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Abstract: Due to the low efficiency and safety of a manual insulator inspection, research on intel-
ligent insulator inspections has gained wide attention. However, most existing defect recognition
methods extract abstract features of the entire image directly by convolutional neural networks
(CNNs), which lack multi-granularity feature information, rendering the network insensitive to
small defects. To address this problem, we propose a multi-granularity fusion network (MGFNet) to
diagnose the health status of the insulator. An MGFNet includes a traversal clipping module (TC),
progressive multi-granularity learning strategy (PMGL), and region relationship attention module
(RRA). A TC effectively resolves the issue of distortion in insulator images and can provide a more
detailed diagnosis for the local areas of insulators. A PMGL acquires the multi-granularity features
of insulators and combines them to produce more resilient features. An RRA utilizes non-local
interactions to better learn the difference between normal features and defect features. To eliminate
the interference of the UAV images’ background, an MGFNet can be flexibly combined with object
detection algorithms to form a two-stage object detection algorithm, which can accurately identify
insulator defects in UAV images. The experimental results show that an MGFNet achieves 91.27%
accuracy, outperforming other advanced methods. Furthermore, the successful deployment on a
drone platform has enabled the real-time diagnosis of insulators, further confirming the practical
applications value of an MGFNet.

Keywords: drone insulator inspection; defect detection; deep learning; convolutional neural network

1. Introduction

Insulators play a crucial role in power transmission lines, providing both mechanical
support and electrical insulation for equipment and conductors. By preventing the current
flow to the ground or other conductors, they ensure safe operation and prevent safety
accidents such as fires and explosions. However, insulators are easy to be damaged
by various factors, such as ultraviolet radiation, pollution, and lightning strikes. This
damage can reduce the insulation level of power equipment, impacting the power system’s
stability and reliability. Manual inspection is currently the primary method used to inspect
insulators, as showed in Figure 1a. However, this method is expensive, time-consuming,
and inefficient, which increases the risk of system failures and safety incidents. To address
these issues, researchers are developing unmanned aerial vehicles (UAV)-based insulator
defect recognition algorithms. As showed in Figure 1b, UAVs conduct aerial surveys of
power equipment and utilize on-board algorithms for insulator localization and defect
diagnosis in the aerial images. These algorithms have the potential to improve the efficiency
and accuracy of insulator inspections, leading to more reliable and safe power systems.

Drones 2023, 7, 333. https://doi.org/10.3390/drones7050333 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7050333
https://doi.org/10.3390/drones7050333
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-7230-3196
https://doi.org/10.3390/drones7050333
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7050333?type=check_update&version=1


Drones 2023, 7, 333 2 of 19

Drones 2023, 7, x FOR PEER REVIEW 2 of 20 
 

efficiency and accuracy of insulator inspections, leading to more reliable and safe power 

systems. 

  
(a) (b) 

Figure 1. Some power line inspection scenes: (a) manual inspection; (b) UAV inspection. 

Defect recognition methods can also be roughly categorized into weakly supervised 

defect recognition and strong supervised defect recognition. Weakly supervised learning 

methods alleviate the problems of sparse defective samples and imbalanced data. Weakly 

supervised methods can be divided into two types: unsupervised learning and few-shot 

learning. Unsupervised methods train models without defect samples, which addresses 

the challenge of collecting sufficient defect samples. This kind of method often relies on 

autoencoders or generative adversarial networks and can automatically learn features for 

defect detection. For example, reference [1] proposed an unsupervised learning-based ap-

proach for detecting defects in catenary rod-insulators. The proposed method consisted 

of three stages: separating insulator regions, reconstructing and recognizing insulator 

pieces using a convolutional autoencoder network, and evaluating the defect levels using 

a clustering algorithm. The DefGAN [2] was a novel approach for automating the detec-

tion of defects in high-speed railway catenary insulators. By using a pitted latent repre-

sentation to generate defective samples, the DefGAN improved the reliability of the defect 

detection classifier. Few-shot learning requires transferring prior knowledge from the 

source domain to the target domain, and then using contrastive learning and the support 

set created by a small amount of data to accomplish the classification task. Reference [3] 

proposed a few-shot defect recognition (FSDR) for real industrial scenarios with insuffi-

cient training samples. The proposed method achieves defect recognition by a coarse-to-

fine manner with a dynamic weighting and joint metric. 

Although unsupervised methods solve the problem of scarce samples in insulation 

defect detection, their classification accuracy is often affected by data quality, resulting in 

poor robustness and difficulty in meeting the expected accuracy requirements. With the 

accumulation of defect insulator image samples in recent years, the training requirements 

for the strong supervised methods can now be met. Its detection accuracy is better than 

unsupervised methods and can better meet the requirements of intelligent inspection. For 

example, Ref. [4] proposed a novel method called a Box-Point Detector for the fault diag-

nosis of insulators in aerial images. Ref. [5] proposed an intelligent fault detection method 

for overhead line insulators based on aerial images and an improved YOLOv3 [6], which 

uses a densely connected feature pyramid network (FPN) to improve detection perfor-

mance and reduce the risk of network overfitting. The YOLOv3-DenseNet algorithm [7] 

enhances feature reuse and fusion by utilizing dense blocks, which effectively improves 

defect detection accuracy in printed circuit boards (PCBs). However, the methods [4,5,7] 

mentioned above all use single-granularity feature extraction, which makes it difficult to 

capture the defect feature information in different granularities. This can result in the 

Figure 1. Some power line inspection scenes: (a) manual inspection; (b) UAV inspection.

Defect recognition methods can also be roughly categorized into weakly supervised
defect recognition and strong supervised defect recognition. Weakly supervised learning
methods alleviate the problems of sparse defective samples and imbalanced data. Weakly
supervised methods can be divided into two types: unsupervised learning and few-shot
learning. Unsupervised methods train models without defect samples, which addresses
the challenge of collecting sufficient defect samples. This kind of method often relies on
autoencoders or generative adversarial networks and can automatically learn features for
defect detection. For example, reference [1] proposed an unsupervised learning-based
approach for detecting defects in catenary rod-insulators. The proposed method consisted
of three stages: separating insulator regions, reconstructing and recognizing insulator
pieces using a convolutional autoencoder network, and evaluating the defect levels using a
clustering algorithm. The DefGAN [2] was a novel approach for automating the detection
of defects in high-speed railway catenary insulators. By using a pitted latent representation
to generate defective samples, the DefGAN improved the reliability of the defect detection
classifier. Few-shot learning requires transferring prior knowledge from the source domain
to the target domain, and then using contrastive learning and the support set created by
a small amount of data to accomplish the classification task. Reference [3] proposed a
few-shot defect recognition (FSDR) for real industrial scenarios with insufficient training
samples. The proposed method achieves defect recognition by a coarse-to-fine manner
with a dynamic weighting and joint metric.

Although unsupervised methods solve the problem of scarce samples in insulation
defect detection, their classification accuracy is often affected by data quality, resulting in
poor robustness and difficulty in meeting the expected accuracy requirements. With the
accumulation of defect insulator image samples in recent years, the training requirements
for the strong supervised methods can now be met. Its detection accuracy is better than
unsupervised methods and can better meet the requirements of intelligent inspection.
For example, Ref. [4] proposed a novel method called a Box-Point Detector for the fault
diagnosis of insulators in aerial images. Ref. [5] proposed an intelligent fault detection
method for overhead line insulators based on aerial images and an improved YOLOv3 [6],
which uses a densely connected feature pyramid network (FPN) to improve detection per-
formance and reduce the risk of network overfitting. The YOLOv3-DenseNet algorithm [7]
enhances feature reuse and fusion by utilizing dense blocks, which effectively improves
defect detection accuracy in printed circuit boards (PCBs). However, the methods [4,5,7]
mentioned above all use single-granularity feature extraction, which makes it difficult
to capture the defect feature information in different granularities. This can result in the
missing detection of very small defects and the false detection of very large defects. In
addition, single-granularity feature extraction will result in redundant feature calculations,
increasing the computational complexity of the network.
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Although these strong supervised methods have shown some success, their reliance
on single-granularity feature extraction renders them incapable of capturing the multi-scale
variations present in insulator defects, as illustrated in Figure 2. Consequently, the current
approaches are prone to overlooking very small defects and misidentifying large ones.
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Figure 2. Multiscale variation of insulator defects. (a) Samples from large-scale defects to small-scale
defects; (b) the percentage of multiple-scale defects in the data set.

In summary, the current weakly supervised methods in the field of defect recognition
suffer from low accuracy and poor robustness, as they are easily affected by environmental
and lighting factors. Although strong supervised methods can achieve better robustness,
they are only suitable for recognizing obvious defects and have limitations in accurately
identifying tiny defects and extracting the subtle features. In addition, many insulators
are rectangles with a large aspect ratio, while the input of deep learning models requires
resizing the insulator image into a square with an aspect ratio of 1. This will cause the
severe distortion of the already small insulator. As shown in the Figure 3, image processing
can make less obvious defects even less apparent. To address these issues, this paper
proposes a multi-granularity fusion network (MGFNet) to diagnose the health status of
the insulator. An MGFNet includes a traversal clipping module (TC), progressive multi-
granularity learning strategy (PMGL), and region relationship attention module (RRA).
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The contributions of this paper can be summarized as follows:

• To solve the distortion issue caused by images pre-processing, we propose a novel
traversal clipping module (TC). A TC can divide insulators into multiple patches
according to their aspect ratios and traverse each patch for diagnosis. A TC not only
mitigates image distortion but also increases the number of data samples, playing a
role of data enhancement.
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• We propose a novel progressive multi-granularity learning strategy (PMGL) that lever-
ages convolution operations at various granularities to extract the feature information
of different granularities in images, including detailed information at low levels and
semantic information at high levels. This strategy enables the network to achieve a
good recognition performance for defects in different granularities. Moreover, we uti-
lize KL divergence to guide multi-granularity features to focus on different objectives
and extract complementary information.

• To improve the ability to distinguish between defect and normal regions, we propose a
region relation attention module (RRA) that performs a non-local interaction between
local features. RRA aggregates and adjusts non-local information in the feature map,
which helps the model to better understand the relationships between normal and
defective regions in the image, thereby improving its performance in visual analysis
and recognition.

• Based on the above three points, we propose a multi-granularity fusion defect network
(MGFNet) for insulator defect recognition. The experiments show that an MGFNet
achieves 91.27% accuracy, outperforming advanced methods, with a parameter size of
84.1 megabytes and a speed of 126.2 images/s, demonstrating its practical value.

This paper is organized as follows. Section 2. Related Work summarizes the relevant
papers. Section 3. The Proposed MGFNet presents the details of the proposed network.
Section 4. Experimental Results and Analysis shows the experiment results and related
analysis. Finally, Section 5. Conclusion presents the summary and future work.

2. Related Work

This section mainly discusses the public networks for defect detection and attention
mechanisms. We summarized the related works from these two aspects.

2.1. Defect Detection

Recently, there has been rapid development in the defect detection methods for sur-
faces, which can be categorized into four types: conventional statistical, spectral, model-
based, and emerging machine learning. Statistical approaches typically use pixel distribu-
tion and variation patterns to evaluate the defect areas. For instance, Zhao et al. [8] utilized
superpixels to group pixels with similar visual properties, thereby aggregating defective
areas into a superpixel. However, statistical methods are susceptible to interference from
illumination variations or pseudo defect visits. Spectral approaches, on the other hand, aim
to find a special transform domain where defect objects can be more easily and completely
separated from both local and global backgrounds. For example, Sharifzadeh et al. [9] em-
ployed the Hough transform [10] to detect holes, scratches, coil breaks, and rust defects on
cold-rolled steel strips. Nonetheless, the spectral method faces difficulties in representing
miscellaneous defects and stochastic background variations on textured surfaces. Model-
based methods tend to map the image to a low-dimensional feature space to filter out noise
and obtain better feature representation. For example, Yang et al. [11] proposed an active
contour model (ACM)-based defect detection method to effectively segment defect features
from a complex background. However, the ACM-based method struggles with calculating
the convergence position due to the lack of constraints.

In recent years, there has been rapid development in the application of deep learning
techniques for defect detection. Deep learning-based methods can be broadly categorized
into three types: supervised learning, unsupervised learning, and weakly supervised learn-
ing. The objective of supervised learning method [12] is to model a conditional distribution
between input vectors (surface images) and target vectors. However, supervised learning
heavily relies on large amounts of training data and may lead to severe overfitting when
trained on small datasets. Unsupervised learning aims to recover the original data from
the abstracted data with minimal loss, and it learns the hidden data features. For instance,
P. Perera et al. [13] utilized deep convolutional generative adversarial networks (GAN) to
detect defects on textured surfaces, requiring only positive samples without any defect
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samples or manual labels. Nonetheless, unsupervised learning is sensitive to noise and is
heavily influenced by initial values. Few-shot learning (FSL) is a typical example of weakly
supervised learning methods. FSL aims to mimic human learning abilities, requiring only
a few samples to complete the learning and possessing strong generalization capabilities.
FSL transfers extensive prior knowledge from the source domain to the target domain, then
compares the feature similarity between the support set and the query set for classification.

2.2. Attention Mechanism

The attention mechanism can effectively focus on discriminative regions and filter out
redundant information. For example, Hu et al. [14] designed the squeeze-and-excitation
module (SENet) to obtain the weights for each channel and suppress or enhance channels to
improve recognition accuracy. Wang et al. [15] improved upon the SENet [14] by proposing
the efficient channel attention (ECA), which aggregates cross-channel information through
a one-dimensional convolutional layer to obtain more accurate attentional information.
CBAM [16] considers that not only do channels contain rich attention information, but also
the interpixel information on the map has significant attention information. CBAM builds
two submodules (spatial attention module and channel attention module) to aggregate
attention information from both spatial and channel aspects, obtaining more comprehensive
and reliable attention information. The SK-Net [17] argues that different input images
require different receptive fields. The SK-Net designs three parts (split, fuse, and select)
that enable each neuron to adaptively adjust its receptive field size according to the scale of
the input information. Although the defects on the insulator are very small, the difference
between the normal and defective areas is obvious, and the features of the normal and
defective regions are stable.

3. The Proposed MGFNet
3.1. MGFNet Overview

The network architecture of the MGFNet is illustrated in Figure 4, which consists
of four main parts: the backbone network, the traversable clipping (TC) module, the
progressive multi-grained learning strategy (PMGL), and the region relation attention
(RRA) module. The MGFNet uses ResNet50 as its backbone network, which contains
four residual blocks: Res_Block0, Res_Block1, Res_Block2, and Res_Block3. As depicted
in Figure 5, the TC first divides the insulator images into multiple patches according to
their aspect ratios, avoiding distortions caused by defects. Then, multiple local patches
are input into the MGFNet for traversable diagnosis. The PMGL employs four steps to
learn multi-grained features and integrates them to obtain a more comprehensive feature
representation. The RRA module learns the correlation between non-local features, enabling
the network to better distinguish the normal and abnormal regions. Each module will be
elaborated in detail below.

3.2. Traversal Clipping Module

Due to the structural characteristics of insulators, image pre-processing often causes
the serious distortion of insulators, making it more difficult to identify. The reason for the
distortion is that the network requires the input image to be square (i.e., have an aspect ratio
of 1), while insulator images are typically rectangular with a large aspect ratio. Resizing
the insulator image forcibly to a square will cause significant distortion. Therefore, our
approach is to crop the insulator image into multiple patches with aspect ratios close to 1,
and then input these patches into the network for recognition in sequence. Based on the
above analysis, we propose the TC. As shown in the Figure 6, the TC divides the complete
insulator image into n insulator patches according to the aspect ratio r = h/w (where h and w
represent the height and width of the input image, respectively). The TC can be represented
as follows:

x1, x2, . . . , xn = TC(x, k) (1)
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where k (k > 1) is a hyperparameter used to control the aspect ratio of patches to approach
k. The number of patches output by the TC is determined by the following formula:

n = [r/k] (2)

where [·] is the quotient of r divided by k. k has a great effect on the distortion of the
image and the speed of the model. For example, as k increases, the aspect ratio of patches
increases, and distortion also increases accordingly, but the number of outputs decreases,
which speeds up the recognition of an image. Specifically, the choice of k will be discussed
in the experimental section.
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features, enabling the network to distinguish better between normal and abnormal areas.
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Figure 5. The defect recognition stage uses the proposed MGFNet to diagnose the health status of
the insulator.

3.3. Progressive Multi-Granularity Learning Strategy

Due to the impact of different environments (such as lightning and acid rain) on insu-
lators, the discriminative parts of the defects are multi-granularity and irregular. Therefore,
obtaining the multi-granularity features of the defects is crucial for the performance of
identification. To obtain richer multi-granularity features, we adopt the PMGL to address
this issue. As shown in the Figure 4, the PMGL is divided into four steps (represented
by yellow, purple, green, and red arrows for steps 1–4) to learn the multi-granularity
information. Since step 4 is different from step 1–3, we introduce steps 1–3 first. In step 1 of
the PMGL, the Res_Block0-1 shallow network is first trained to obtain the coarse-grained
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feature m1. In step 2 of the PMGL, the deeper network layer Res_Block0-2 with a larger
receptive field is gradually trained to obtain the medium-grained feature m2. In step 3 of
the PMGL, the deep network Res_Block0-3 is trained to cover the entire image and obtain
the fine-grained feature m3. At this point, the PMGL completes a feature extraction from
coarse-grained to fine-grained. Specifically, in the process of step i (i < 3), a patch xn of the
insulator image x is input into Res_Block0-i to obtain a feature mi, which is fed to a global
maximum pooling layer and a fully connected layer to get prediction result yi. Then, we
use a cross entropy loss LCE to update the parameters of the network in each step by back
propagation. It is important to note that all parameters are optimized in the current step,
regardless of whether they were updated in a previous step. The loss function of step i L(i)

pro
can be expressed as follows

L(i)
step = L(i)

CE

(
y(i)j

)
= −∑xj∈D y(i)j lny(i)j (3)

where D is the training set and xj is the j-th image in D. After step 1–3, the MGFNet has
enabled the network to learn features at multi-granularities (i.e., m1, m2, m3). However,
simply using the MGFNet will not result in diverse features and lacks non-local information
interaction, as the multi-granularities information obtained through the MGFNet may be
concentrated in similar areas. To address this problem, in step 4, the KL divergence and RRA
(introduced in Section 3.5) is designed to guide multi-granularities features m1, m2, and m3
to focus on different regions, increasing the probability of capturing less obvious defective
areas. Specifically, as shown by the red arrows in the Figure 4, the multi-granularity features
(m1, m2, and m3) obtained in steps 1–3 are inputted into LKL, and by maximizing the KL
divergence between the features from different steps, we force multi-granularity features to
learn different features. The LKL calculation process is as follows

LKL
(
mi, mj

)
= −

3

∑
i=1

3

∑
j=3−i

milog

(
mi
mj

)
(4)

where mi and mj are the multi-granularity features from different steps.

Drones 2023, 7, x FOR PEER REVIEW 7 of 20 
 

where [·] is the quotient of 𝑟 divided by 𝑘. 𝑘 has a great effect on the distortion of the im-

age and the speed of the model. For example, as 𝑘 increases, the aspect ratio of patches 

increases, and distortion also increases accordingly, but the number of outputs decreases, 

which speeds up the recognition of an image. Specifically, the choice of 𝑘 will be discussed 

in the experimental section. 

 

Figure 6. TC divides the complete insulator image into n insulator patches according to the aspect 

ratio. 

3.3. Progressive Multi-Granularity Learning Strategy 

Due to the impact of different environments (such as lightning and acid rain) on in-

sulators, the discriminative parts of the defects are multi-granularity and irregular. There-

fore, obtaining the multi-granularity features of the defects is crucial for the performance 

of identification. To obtain richer multi-granularity features, we adopt the PMGL to ad-

dress this issue. As shown in the Figure 4, the PMGL is divided into four steps (repre-

sented by yellow, purple, green, and red arrows for steps 1–4) to learn the multi-granu-

larity information. Since step 4 is different from step 1–3, we introduce steps 1–3 first. In 

step 1 of the PMGL, the Res_Block0-1 shallow network is first trained to obtain the coarse-

grained feature  1. In step 2 of the PMGL, the deeper network layer Res_Block0-2 with a 

larger receptive field is gradually trained to obtain the medium-grained feature  2. In 

step 3 of the PMGL, the deep network Res_Block0-3 is trained to cover the entire image 

and obtain the fine-grained feature   . At this point, the PMGL completes a feature ex-

traction from coarse-grained to fine-grained. Specifically, in the process of step i (i < 3), a 

patch 𝑥𝑛 of the insulator image 𝑥 is input into Res_Block0-i to obtain a feature   , which 

is fed to a global maximum pooling layer and a fully connected layer to get prediction 

result   . Then, we use a cross entropy loss  𝐶𝐸  to update the parameters of the network 

in each step by back propagation. It is important to note that all parameters are optimized 

in the current step, regardless of whether they were updated in a previous step. The loss 

function of step i   𝑟 
( )

 can be expressed as follows 

     
( )

=  𝐶𝐸
( )
( 𝑗

( )
) = −∑  𝑗

( )
𝑥𝑗∈𝐷

𝑙𝑛 𝑗
( )

  (3) 

where 𝐷 is the training set and 𝑥𝑗 is the j-th image in 𝐷. After step 1–3, the MGFNet has 

enabled the network to learn features at multi-granularities (i.e.,  1,   2,    ). However, 

simply using the MGFNet will not result in diverse features and lacks non-local infor-

mation interaction, as the multi-granularities information obtained through the MGFNet 

may be concentrated in similar areas. To address this problem, in step 4, the KL divergence 

and RRA (introduced in Section 3.5) is designed to guide multi-granularities features 

 1,   2, and    to focus on different regions, increasing the probability of capturing less 

obvious defective areas. Specifically, as shown by the red arrows in the Figure 4, the multi-

granularity features ( 1,   2, and    ) obtained in steps 1–3 are inputted into    , and by 

TC(x, k)

w

h

𝑥1

x

𝑥2

𝑥 

Figure 6. TC divides the complete insulator image into n insulator patches according to the
aspect ratio.

3.4. Local Relationship Attention Module

Compared to typical recognition tasks, identifying insulator defects poses challenges
due to the absence of fixed semantic information and the wide variety of visual features
exhibited by defects. However, there is a discernible contrast between the defect and normal
regions. Therefore, understanding the differences between features in the various regions
can enhance the ability to distinguish between defect and normal features. Unfortunately,
many current methods extract abstract features directly from the entire image, neglecting
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the relationships between local features. To overcome this limitation, we introduce RRA,
which captures the relationships between non-local local features. The RRA structure is
shown in Figure 4. In step 4, m1, m2, m3 are not only optimized by the KL divergence but
also input into the RRA for non-local features interaction to the obtained enhanced features
m̂i. The RRA process is as follows

q, k, v = Conv(mi)

aq,k = So f tmax
(
qkT/

√
dk
)

m̂i = aq,kv
(5)

where aq,k means the similarity between q and k. Therefore, we obtained an enhanced
feature m̂i. Then, the enhanced features m̂1, m̂2, and m̂3 are concatenated to obtain a more
comprehensive feature m̂cat, and the prediction result y(4) is obtained through a classifier.
The calculation process is as:

y(4) = Fc(GMP(Concat(m̂1, m̂1, m̂1))) (6)

Finally, the cross-entropy loss function is used to calculate the loss between y(4) and
the label, and the calculation formula is as follows:

L(4)
CE = − ∑

xj∈D
y(4)j lny(4)j (7)

Step 4 of the PMGL consists of the loss function L(4)
CE and LKL (as introduced in

Section 4.2.3). Thus, the loss function of Step 4 in the PMGL can be described as follows:

L(4)
step = αL(4)

CE + βLKL (8)

where α and β are the equilibrium parameters of the loss function. The parts of the MGFNet
are introduced, and its detailed process is shown in Algorithm 1.

Algorithm 1: The training process of MGFNet.

Input: training set D, model parameter θ, hyperparameter k, α, β

while n ≤ N do
randomly sample x in D
[x1, x2, . . . , xn] = TC(x, k)
for xi in [x1, x2, . . . , xn] :

for i in rage (4): ## the 4 steps of MGFNet
if i < 3:

mi= Res_Block0−i(xi)
y(i)= Fc(GMP(mi))

θ0−i = θ0−i −∇θ0−i L
(i)
step

(
y(i)
)

## θ0−i is the parameter of Res_Block0-i
else:

m̂1, m̂2, m̂3 = RRA(m1, m2, m3)
y(4) = Fc(GMP(Concat(m̂1 , m̂2 , m̂3)))

L(4)
step = αL(4)

CE

(
y(4)

)
+ βLKL(m1 , m2 , m3)

θ0−3 = θ0−3 −∇θ0−3 L(4)
step

Return model parameter θ

3.5. MGFNet-Based Two-Stage Insulator Defect Detection Algorithm

During the training of the MGFNet, we used insulator images artificially extracted
from UAV images without complex background interference. However, actual UAV images
contain complex background interference, and the MGFNet is unable to effectively detect
insulator defects in aerial images. Therefore, in this section, we propose a two-stage
insulator defect detection algorithm based on the MGFNet for the accurate identification of
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insulator defects in UAV aerial images. As shown in Figure 7, the MGFNet-based two-stage
insulator defect detection algorithm consists of two stages: an insulator extraction stage
and defect recognition stage. The insulator extraction stage uses objective detection models
(such as the Faster RCNN, SSD [18], YoLo) to locate and extract the insulator in aerial
images to eliminate the influence of complex backgrounds. The defect recognition stage
uses the proposed MGFNet to diagnose the health status of the insulator. Compared to
the one-stage detection model, the two-stage insulator defect detection algorithm often
has a higher detection accuracy and better robustness due to the elimination of complex
background interference and the narrowing of the recognition scope. Furthermore, this
algorithm offers excellent flexibility, enabling the use of various objective detection models
to meet the specific requirements of different platforms. For instance, YoLov5 can be applied
to unmanned aerial vehicle platforms with limited computing power, while Faster RCNN
is better suited for platforms that emphasize accuracy and possess a superior computing
power for object detection.
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4. Experimental Results and Analysis

In this section, we present a detailed description of the experimental setup and
extensively evaluate the effectiveness of our proposed methods and modules through
numerous experiments.

4.1. Implementation Details
4.1.1. Training Process

In this paper, the experimental environment and parameter configuration are shown
in Table 1. All experiments are conducted on the PyTorch platform and a single GPU
(NVIDIA TITAN V). The insulator images are inputted into the TC for cropping to obtain
local patches of insulators, then the patches are resized to 224 × 224 and input to the
PMLNet. The training of the PMLNet employs a batch size of 8 for 50 epochs. During
training, the stochastic gradient descent (SGD) optimizer is used with a momentum of 0.9
and a weight decay of 0.0005. The learning rate is set to 0.001 for the first 20 epochs and is
multiplied by 0.9 every 2 epochs thereafter. This way, the learning rate is gradually reduced
to better train the network and improve its performance. The hyperparameters k, α and β
are set to 1.3, 0.8, and 0.2, respectively.

4.1.2. Dataset Acquisition

In this paper, the insulator dataset is collected by DJI M300RTK UAV to take aerial
images of insulators at different places and at different time. The DJI M300RTK UAV), as
depicted in Figure 8, boasts numerous advantages, including a long endurance of 55 min
and six-direction positioning obstacle avoidance function. We equipped the UAV with the
Zenmuse P1 full-frame camera and deployed it to patrol power lines and capture images
of insulators. In addition, we also collected a small number of defective insulator images
from the internet as a supplement.

The insulator dataset is divided into four classes: normal insulators, thunderstroke
insulators, breakage insulators, and pollution insulators, where thunderstroke, breakage
and pollution insulators are collectively referred to as abnormal insulators. The number



Drones 2023, 7, 333 10 of 19

of samples in each category of the dataset is shown in Figure 9. The training set contains
1316 images (including 155 normal insulators, 493 thunderstroke insulators, 503 breakage
insulators, and 165 pollution insulators), and the test set contains 344 images (including
144 normal, 50 pollution, 78 breakage, and 72 thunderstroke insulators), as shown in the
Figure 10a for each class. After the TC, the training set contains 3495 patches (including
1263 normal patches, 208 pollution patches, 916 breakage patches, and 1111 thunderstroke
patches). It can be seen that the number of data samples is greatly increased after the TC. By
comparison, it shows that the number of data samples has significantly increased after the
application of the TC. Thus, the TC not only compels the network to recognize more subtle
features but also acts as a data augmentation technique. Figure 10b shows the distribution
of each class after the TC.

Table 1. Experimental environment and parameter configuration.

Hardware platform
CPU Intel® X®(R) Gold 6136 CPU @3.00 GHz
GPU TITAN v@12 GB

Memory size 187 GB

Software platform
Operating system version Ubuntu 16.04.6 LTS
Deep learning framework Pytorch 1.4.0

Python version 3.8.12

Hyperparameters

Batch-size 8
Epoch 50

Input-size 224 × 224
Learning rate 0.001

Optimizer SGD
Momentum coefficient 0.9

Weight decay coefficient 5 × 10−4

k 1.3
α 0.8
β 0.2

Drones 2023, 7, x FOR PEER REVIEW 10 of 20 
 

and a weight decay of 0.0005. The learning rate is set to 0.001 for the first 20 epochs and is 

multiplied by 0.9 every 2 epochs thereafter. This way, the learning rate is gradually re-

duced to better train the network and improve its performance. The hyperparameters 𝑘, 

𝛼 and 𝛽 are set to 1.3, 0.8, and 0.2, respectively. 

Table 1. Experimental environment and parameter configuration. 

Hardware platform 

CPU Intel® X®(R) Gold 6136 CPU @3.00 GHz 

GPU TITAN v@12 GB 

Memory size 187 GB 

Software platform 

Operating system version Ubuntu 16.04.6 LTS 

Deep learning framework Pytorch 1.4.0 

Python version 3.8.12 

Hyperparameters 

Batch-size 8 

Epoch 50 

Input-size 224 × 224 

Learning rate 0.001 

Optimizer SGD 

Momentum coefficient 0.9 

Weight decay coefficient 5 × 10−4 

𝑘 1.3 

𝛼 0.8 

𝛽 0.2 

4.1.2. Dataset Acquisition 

In this paper, the insulator dataset is collected by DJI M300RTK UAV to take aerial 

images of insulators at different places and at different time. The DJI M300RTK UAV), as 

depicted in Figure 8, boasts numerous advantages, including a long endurance of 55 min 

and six-direction positioning obstacle avoidance function. We equipped the UAV with the 

Zenmuse P1 full-frame camera and deployed it to patrol power lines and capture images 

of insulators. In addition, we also collected a small number of defective insulator images 

from the internet as a supplement. 

 

Figure 8. The DJI M300RTK UAV. 

The insulator dataset is divided into four classes: normal insulators, thunderstroke 

insulators, breakage insulators, and pollution insulators, where thunderstroke, breakage 

and pollution insulators are collectively referred to as abnormal insulators. The number 

of samples in each category of the dataset is shown in Figure 9. The training set contains 

Figure 8. The DJI M300RTK UAV.

Drones 2023, 7, x FOR PEER REVIEW 11 of 20 
 

   

(a) (b) (c) 

Figure 9. Number of samples in each category of the dataset. (a) Number of each category in the 

training set. (b) Number of each category in the training set after TC. (c) Number of each category 

in the test set. 

1316 images (including 155 normal insulators, 493 thunderstroke insulators, 503 

breakage insulators, and 165 pollution insulators), and the test set contains 344 images 

(including 144 normal, 50 pollution, 78 breakage, and 72 thunderstroke insulators), as 

shown in the Figure 10a for each class. After the TC, the training set contains 3495 patches 

(including 1263 normal patches, 208 pollution patches, 916 breakage patches, and 1111 

thunderstroke patches). It can be seen that the number of data samples is greatly increased 

after the TC. By comparison, it shows that the number of data samples has significantly 

increased after the application of the TC. Thus, the TC not only compels the network to 

recognize more subtle features but also acts as a data augmentation technique. Figure 10b 

shows the distribution of each class after the TC. 

  

(a) (b) 

Figure 10. Samples of each category in the data set (a) Original images; (b) the image after TC. 

4.1.3. Metrics 

To verify the effectiveness of the proposed the MGFNet, we adopted three widely 

used metrics to quantitatively evaluate the performance of our defect recognition method, 

i.e., accuracy (Acc), Prams (megabytes), and Speed (images/s). 

The accuracy (Acc) measures the proportion of correctly classified samples on the test 

data to the total number of samples. The specific calculation formula is as follows: 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (9) 

where TP (True Positives) represent the number of positive samples that are correctly 

identified as positive by the classifier; FP (False Positives) represent the number of nega-

tive samples that are incorrectly identified as positive; TN (True Negatives) represent the 

number of negative samples that are correctly identified as negative by the classifier; FN 

(False Negatives) represent the number of positive samples that are incorrectly identified 

as negative. 

Figure 9. Number of samples in each category of the dataset. (a) Number of each category in the
training set. (b) Number of each category in the training set after TC. (c) Number of each category in
the test set.



Drones 2023, 7, 333 11 of 19

Drones 2023, 7, x FOR PEER REVIEW 11 of 20 
 

   

(a) (b) (c) 

Figure 9. Number of samples in each category of the dataset. (a) Number of each category in the 

training set. (b) Number of each category in the training set after TC. (c) Number of each category 

in the test set. 

1316 images (including 155 normal insulators, 493 thunderstroke insulators, 503 

breakage insulators, and 165 pollution insulators), and the test set contains 344 images 

(including 144 normal, 50 pollution, 78 breakage, and 72 thunderstroke insulators), as 

shown in the Figure 10a for each class. After the TC, the training set contains 3495 patches 

(including 1263 normal patches, 208 pollution patches, 916 breakage patches, and 1111 

thunderstroke patches). It can be seen that the number of data samples is greatly increased 

after the TC. By comparison, it shows that the number of data samples has significantly 

increased after the application of the TC. Thus, the TC not only compels the network to 

recognize more subtle features but also acts as a data augmentation technique. Figure 10b 

shows the distribution of each class after the TC. 

  

(a) (b) 

Figure 10. Samples of each category in the data set (a) Original images; (b) the image after TC. 

4.1.3. Metrics 

To verify the effectiveness of the proposed the MGFNet, we adopted three widely 

used metrics to quantitatively evaluate the performance of our defect recognition method, 

i.e., accuracy (Acc), Prams (megabytes), and Speed (images/s). 

The accuracy (Acc) measures the proportion of correctly classified samples on the test 

data to the total number of samples. The specific calculation formula is as follows: 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (9) 

where TP (True Positives) represent the number of positive samples that are correctly 

identified as positive by the classifier; FP (False Positives) represent the number of nega-

tive samples that are incorrectly identified as positive; TN (True Negatives) represent the 

number of negative samples that are correctly identified as negative by the classifier; FN 

(False Negatives) represent the number of positive samples that are incorrectly identified 

as negative. 

Figure 10. Samples of each category in the data set (a) Original images; (b) the image after TC.

4.1.3. Metrics

To verify the effectiveness of the proposed the MGFNet, we adopted three widely
used metrics to quantitatively evaluate the performance of our defect recognition method,
i.e., accuracy (Acc), Prams (megabytes), and Speed (images/s).

The accuracy (Acc) measures the proportion of correctly classified samples on the test
data to the total number of samples. The specific calculation formula is as follows:

Acc =
TP + TN

TP + FP + FN + TN
(9)

where TP (True Positives) represent the number of positive samples that are correctly
identified as positive by the classifier; FP (False Positives) represent the number of negative
samples that are incorrectly identified as positive; TN (True Negatives) represent the
number of negative samples that are correctly identified as negative by the classifier; FN
(False Negatives) represent the number of positive samples that are incorrectly identified
as negative.

The Prams (megabytes) represent the number of parameters that need to be trained in
the model.

Speed (images/s) refers to the number of images that a model can process per second.

4.2. Ablation Studies

To verify the effectiveness of the proposed module, we conduct multiple ablation
experiments on the ES, PGL, and RRA. Four models are set up: Model (a) ResNet50,
Model (b) ResNet50 with TC without PGL and RRA, Model (c) ResNet50 with TC and PGL
but without RRA, and Model (d) ResNet50 with all modules (MGFNet). The results of
the ablation experiments are presented in Table 2. Comparing Model (a) and Model (b),
we observe significant improvements in accuracy for each class, particularly for normal,
damaged, and lightning-struck classes, which are increased by 31.69%, 38.47%, and 52.94%,
respectively. We note that Model (b) has a slightly lower speed than Model (a), but the
speed is still fast enough to meet real-time requirements. After comparing Model (b)
and Model (c), the results indicate that Model (c) has a 2.61% improvement in accuracy
for all classes, with a significant 10.25% improvement in accuracy for the damaged class.
This demonstrates that the proposed PGL can effectively alleviate the scale diversity
problem of defects. Furthermore, comparing Model (c) and Model (d), an overall accuracy
improvement of 0.58% is observed, with a 2.57% increase in accuracy for the damaged class.
This proves that RRA can play an essential role in fine-grained defect recognition.
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Table 2. Results of ablation studies.
√

means using module during training.

Model (a) (b) (c) (d)

ResNet50
√ √ √ √

TC
√ √ √

MGFNet
√ √

RRA
√

Acc (%)

Average 56.39 88.08 90.69 91.27
Normal 70.13 95.12 97.50 98.31

Anomaly 80.49 86.49 92.00 92.50
Pollution 81.99 88.99 90.00 90.01
Breakage 30.76 77.23 81.21 82.05

Thunderstroke 38.89 85.12 87.83 87.99

Params (megabytes) 42.5 42.5 69.16 84.1
Speed (images/sec) 419.6 138.3 130.3 126.2

4.2.1. Effectiveness of Each Learning Stage and Multi-Stage Fusion

For the effectiveness of each learning stage and multi-stage fusion, we conducted a
series of experiments on Model (c) with different learning stages. Table 3 demonstrates that
the accuracy of each category improves gradually from 1 to 3 steps, due to the increased
depth of the network which expands the receptive field of features and gathers more
semantic information [19]. In addition, we also observe that multi-granularity fusion
(without KL divergence) further improves the accuracy of the model, demonstrating that
multi-granularity information fusion has a significant improvement effect. Furthermore,
multi-granularity fusion (with KL divergence) achieved the best classification accuracy,
which demonstrates that the features optimized by KL divergence have richer semantic
information.

Table 3. The effectiveness studies of each learning stage and multi-stage fusion.

Model (c) KL Divergence
Acc (%)

Average Normal Abnormal Pollution Breakage Thunderstroke

Step 1 of PMGL 80.12 89.21 83.35 78.65 80.34 62.72 80.12
Step 2 of PMGL 85.35 93.36 89.88 82.36 85.15 71.62 85.35
Step 3 of PMGL 89.58 95.15 91.56 87.11 89.99 79.71 89.58

Multi-granularity fusion 90.38 97.28 91.83 88.52 81.09 87.93 90.38
Multi-granularity fusion 91.27 98.31 92.50 90.01 82.05 87.99 91.27

4.2.2. Visualization of the RRA

To better understand the proposed RRA, we use Grad-CAM [19] to visualize the RRA.
In Grad-CAM, the color represents the gradient value calculated by the neural network
for each pixel, which is then mapped to the input image and encoded into different colors.
Red represents a positive gradient, blue represents a negative gradient, and yellow and
green represent a neutral gradient. Strong positive gradient values indicate that the region
contributes more to the prediction result, while negative gradient values indicate the
opposite. Observing Grad-CAM can help us understand which areas the RRA focuses
on. Figure 11 clearly illustrates that without the RRA, attention is predominantly directed
towards normal areas while subtle defect areas receive relatively low attention weights. The
RRA not only focuses on normal areas but also captures subtle defect areas well. In other
words, our RRA has a larger receptive field through non-local learning, which strengthens
the ability to extract fine-grained features.
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4.2.3. Sensitivity Analysis of α and β

To better understand the effects of the two balance parameters α and β, in the total
loss formula Equation (7), we conducted a sensitivity analysis of α and β. As shown in
Figure 12, we set α and β to (0, 1), (0.2, 0.8), (0.4, 0.6), (0.8, 0.2), and (1, 0), respectively. When
α = 0 and β = 1, the total loss is optimized only through KL divergence, and the model
cannot converge. After increasing α and decreasing β, the accuracy initially increases
but then decreases. When α = 0.8 and β = 0.2, the accuracy reaches its peak. We analyze
that this is because the semantic information learned by the cross-entropy loss plays a
decisive role in the classification performance. When α is too small, the role of cross-
entropy loss is weakened, and the accuracy inevitably decreases or even fails to converge.
On the other hand, KL divergence plays a supporting role in forcing multi-granularity
features to focus on different regions, thereby helping to capture as many details as possible.
The experiments show that an appropriate β indeed optimizes the feature extraction of
the network.
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Figure 12. Sensitivity analysis study of α and β.

4.2.4. Sensitivity Analysis of k

To investigate the impact of different values of k in Equation (4) on recognition accuracy,
we vary the values of k in a set of {1.0, 1.3, 1.6, 1.9, 2.1}. As shown in the Table 4, the accuracy
shows a stable then decreasing trend as k increases. The accuracy reaches its peak when
k = 1.3. Our analysis shows that reducing the value of k results in less distortion in the
insulator patch and improves recognition accuracy. However, this also increases the number
of clippings, which slows down recognition speed for a single image. Conversely, increasing
k results in more severe distortion, but improves recognition speed for a single image. After
considering both accuracy and speed, we determined that k = 1.3 is the optimal choice.
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Table 4. Sensitivity analysis study of k.

k
Acc (%)

Speed (Images/s)
Average Normal Anomaly Pollution Breakage Thunderstroke

1.0 91.12 98.28 92.46 87.92 81.99 87.52 95.2
1.3 91.27 98.31 92.50 90.01 82.05 87.99 126.2
1.6 90.82 98.72 92.22 87.69 81.81 86.95 144.1
1.9 89.65 97.31 91.30 86.86 80.25 86.45 156.2
2.1 88.12 95.65 90.28 85.65 79.05 84.60 180.2

4.3. Comparison Experiment
4.3.1. Quantitative Evaluation

According to Tables 5 and 6, our MGFNet achieves an accuracy of 91.27%, 98.31%,
92.50%, 88.00%, 82.05%, and 87.52% on all of class, normal, anomaly, pollution, breakage,
and thunderstroke, respectively. It is observed that without the TC, other state-of-the-
art methods perform significantly worse in accuracy than the MGFNet. Therefore, we
mainly compare these methods with the TC. From the Tables 5 and 6, it can be seen that
lightweight methods (such as SqueezeNet, MobileNet, and ShuffleNetv2) have advantages
in terms of parameter and speed. However, their accuracy is not sufficient for practical
applications. With the development of hardware, the tolerance for model parameters has
increased. Our MGFNet outperforms lightweight methods with accuracy and has already
met real-time requirements. Recent methods such as CSRA and MobileViTv2 achieve
a similar accuracy to the MGFNet on all classes. However, there is still a difference of
5.39–4.14% in accuracy for fine-grained categories (such as anomaly categories), indicating
that the proposed MGFNet can better handle these fine-grained features. Although methods
such as CSRA and MobileViTv2 improve the feature selection ability by using attention
mechanisms, they are still inferior to the MGFNet in the overall accuracy and accuracy of
anomaly categories. This may be because these advantage algorithms lack the ability to
fuse multi-granularity features. In general, our method is significant in accuracy, especially
for anomalous categories. Although our method has not achieved the best performance in
terms of the parameter quantity and speed, it has fully met the practical requirements.

Table 5. Comparison of MGFNet state-of-the-art methods on accuracy.

Model TC
Acc (%)

Average Normal Anomaly Pollution Breakage Thunderstroke

ResNet50 [20] No 56.39 70.13 80.49 81.99 30.76 38.89
SqueezeNet [21] No 46.80 54.16 80.99 79.99 12.82 45.84
MobileNet [22] No 46.48 54.65 80.25 79.18 12.75 43.97
ShuffleNetv2 [23] No 46.20 54.15 80.52 79.85 12.75 43.16
SENet [14] No 59.11 73.24 77.12 83.02 38.02 37.09
CBAM [16] No 59.75 73.65 78.63 83.45 38.46 38.55
CSRA [24] No 61.35 76.26 79.36 82.64 39.96 39.91
MobileViTv2 [25] No 62.32 75.36 79.83 82.36 38.36 48.28
ResNet50 [20] Yes 88.08 95.12 86.49 89.99 77.23 85.12
SqueezeNet [21] Yes 72.09 81.94 84.49 73.99 57.69 66.66
MobileNet [22] Yes 82.26 91.66 85.99 77.99 75.64 73.59
ShuffleNetv2 [23] Yes 76.16 79.86 82.99 83.99 67.94 72.22
SENet [14] Yes 89.28 98.45 87.65 88.29 78.12 83.85
CBAM [16] Yes 89.03 98.22 87.35 88.15 77.99 84.11
CSRA [24] Yes 89.77 98.56 87.11 88.89 78.25 82.42
MobileViTv2 [25] Yes 90.07 96.88 88.36 88.23 81.23 87.30
MGFNet (Ours) Yes 91.27 98.31 92.50 90.01 82.05 87.99



Drones 2023, 7, 333 15 of 19

Table 6. Comparison of MGFNet state-of-the-art methods on params and speed.

Model TC Params (Megabytes) Speed (Images/s)

ResNet Yes 42.5 156.3
SqueezeNet Yes 1.2 1342.7
MobileNet Yes 3.5 654.3
ShuffleNetv2 Yes 1.4 503.8
SENet Yes 44.5 115.1
CBAM Yes 44.5 125.0
CSRA Yes 45.7 124.16
MobileViTv2 Yes 19.30 125.3
MGFNet(ours) Yes 84.1 126.2

4.3.2. Qualitative Evaluation

Figure 13 illustrates the recognition results of various methods on the same targets,
providing qualitative results. The samples (a)–(d) in Figure 13 show that the MGFNet,
MobileViTv2, CSRA, CBAM, SENet, and ResNet exhibit a superior recognition perfor-
mance for relatively simple targets. However, SqueezeNet, MobileNet, and ShuffleNetv2
have some target misclassifications, indicating that the robustness of these methods needs
improvement. The samples (e)–(h) are more challenging to recognize due to relatively
concealed defects, leading to easy network misidentification. For example, only the ResNet
and MGFNet correctly identify target (e), but the ResNet has misclassifications in (f)–(h).
Target (f) shows that the reflection greatly misleads the algorithm, causing most methods
to misjudge it as a damaged insulator. However, the proposed MGFNet model can still
correctly identify the target in (f), indicating strong robustness. In sample (h), the similar-
ity between the lightning strike and the normal area makes it easy for even a person to
make a wrong judgment, but the MGFNet can still successfully identify it. These results
demonstrate that the MGFNet has an excellent feature extraction ability in identifying small
defects, emphasizing the effectiveness of the proposed method in improving the recog-
nition performance of defective insulators. However, from the recognition performance
of the MGFNet on Figure 12i,j, it can be seen that the MGFNet is not sensitive enough to
morphological defects and lacks the ability to extract edge features. Therefore, in future
work, we hope to add an edge extraction sub-network based on the existing network to
improve its learning ability for morphological features.

4.4. MGFNet-Based Two-Stage Insulator Defect Detection Experiment

Based on Table 7, it can be observed that when the MGFNet is added to the YoLov5 and
Faster RCNN, their defect recognition performance is better than using YoLov5 and Faster
RCNN alone. This is because recognizing defects using the YoLov5 and Faster RCNN alone
requires being faced with complex background interference, while the YoLov5+MGFNet
and Faster RCNN+MGFNet can effectively eliminate background interference and achieve
more precise recognition of defects. Moreover, based on Table 7, both the YoLov5+MGFNet
and Faster RCNN+MGFNet have used the MGFNet for insulator defect detection. How-
ever, the YoLov5+MGFNet outperforms the Faster RCNN+MGFNet in terms of defect
recognition accuracy with a higher accuracy score of 91.27% compared to 91.17% by the
Faster RCNN+MGFNet. In terms of the parameters, the YoLov5+MGFNet has a smaller
number of parameters with 98.1 megabytes compared to the Faster RCNN+MGFNet
which has 444.1 megabytes. Additionally, the speed of the YoLov5+MGFNet is 24.45 im-
ages/sec, while the speed of the Faster RCNN+MGFNet is 16.86 images/sec. Therefore,
the YoLov5+MGFNet is a better choice for practical engineering deployment. The detection
results of the YoLov5+MGFNet are shown in Figure 14.
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Table 7. The performance of MGFNet-based two-stage insulator defect detection.

Model
Insulator Extraction Defect Recognition Params

(Megabytes)
Speed

(Images/s)mAP@0.5 (%) Acc (%)

YoLov5 100 79.15 14 19.19
Faster RCNN 100 79.85 360.1 29.12
YoLov5+MGFNet 100 91.27 98.1 24.45
Faster RCNN+MGFNet 100 91.17 444.1 16.86

4.5. Performance of MGFNet on UAV Platform

To achieve the real-time detection of an insulator inspection by drones, we utilize
the on-board camera ZED-Mini to capture UVA images, and subsequently employ the
on-board AI system Nvidia Jetson TX2 (TX2) to run the proposed MGFNet-based two-stage
insulator defect detection algorithm to diagnose insulators. The operating system of TX2
is Ubuntu 18.04, using PyTorch version 1.8.0 and Python version 3.6.9. By configuring
the deep learning environment on the TX2, we tested the detection speed of the MGFNet
running on the drone. Communication is facilitated through the Mavlink drone commu-
nication protocol between the communication layer and the ground station or DroneKit.
The interface layer functions as the visual interface for the ground station and DroneKit.
DroneKit, an open-source software toolkit developed by American 3D Robotics, permits
the third-party development of drone applications. As shown in Figure 15, this is the screen
of real-time detection by the drone, which successfully determined the health status of
the insulator, with a real-time detection speed of 25.25 images/sec. This proves that our
proposed MGFNet-based two-stage insulator defect detection algorithm can be effectively
deployed on the drone platform.
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5. Conclusions

This paper proposes a multi-granularity fusion network (MGFNet) for insulator defect
recognition. The MGFNet uses a traversal detection module to alleviate the problem of
defect distortion. To better extract the features of subtle defects, a new progressive multi-
scale learning strategy is proposed, which integrates the features of different scales and
increases the diversity of features. Finally, the RRA module is used to replace and better
learn the relationships between non-local features, improving the receptive field of features.
Multiple experiments have verified the effectiveness and practicality of our MGFNet. In
addition, we have successfully deployed the MGFNet-based two-stage insulator defect
detection algorithm on a UAV platform and completed real-time inspection for UAV images.

For future research, we identify two directions. First, some types of insulator defects
are extremely rare and cannot be trained with the current networks. Therefore, algorithms
capable of classifying with limited samples are needed. Few-shot learning is a new method
that utilizes techniques such as meta-learning and generative models to achieve the ability
to learn target features from a small number of samples. Second, we can use generative ad-
versarial networks (GANs) to generate rare insulator defect images. A GAN is a generative
model that trains a generator and a discriminator to generate data similar to the real data
distribution. GAN-based methods use the generator to generate a large amount of data for
training the classifier. This method has achieved good results in some tasks and is expected
to become a promising method in the future.
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