 U-Net++ 0.3
B2 U-Net++ 0.4
B3 U-Net++ 0.5
B4 U-Net++ 0.6
B5 U-Net++ 0.7
B6 U-Net++ 0.8
B7 U-Net++ 0.9
B8 U-Net++ 1.0

2.5.3. Exploration of Optimal Spectral Composition

Typical features in the study area include cropland, woodland, scrub, water bodies,
and roads. The spectral characteristics of cropland in the study area are complex, and
numerous other vegetation types have similar spectral characteristics. Cropland, woodland,
and scrub consist mainly of vegetation with similar spectral characteristics. In cropland
parcels, rice, corn, soybean, and peanut are mainly planted. The complex planting structure
may lead to complex spectral characteristics within the cropland category. Therefore,
it is necessary to explore the impact of different spectral compositions of the data and
investigate the optimal spectral composition in this study.
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In order to explore the optimal spectral composition of the data for the objective of
this study, based on the optimal network architecture and spatial resolution in Section 2.5.2,
fused data for different spectral compositions were established, and a group of experimental
comparisons were performed (experiment group C). Their spectral compositions are shown
in Table 4.

Table 4. Exploration of different spectral compositions of data.

Experiment Code Network Bands Composition of Image

C1 U-Net++ RGB
C2 U-Net++ RGB + RE
C3 U-Net++ RGB + NIR
C4 U-Net++ RGB + RE + NIR

2.5.4. The Terrain Information Fusion Exploration

Due to the unevenness in southern China, cropland areas tend to have an undulating
terrain. Terrain information such as DEM and DSM have been fused with data in previous
extraction tasks and improved the results. To achieve the objective of this study, it is
necessary to explore the optimal terrain information fusion of the dataset. Based on the
optimal network architecture, the optimal spatial resolution, and the best-performing spec-
tral composition in Section 2.5.3, multiple groups of data with different terrain information
were used in a group of experimental comparisons (experiment group D). The specific
experimental code and the comparisons are shown in Table 5. It is worth noting that this
study employed slope information, which has rarely been employed in existing studies
based on UAV data.

Table 5. Exploration of different spectral compositions of data.

Experiment Code Network Bands’ Composition of Image

D1 U-Net++ RGB + RE + NIR + DSM
D2 U-Net++ RGB + RE + NIR
D3 U-Net++ RGB + RE + NIR + Slope

Finally, to test the robustness of multiple crop growth stages, fusion data slices from Au-
gust, November, and December 2021 were selected, and the optimal method in Section 2.5.4
was applied for testing.

2.6. Accuracy Assessment

To evaluate the result of each experiment, during the experiments, we randomly split
the data to be input into the training network model into a training dataset and a validation
dataset. The training dataset was used to guide the accuracy adjustment. The validation
dataset was used to assess the training performance of each algorithm. Another temporal
phase of the fused data (test dataset) was used to explore the results of the models in each
experiment. The fused data slices of September 2021 in the study area were selected and
divided into a training dataset and a validation dataset at a ratio of 4:1. The fused data
slices of the whole study area in October 2021 were selected as the test dataset.

A confusion matrix was created to evaluate the experimental results in this study.
Based on the confusion matrix, we used three common indicators of deep learning (Overall
accuracy (OA), Kappa coefficient, and Intersection-over-Union (IoU)) to evaluate the effect
of cultivated land extraction.

The OA was calculated as follows (Equation (1)):

OA =
TP + TN

TP + TN + FP + FN
(1)
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where TP is the number of pixels of true positives, TN is the number of pixels of true
negatives, FP is the number of pixels of false positives, and FN is the number of pixels
of false negatives. A “positive” result was where the model predicted that the pixels
were cropland, whereas a “negative” result was where the model predicted that the pixels
were non-cropland (background). A true or false status was dependent on whether the
prediction was consistent with the ground truth label.

The Kappa coefficient was calculated as follows (Equation (2)):

Kappa =
OA − pe

1 − pe
(2)

where N and pe were calculated as follows:

pe =
a0 × b0 + a1 × b1

N2 (3)

N = TP + FP + TN + FN (4)

In Equations (3) and (4), a0 and a1 are the numbers of pixels of non-cropland and
cropland in the ground truth label, respectively, and b0 and b1 are the numbers of pixels of
non-cropland and cropland predicted by the model, respectively.

The IoU was calculated as follows (Equation (5)):

IoU =
TP

TP + FP + FN
(5)

3. Results and Analysis

For the objective of exploration of the optimal method for accurate extraction of
cropland parcels on multiple crop growth stages in southern China, in this section, we
present the experiment results with respect to test dataset evaluation by the trained models.

3.1. Analysis of U-Net-Based CNN Architecture

The accuracy assessment of experiment results and the maps extracted from the test
dataset are shown in Table 6 and Figure 6, respectively.

Table 6. Test (Overall accuracy) OA, Kappa coefficient, and (Intersection-over-Union) IoU of different
network architectures.

A1 A2 A3 A4 A5 A6

OA (%) 83.5 89.9 88.2 86.0 91.3 90.4
Kappa (%) 62.9 74.6 68.6 64.4 78.7 76.6

IoU (%) 83.1 89.6 87.9 85.8 91.1 90.2

According to the experiment results, the performance of the original U-Net model
(A1) was poor, with many incorrect extractions for forest, scrub, and roads. After network
deepening, several improved models based on the U-Net model all achieved better results
than the original U-Net model. A U-Net model with one additional layer of down-sampling
(A2) was the best modified U-Net model, with an OA of 89.9%, a Kappa coefficient of
74.5%, and an IoU of 89.6%. These were respective improvements of 6.2%, 7.6%, and 6.5%
over the original U-Net model. Model A2 significantly reduced the incorrect extractions for
non-cropland vegetation. After the complexity of the network model was further increased
(models A3 and A4), the assessment indicators gradually decreased, and the incorrect
extraction of non-cropland ground features gradually increased.

The original U-Net++ model (A5) and the modified U-Net++ model (A6) achieved
better results than all U-Net models used in this study. The original U-Net++ model (A5)
achieved an OA of 91.3%, a Kappa coefficient of 78.7%, and an IoU of 91.1%, while the
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modified U-Net++ model was less effective than the original U-Net++ model, with an OA
of 90.4%, Kappa coefficient of 76.6%, and an IoU of 90.2%, respectively. The prediction
results of the two U-Net++-based models implied that both had fewer missing extractions
for cropland parcels and fewer incorrect extractions for non-cropland, compared with
all U-Net-based models. Although the modified U-Net++ model (A6) produced some
incorrect extractions for roads, the original U-Net++ model (A5) performed well. The
original U-Net++ model (A5) achieved the best result in this group of experiments.
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These results indicated that the U-Net model could learn deeper features in the
training process when the number of network layers was appropriately increased or the
network architecture became more complex, thereby improving the model. However, the
optimal number of layers of the network model was not the highest number possible. In
a particular segmentation task, after the number of network layers reached the optimum,
further increases would weaken the model performance, although this model was initially
expected to be better than the original model.

In the experiments, various modified forms of the U-Net model produced worse
predictions than the U-Net++ model based on the test dataset (A5), which confirmed that
the conclusion of the creators of U-Net++ (i.e., “the U-Net++ model is always better than
the U-Net model”) was applicable to this study. When we attempted to expand the size of
the pooling kernel of the U-Net++ model from 2 × 2 to 4 × 4 (A4, equivalent to increasing
its degree of down-sampling), the predictive effect of the trained model on the test dataset
was better than the predictive effect of the improved architecture of all U-Net models, but it
was less robust than the original U-Net++ model (A5). This situation presumably occurred
because the original U-Net++ model extracted better features when fusing the output
feature maps of different sizes. The receptive field of the model might be further increased
when the pooling kernel size and pooling stride are expanded, leading to a weakened
U-Net++ model performance.

Although the original U-Net++ model (A5) demonstrated a significantly better perfor-
mance than the other models in the experiments, the accuracy assessments of the experi-
ments revealed that all trained models in this group of experiments only predicted a Kappa
coefficient of 60–80% for the test dataset. The Kappa coefficient of the U-Net++ model (A5)
with the best result in this group of experiments did not reach 80%. Although the model
produced a nearly complete extraction of cropland parcels, more non-cropland areas were
incorrectly extracted into cropland. Most of the incorrectly extracted non-cropland areas
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were woodland, roadside shrubs, and hillsides, where weeds and trees were distributed.
The incorrect extraction may have occurred because the contiguous vegetation had spectra
similar to the spectra of crops within the cropland, and the spatial resolution of the data
was excessively high (0.1 m). Due to the obvious ridges in some cropland parcels in the
study area and the presence of mulching film on the ground around the crops, the spectral
composition in the cropland parcels was complex. Therefore, the very high spatial resolu-
tion increased the difficulty of extraction. The spatial resolution needs to be decreased and
the optimal spatial resolution needs to be explored to reach the objective of this study.

3.2. Analysis of Different Spatial Resolution

In previous studies concerning the use of UAVs combined with remote sensing, re-
searchers usually adopted the highest possible spatial resolution (≤0.05 m) according to
the cost. However, when completing a specific extraction, few researchers have explored
the optimal spatial resolution of data specific to their task. Although numerous researchers
have achieved generally good results in extraction tasks using spatial resolutions of <0.05 m,
most of their study objects had obvious spectral and shape features, and the non-target ob-
jects were not sufficiently intrusive. Examples include the extraction of carrots, greenhouses
with mulch, citrus trees, vegetables, lodged rice, and individual plant species.

Based on the optimal network architecture (A5) in the experiment group A, the spatial
resolutions of input data were resampled into 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 m. The
resampled data were input into the U-Net++ network and trained accordingly for the
experiment group B. The accuracy assessment of experiment results and the maps extracted
from the test dataset are shown in Table 7, as well as Figures 7 and 8.

Table 7. Test OA, Kappa coefficient, and IoU of different network architectures.

B1 B2 B3 B4 B5 B6 B7 B8

OA (%) 94.2 94.1 94.5 93.9 93.8 93.9 92.7 92.3
Kappa (%) 85.1 84.9 85.6 84.1 84.7 84.3 82.2 80.6

IoU (%) 94.0 93.9 94.4 93.6 93.5 93.7 92.4 91.9
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are shown. (a-1) Original multispectral data (standard false color composited), (b-1) Ground truth,
(c-1) the result of experiment B3, and (d-1) the result of experiment B6. (a-2,a-3) The local details of
(a-1), corresponding to the black boxes of ground truth, (b-2,b-3) the local details in the black boxes
of (b-1), (c-2,c-3) the local details in the black boxes of (c-1), and (d-2,d-3) the local details in the black
boxes of (d-1).

The accuracy assessment of experiment results showed that the 0.5 m dataset (B3) had
the best result, with an OA of 94.5%, a Kappa coefficient of 85.6%, and an IoU of 94.4%.
These represented respective increases of 3.2%, 6.5%, and 3.3%, compared with the 0.1 m
dataset before resampling. The maps showed that outstanding results were achieved at
spatial resolutions of 0.5 m (B3) and 0.8 m (B6). The accuracy assessment, as well as the
local details, showed the best results for the 0.5 m dataset. According to the maps, when
the spatial resolution decreased, the results of the extraction clearly improved, and the
incorrect extraction of non-cropland features decreased. The spatial resolutions of 0.3, 0.6,
and 0.7 m all tended to incorrectly extract some forested and weed-covered slopes into
cropland. The spatial resolutions of 0.1 and 1.0 m had the worst results. Overall, these
findings indicated that the enhancement of spatial resolution over a certain range could
improve the effectiveness of the model for cropland extraction, but the effectiveness of the
model worsened when the spatial resolution became excessively high.

Spatial resolutions of 0.5 and 0.8 m achieved similar overall results, which were better
than the other spatial resolutions, but the 0.5 m dataset performed better in terms of the
smoothness and completeness of cropland parcels, compared with the 0.8 m dataset. The
0.8 m dataset incorrectly extracted some narrow field roads into cropland. The 0.5 m dataset
almost completely retained roads located in the fields.

3.3. Results of Different Spectral Compositions

The experiment group C was performed based on the optimal result of the experiment
group B (U-Net++ CNN architecture and 0.5 m spatial resolution dataset). Datasets of
different spectral compositions were used for the experiments. The accuracy assessment of
experiment results and the maps extracted from the test dataset of experiment group C are
shown in Table 8, as well as Figures 9 and 10.
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Table 8. Test OA, Kappa coefficient, and IoU of different network architectures.

C1 C2 C3 C4

OA (%) 94.5 92.5 94.0 95.6
Kappa (%) 84.8 81.0 84.7 88.6

IoU (%) 94.3 92.1 93.8 95.5
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are shown. (a-1) Original multispectral data (standard false color composited), (b-1) ground truth,
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(a-1), corresponding to the black boxes of ground truth, (b-2,b-3) the local details in the black boxes
of (b-1), (c-2,c-3) the local details in the black boxes of (c-1), and (d-2,d-3) the local details in the black
boxes of (d-1).
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The accuracy assessment showed that an RGB-RE-NIR-fused multispectral dataset
(C4) achieved the best result, with an OA of 95.6%, a Kappa coefficient of 88.5%, and an IoU
of 95.5%. The results were similar for the RGB-only dataset (C1) and the RGB-NIR-fused
multispectral dataset (C3). The maps showed that RGB images (C1) and RGB-RE-NIR-
fused images (C4) achieved better results than RGB-RE-fused images (C2) and RGB-NIR-
fused images (C3). The results of RGB-RE-fused images (C2) were generally poor. The
local prediction details showed that RGB-RE-NIR-fused images (C4) more fully extracted
cropland parcels and exhibited better performance in extracting fragmented cropland
parcels, compared with RGB images (C1).

When RGB images were used to fuse the RE band (C2) or the NIR band (C3), the
experimental results were worse than when RGB images were used alone. However, in
this study, although greater interference was caused by vegetation, the fusion of RGB
images with both RE and NIR bands (C4) resulted in deeper interference features and
more distinctly different crops within the cropland parcels, which improved the model
performance. Although many researchers presume that the RE band makes a positive
contribution to the analysis of vegetation, our experiments indicated that the RGB-RE-
fused images (C2) were less effective, which suggests that the RE band alone may not be
appropriate for the extraction of typical cropland parcels in southern China.

3.4. Analysis on Fusion of Terrain Information

Previous studies have shown that the fusion of terrain information into images can
improve the models’ performance. For example, when DSM and RGB images were com-
bined in a land cover classification and the classification results were compared with
RGB-only images, the results of RGB-DSM-integrated images were better than the results
of RGB-only images.

The experiment group D was performed based on the U-Net++ model and RGB-
RE-NIR-fused images, with 0.5 m spatial resolution. Images fused with different terrain
information were trained. The accuracy assessment of experiment results and the maps
extracted from the test dataset of experiment group D are shown in Table 9, as well as
Figures 11 and 12.

Table 9. Test OA, Kappa coefficient, and IoU of different network architectures.

D1 D2 D3

OA (%) 95.6 94.5 95.9
Kappa (%) 88.6 85.6 89.2

IoU (%) 95.5 94.4 95.7
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Figure 12. Local prediction details of the maps extracted from the test dataset in experiment group
D are shown. (a-1) Original multispectral data (standard false color composited), (b-1) ground
truth, (c-1) the result of experiment D1, (d-1) the result of experiment D2, and (e-1) the result of
experiment D3. (a-2–a-4) The local details of (a-1), corresponding to the black boxes of ground truth,
(b-2–b-4) the local details in the black boxes of (b-1), (c-2–c-4) the local details in the black boxes of
(c-1), (d-2–d-4) the local details in the black boxes of (d-1), and (e-2–e-4) the local details in the black
boxes of (e-1).

The accuracy assessment revealed that the use of terrain information yielded better
results compared with the lack of terrain information. Slope fusion with RGB-RE-NIR
images (D3) achieved the best result, with an OA of 95.9%, a Kappa coefficient of 89.1%,
and an IoU of 95.7%. The OA, Kappa coefficient, and IoU of DSM fusion with RGB-RE-NIR
images (D1) were 95.6%, 88.5%, and 95.5%, respectively, which were slightly worse than
the results for slope fusion with RGB-RE-NIR images (D3). Although similar overall results
were obtained for the three experiments, the slope fusion with RGB-RE-NIR images (D3),
which extracted cropland parcels with fewer omissions, produced the best results in terms
of local prediction details.

There were also very few parcels within which high protective shelters had been
erected for local crops, which made them significantly taller than the surrounding parcels.
The extraction model was likely to misjudge the DSM information. The result of slope data
fused with multispectral data (D3) was clearly better than the result of the DSM. This is
presumably because the study area was located in southern China, where the terrain is
not generally flat, and this characteristic hinders the process of DSM-fused data training.
However, the slope of most cropland parcels was similar, and varied over a small range.
Therefore, the data fused with the slope achieved better results in the typical cropland
regions of southern China.
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4. Discussion
4.1. Comparison to Previous Studies

In this study, a method for accurate extraction of cropland parcels in southern China on
multiple crop growth stages was explored. The main contribution of this study is exploring
the optimal method from the aspects of deep learning model architecture and the UAV
data form. The optimal U-Net-based model architecture, spatial resolution of data, spectral
composition, and fusion of terrain information were explored based on four experiment
groups. Finally, the robustness of the method was tested by the application on more crop
growth stages.

In terms of CNN architecture, the existing studies have mainly focused on the com-
parison of different models and the improvement of the models (such as adding attention
mechanisms in the models) [46]. We explored the receptive field suitable for this study
by changing the down-sampling architecture of the model, which was rarely covered in
previous studies. In terms of spatial resolution, some existing studies utilized the highest
spatial resolution they could afford [32]. However, the specific characteristics of the study
area should be taken into consideration. Cropland in southern China has more complex
image features because of the complex planting structure and distribution. To maximize the
advantages of UAV data, we resampled original UAV data into different spatial resolutions
and explored the optimal one. In terms of the form of data fusion, the experiments found
different results from existing studies. Although some existing studies suggest that the RE
band has a greater role in agricultural applications [60], we found that fusing only the RE
band with RGB data had a relatively poor result in southern China. Additionally, based on
the findings of existing studies on the role of the DSM, we explored the fusion of different
terrain information. The slope data, which has barely been employed in previous studies,
was fused with the multispectral dataset in this study. The experimental results indicate
that the slope data were more suitable for southern China than the DSM. The exploration
of spectral combination and terrain information helped identify the most suitable form of
UAV data for cropland extraction in southern China.

In addition, in order to test the robustness, the optimal method for accurate extraction
of cropland parcels in southern China explored in this study was applied to test datasets
collected in more periods (in August, November, and December). The accuracy assessment
of results and the maps extracted are shown in Table 10 and Figure 13.

Table 10. Test OA, Kappa coefficient, and IoU of other periods.

August November December

OA (%) 97.2 96.9 96.5
Kappa (%) 90.6 89.6 88.4

IoU (%) 97.1 96.7 96.4

According to the accuracy assessment, the method achieved a similar accuracy to
experiment D3 when it was applied to other periods. The maps presented the good
robustness of the method, particularly when applying to datasets collected in August
and November.

The method explored in this study can be utilized for cropland extraction in multiple
crop growth stages in southern China and regions with similar characteristics (such as some
areas in Southeast Asia with severe cropland fragmentation and complex planting structures).
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December, respectively.

4.2. Uncertainties

There were some deficiencies in the results. First, there were some omissions in the
extraction results (in the west of the maps). This is presumably because within some non-
conventional cropland parcels, many small areas of the field trials were locally constructed
and were separated by concrete and plastic sheets. The concrete and plastic sheets caused
some parcels to have local spectral characteristics that were similar to the characteristics
of roads.

In addition, in the map extracted from the test dataset collected in December, some
small holes appeared in some cropland parcels. These holes may be due to the fact that
some parcels had been harvested and were in the state of bare soil with fewer weeds during
this period. The dataset employed for training was collected in September, when almost no
cropland parcels were in the bare soil state. Therefore, the holes in the extraction results
from December may be because the model only used the boundary and the contextual
information of cropland parcels.

Additionally, due to the impact of the COVID-19 pandemic, field operations have been
restricted, especially with strict controls over flight zones, and the continuous outbreak of
the La Nina phenomenon in 2022 has brought prolonged rainy and typhoon weather to
southern China, resulting in a failure to collect datasets with longer timespans to further
test the robustness of this method for multiple crop growth stages.

4.3. Implications and Future Work

The quantity of cropland in China has sharply decreased because of economic de-
velopment and the promotion of urbanization and industrialization, particularly in the
well-developed economic region of southern China. Thus, there is a need to protect crop-
land and ensure food security [61,62]. Cropland has complex features in southern China,
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which makes it difficult to accurately extract data from images used to support precision
agriculture. The accurate extraction and mapping of cropland parcels will help the Depart-
ments of Natural Resources and Agriculture to manage and protect cropland in a more
systematic manner, thereby improving food security nationwide [63].

This study had some limitations that can be improved in future work. First, we did
not explore whether the reduction of the U-Net++ model’s complexity would lead to
better extraction of cropland parcels. Second, this study did not explore other advanced
network models in the field of semantic segmentation (e.g., fully convolutional networks,
SegNet, and the DeeplabV3 series). In the future, we will investigate different spatial
resolutions when using different models to determine whether the selection of optimal
spatial resolution is relevant for different types of network models. We will also attempt to
apply our method to other cropland regions which have similar features to southern China.
Finally, we will explore combining WorldView data (the spatial resolutions of WorldView-3
and WorldView-4 are 0.31 m for panchromatic images and 1.24 m for multispectral images)
with UAV data, then applying these data to our method.

5. Conclusions

In this study, for the objective of accurate extraction of cropland parcels with multiple
crop growth stages in southern China, we explored a method based on unmanned aerial
vehicle (UAV) data and deep learning algorithms.

The multispectral UAV data were collected and preprocessed. The U-Net and U-Net++
models, along with some of their modified forms, were adopted to perform the experiments.
An experimental station in Guangzhou, China, was selected to represent a typical region
in southern China. Datasets from different periods were separately trained and tested.
Our results showed that the optimal method for extraction of typical cropland parcels in
multiple crop growth stages in southern China was an RGB-RE-NIR-slope-fused dataset,
with a spatial resolution of 0.5 m and trained with the U-Net++ model. This method
achieved an average OA of 96.9%, an average Kappa coefficient of 89.5%, and an average
IoU of 96.7% for the test dataset in various crop growth stages.

The method explored in this study provides a theoretical method for accurate ex-
traction of cropland parcels in multiple crop growth stages in typical cropland regions
of southern China and other similar areas, such as some areas in Southeast Asia, where
cropland fragmentation and complex planting structures are prevalent.
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