
Citation: Gui, J.; Yu, T.; Deng, B.;

Zhu, X.; Yao, W. Decentralized

Multi-UAV Cooperative Exploration

Using Dynamic Centroid-Based Area

Partition. Drones 2023, 7, 337.

https://doi.org/10.3390/

drones7060337

Academic Editor: Carlos Tavares

Calafate

Received: 5 April 2023

Revised: 10 May 2023

Accepted: 20 May 2023

Published: 23 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Decentralized Multi-UAV Cooperative Exploration Using
Dynamic Centroid-Based Area Partition
Jianjun Gui 1,† , Tianyou Yu 1,†, Baosong Deng 1,*, Xiaozhou Zhu 1 and Wen Yao 1,2

1 Defense Innovation Institute, Chinese Academy of Military Science, Beijing 100071, China
2 Intelligent Game and Decision Laboratory, Beijing 100071, China
* Correspondence: dbs@nudt.edu.cn
† These authors contributed equally to this work.

Abstract: Efficient exploration is a critical issue in swarm UAVs with substantial research interest due
to its applications in search and rescue missions. In this study, we propose a cooperative exploration
approach that uses multiple unmanned aerial vehicles (UAVs). Our approach allows UAVs to
explore separate areas dynamically, resulting in increased efficiency and decreased redundancy. We
use a novel dynamic centroid-based method to partition the 3D working area for each UAV, with
each UAV generating new targets in its partitioned area only using the onboard computational
resource. To ensure the cooperation and exploration of the unknown, we use a next-best-view (NBV)
method based on rapidly-exploring random tree (RRT), which generates a tree in the partitioned area
until a threshold is reached. We compare this approach with three classical methods using Gazebo
simulation, including a Voronoi-based area partition method, a coordination method for reducing
scanning repetition between UAVs, and a greedy method that works according to its exploration
planner without any interaction. We also conduct practical experiments to verify the effectiveness of
our proposed method.

Keywords: path planning; collaborative exploration; area partition; swarm UAVs

1. Introduction

Using swarm unmanned aerial vehicles (UAVs) to execute collaborative missions
in local areas has become an important direction of development in unmanned system
applications in recent years. Small UAVs are characterized by their ease of deployment and
agility [1], but the problem of collaborative control has always been challenging, especially
in search and rescue missions [2,3] where the environment structure may change and the
UAV swarm may not have prior knowledge of the task area. This requires the ability of
autonomy to be able to avoid obstacles and accurately reach the task area, as well as the
ability of intelligence to build environment maps and even identify specific targets [4–6].

In this study, we consider using a UAV swarm for exploring unknown areas and
dispatching multiple UAVs to collaboratively map specific areas, in order to achieve rapid
area reconnaissance. Therefore, we hope that the system can run efficiently and handle
the problem of perception overlap or motion interference between UAVs [7–10]. Each
participating individual can maintain a relative balance in task partitioning appropriately
and dynamically. At the same time, the system needs to have a certain degree of robustness
so that the task can be completed even if some individuals in the swarm are damaged [11].

Based on the above considerations, we propose a decentralized collaborative explo-
ration method in this paper. The key of our method is a novel dynamic centroid-based
partition algorithm, allowing the work area of each UAV to be dynamically adjusted as
the mission progresses. The framework structure of the entire system is shown in Figure 1.
Each UAV independently runs localization, mapping, partitioning, and planning, with only
a small amount of pose and weight parameters shared among the network. After the
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initial partitioning is generated, to ensure independence in their work, each individual
UAV prioritizes finding unexplored target directions in their own area. Within the par-
titioning calculation, based on the receding horizon next-best-view (NBV) exploration
planner [12], our proposed method generates rapidly-exploring random tree (RRT) [13]
with a constrained range, and the task can be quantitatively represented. By composing the
information of the UAV swarm’s pose and task weight, we adopt the concept of centroid,
whose variation results from changes in area partitioning, ensuring flexibility in mutual
work. In the mapping module, Octomap [14] is used to provide a quantitative expression
as free, occupied, and unknown for exploration.

Figure 1. System framework. The modules of localization, mapping, partition, and planning are run
independently in each UAV. All of the working UAVs connect to a 5G WiFi for information exchange.
Poses and platform weights are shared to dynamically adjust the partition areas. The details of
partition and weight calculation are discussed in Section 4.

The main contributions of this paper are as follows:

• We propose a dynamic centroid-based area partition method that takes into account
both the positions and current tasks of each UAV during the exploration process. This
approach ensures that the UAVs that detect fewer tasks are allocated more mission
area in the next step, maximizing the efficiency of the exploration process.

• The NBV exploration planner has been improved by making modifications so that
it only samples within a dynamically partitioned area. Additionally, we have in-
novatively formulated a weight to describe task quantity for the purpose of more
effective partitioning.

• The performance of the proposed method is validated by comparing with three classic
multi-UAV cooperative exploration methods in both indoor and outdoor simulation
environments. The practical experiment is also conducted to verify its feasibility.

The remainder of this paper is organized as follows. In Section 2, the works related to
swarm UAVs’ cooperative exploration and mapping are reviewed. Section 4 is devoted to
describing the details of our method, and in Section 5, comparative experiments in simula-
tion environments are given. The results of practical experiments are discussed in Section 6.
Finally, Section 7 concludes this paper and points out potential future improvements.

2. Related Work

In recent years, significant progress has been made within the academic community
regarding collaborative exploration by multiple UAVs in unknown environments [15].
In light of our research focus, this paper will examine three areas related to collaborative
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exploration: methods for multi-UAV coordination, multi-UAV mapping, and exploration
in unknown environments.

2.1. Multi-UAV Coordination for Exploration

Using multiple UAVs to increase exploration efficiency is a common practice, and re-
lated issues have been extensively studied [16]. One classic method involves maximizing
overall utility while minimizing the potential overlap of measurements among UAVs [8].
This idea has been employed in many works such as [10,11,17]. However, as the number
of UAVs increases, uncertainty [18] and redundant scanning between them become more
prevalent, especially in larger environments where the sensor range is relatively small
compared to the scale of the environment.

In conventional multi-agent allocation problems, a TSP-greedy allocation (TSGA)
planner with ideal centralized architecture and communication assumptions is utilized to
optimize global utility [19]. This approach considers the whole global task, which may
be time-consuming for collecting tasks in the center. Alternatively, a dynamic Voronoi
partition has been utilized in [7,10] to assign different target locations to individual UAVs,
guaranteeing the separateness between them. However, this area partition-based method
may not always be optimal as it does not consider the exploring process of each UAV,
resulting in less efficient task allocation.

Therefore, in this paper, a dynamic centroid-based area partition is proposed, which
considers the exploration process of each UAV for more reasonable task allocation. When a
UAV has an insufficient number of candidates, it will be assigned a larger partitioned area
to explore. The partition is processed dynamically to adapt to changing situations.

2.2. Multi-UAV Mapping for Exploration

To perform target selection and quantitative calculation in planning, it is necessary to
have a map that depicts the environment and further exploration areas. Two representative
volumetric mapping methods used in UAV exploration are truncated signed distance field
(TSDF) [20] and occupancy [14]. When employing multi-UAV mapping methods, the key
issue is often the map merging [21]. Previous works such as [8,17] involve each UAV
maintaining its local map and correcting odometry errors while exploring. They then
transmit their local maps with uncertain information to a central work station who can
combine local maps into a global one for further optimization. In [22], sensor messages
are shared among UAVs, and Gaussian mixture models (GMMs) are adopted to assist the
exploration planner of each UAV. In [11], two maps are utilized: a low-resolution map
for navigation and a high-resolution map for reconstruction. In order to achieve efficient
coordination in a decentralized method, it is crucial to share the global map message among
UAVs as quickly as possible. This is one of the central issues that we address in this paper.

2.3. Exploration in Unknown Environments

While fully functional UAVs possess autonomous sensing and computing capabili-
ties, the exploration planner enables them to independently perform tasks in unknown
environments. Existing works fall into two categories when executing under unknown:
frontier-based methods [23–25] and sampling-based methods [11,13,26,27]. With given
frontier clusters [28] or sampled viewpoints [27], an information-theoretic measure is
optimized to calculate information gain, resulting in reduced map uncertainty. The frontier-
based method explicitly computes the boundary between the known and unknown areas
and assigns UAVs to frontiers iteratively, but the frontier selection process can be time-
consuming as it traverses all surface voxels in a large environment [23]. Some methods
reject unsuitable frontiers during selection [1] to ease the computational burden. On the
other hand, the sampling-based method randomly selects viewpoints in free areas, such as
the rapidly-exploring random tree (RRT) [13] and probabilistic roadmap planner (PRM) [3],
which deliver speed and probabilistic completeness. However, these two methods could
converge locally.
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The two mentioned categories were widely used in the exploration planning of a
single UAV. However, for multi-UAV exploration, a coordination module is required to
prevent collisions and redundancies. The NBV method [12] is commonly utilized in such
scenarios. This method iteratively selects viewpoints in free space to refresh candidates’
paths, ensuring a consistent update rate. Our proposed method follows this approach by
integrating the strengths of the sampling-based method. This enables frequent recollection
of viewpoints to avoid collisions and facilitate flexible collaboration between UAVs.

3. Problem Statement

The task of multi-UAV exploration in an unknown environment performs the pro-
cess of exploring and mapping iteratively. A 3D workspaceWS of known size is given
before the task for establishing the concerned area; all UAVs will explore the workspace.
Exploration processing by a UAV team contains N identical UAV with four degrees of
freedom, as the 3D position [x, y, z]T ∈ R3 and the yaw angle ψ ∈ S1. The UAV state can
be described as x = [x, y, z, ψ]T . In each platform, a depth camera is equipped to collect the
environment information with a certain field of view.

The environment is reconstructed by an OctomapM, and the occupancy probability
of each gird m ∈ M is initialized as P(m) = 0.5. The posterior occupancy probability
P(m | x1:t, z1:t) is updated by the depth measurement z1:t and the UAV state x1:t from initial
time to current time t. The grids in the map will be gradually scanned by the sensor and
identified as either free gridsM f = {m | P(m | x1:t, z1:t) < Pf ree, m ∈ M} or occupied
gridsMo = {m | P(m | x1:t, z1:t) > Pocc, m ∈ M}. Pf and Po are given thresholds. Given a
mapM at time t, the receding horizon exploration planner decides an optimal path T ∗
in every period. To seek the T ∗ for the UAV so that it gathers measurements that reduce
unknown space and maintain coordination, a cost function is formulated to measure the
value of the candidate path, considering the uncertainty of the mapM, the UAV team
information RT, the location of waypoints in path T , and the time cost of the path c(T ).

T ∗ = arg maxT f (M, RT, T , c(T )). (1)

UAVs visit unknown spaces independently according to the outputs of the exploration
planner. We assume that the UAVs are equipped with an accurate localization system.
From the initial state, the UAVs are deployed and set with a connected network and a
known relative position as in a practical task application.

4. Method

This paper describes the implementation of a decentralized structure, as illustrated
in Figure 1. Each platform performs RRT-based planning, area partitioning, and mapping
independently. The core parts of our proposed modules are as follows.

4.1. Dynamic Centroid-Based Area Partition

The area for each available UAV is partitioned using a dynamic centroid-based method,
and each UAV is only responsible for its own refined area. Assuming that all of the UAVs
work with the same efficiency using the same exploring planner on the same platform,
a supposed idea is allocating UAVs equal assignments to prevent any UAV falls idle
prematurely. However, it is not easy to count the tasks of all individual UAVs and re-
allocate them in a decentralized structure.

To quantify the assignments of each UAV, we introduce the number of effective
candidate nodes per unit space. The candidate nodes are generated by an RRT-based
planner described in Section 4.3. In the area partition method, the candidate viewpoints
are randomly sampled in the whole given workspaceWS , and nodes are generated when
viewpoints are placed in a given partitioned area PA. When effective candidate nodes Ne,
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which can lead to environmental observation and the space volume VE
PA, of the executable

area are known, the weight w can be calculated as:

w = Ne/VE
PA. (2)

The executable space volume VE
PA in the PA can be approximated as Equation (3). The VE

PA
represents the volume of a space, which is free, and the RRT-based planner in Section 4.3
can build a tree there.

VE
PA ≈ VWS/

Cloop

NT
= VWS × NT/Cloop. (3)

The number of node sampling loops Cloop is counted to calculate the size of the
executable exploration area. With the executable space bigger, the Cloop is smaller because it
is more likely to generate a candidate in PA successfully. An average number of samples
required to generate a node can be formulated by NT/Cloop.

The proposed dynamic centroid-based area partition calculates a virtual centroid
Xc = (xc, yc) adjusted from the information of platform weights wi for UAVi and its
positions Xi = (x, y) for the 2D projection from the poses, expressed in Equation (4). UAVs
explore 3D space and map a 3D Octomap, while the two-dimensional coordinates of UAVs
for partitioning the 3D area are considered to be the simplest form of calculation.

Xc =
∑N

i=1 wi · Xi

∑N
i=1 wi

. (4)

As illustrated in Figure 2 and depicted in Equations (5) and (6), the partition ray Prs
for the area partition are generated according to the included angle between the j th and
(j + 1) th UAV when starting from the virtual centroid. θPrj is the angle from x axis to Prj
in a counterclockwise direction.

Prj(T) = Xc + (cos θPrj , sin θPrj)T, T > 0, (5)

θPrj1 /θPrj2 ∝ wj+1/wj. (6)

Figure 2. The partitioning process of UAVj. Each UAV computes a virtual centroid, and a 3D self-
responsible area is partitioned by the nearest two planes P , defined by partition rays Pr and the axis
of the centroid.

For UAVj, its exploring space PAj is bounded by two vertical planes Pj and Pj−1,
which are defined by partition rays and the axis of the centroid, see Equation (7). As il-
lustrated in Figure 2, the pink area in the sector space marks the two-dimensional plane
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projection of the exploration space allocated ahead. The partition area is formulated by
Equation (8). After the coordinates of the three-dimensional point under the x and y axes
are converted to the polar coordinate system, the angle should be between θPrj−1 and θPrj .

Pj =

{
p |
−−−−−−−−−−−−−−−−−−−−−−−−→(

cos
(

θPrj +
π

2

)
, sin

(
θPrj +

π

2

)
, 0
)
· ~p = 0

}
, (7)

PAj = {(x, y, z) | x = ρ cos θ, y = ρ sin θ, z ∈ R, ρ ∈ R+, θPrj−1 < θ < θPrj}. (8)

The core computing of the area partition is carried out on every UAV, and the platform
weights and positions are shared between UAVs in real-time. With the change of them,
every platform can adjust the working PA dynamically. The UAV with more detected tasks
in the same volume space will attain more weight, the virtual centroid and the dividing
planes will tend to be closer to it, and its PA in the next iteration will shrink. This tactic
ensures the area assignment is in a relatively balanced condition, thus making the whole
exploration more efficient.

4.2. Distributed Ray-Cast Mapping

A numerically environmental expression is necessary for cooperative exploring. In a
unified space, a shared environment could be divided into the unknown, occupied, or
free parts. Due to its simple and fast searching character, the OctoMap is adopted in our
method. Within it, the unknown, occupied, or free space can be represented by the cubic
volume (voxel) in an octree.

In our decentralized setup, all recent sensor outputs, including poses, are shared
among the UAVs, as depicted in Figure 1. The use of 5G WiFi ensures high-quality in-
formation sharing. We assume that the initial relative position is known, and a perfect
localization node runs on each UAV to provide accurate real-time position data. By using
the known initial relative position, the poses can be transformed into a unified coordinate
system. Consequently, each UAV maintains its own global map with a unified coordinate
system to enable cooperative planning, as illustrated in Figure 3. Collecting and aligning
information within the team as much as possible promotes collaboration. In this mode,
each UAV can consider the most comprehensive global information available.

(a) (b)

Figure 3. Distributed ray-cast mapping. As (a) shows, three small axes represent the UAV, and the
big axis represents the origin of a unified coordinate system. The depth measurement is visualized by
point clouds of various colours, where blue denotes objects that are far away and red indicates those that
are in close proximity. As the UAV wander, (b) shows the map expressed by Octomap simultaneously.
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4.3. Decentralized Cooperative Exploration Planner

The approach presented in this paper constitutes an enhancement of a receding hori-
zon NBV planner [12]. The planner is based on a sampling strategy that leverages RRT to
generate plausible target points and feasible trajectories in free space. Each UAV runs the
same planner, leveraging the same hardware and algorithms. The planning process is for-
malized in Algorithm 1. The RRT algorithm iteratively generates random points throughout
the workspace, stopping when a point is placed within the PA of the corresponding UAV.

Algorithm 1 Decentralized Cooperative Exploration Planner

1: for Exploration is not over do
2: Obtain the latest weights and poses of all UAVs
3: Do the area partition
4: Initialize the RRT T
5: Initialize the Ne = 0, Cloop = 0.
6: for NT < Ninit or G(nbest) = 0 do
7: if NT < Nthreshold then
8: while True do
9: Cloop = Cloop + 1.

10: generate candidate C ← X ∼ Uni f orm(WS)
11: if C is in PA then
12: generate node n← Connect(C, T)
13: if G(n)! = 0 then
14: Ne = Ne + 1
15: end if
16: break
17: end if
18: else
19: generate candidate C ← X ∼ Uni f orm(WS)
20: generate node n← Connect(C, T)
21: end if
22: if NT > NMAX then
23: Exploration is over and break
24: end if
25: Update nbest and BestBranch
26: end for
27: update weight w = Ne × Cloop/NT
28: Share the latest weight in the team
29: Execute the planned path
30: end for

Throughout the process, the planner generates a tree T consisting of nodes in the
free space of an OctoMapM. Each node n corresponds to a potential viewpoint, with its
state denoted by ξ = (x, y, z, ψ)T , reflecting position and yaw. The tree is constrained to
remain in the collision-free space to guarantee safe planning. For UAVj, the best node nj

best
is selected based on Equation (9), which considers the feasibility of the path. The function
G(n) reflects the gain of the parent node, and a novel information value (with related
parameters) can be expressed as g(M, n,Pj,Pj−1) in Equation (10). This optimization
aims to minimize Equation (1) consideringM for information measurements and path
planning, nodes corresponding to the path, and Pj,Pj−1 aggregating team information to
enable coordination.

nj
best = arg maxn∈Tj G(n), (9)

G(n) = G(nparent) + g(M, n,Pj,Pj−1), (10)
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and
g(M, n,Pj,Pj−1) = ∑

v∈FOV(ξ)∩M
V(v)× e−λc(σ)∏ f . (11)

In this context, the function V(v) takes a value of 1 if the voxel v is unexplored, and
0 otherwise. Our objective is to explore the unknown space, and the visible voxels within
the field of view of the sensor are accumulated to form a basic visibility score. The cost of a
path from the initial node n0 to n is determined by the RRT algorithm and denoted by c(σ).
To enable collaboration among the UAVs, the product function ∏ f is utilized, as shown
in Figure 4. Each plane P exerts a repulsive factor of f = 1 + 1/d, where d is the distance
between the candidate node and the plane P . The term e−λc(σ) causes the visibility score to
decrease smoothly as the path cost increases, while e−∏ 1+1/d drives the UAVs away from
the Pj and Pj−1.

Figure 4. The planning process of UAVj. The dj and dj−1 are calculated to formulate the factor f j

and f j−1.

The algorithm initializes the value of n0 in tree T as the current state of the UAV
during the first initialization. Otherwise, the initial tree would be set as the previous best
branch. The BestBranch is defined as the branch from n0 to nbest. To ensure that sufficient
environmental information is obtained while generating nodes, the tree T must have a
minimum of Ninit nodes, and loops continue until a valuable solution is obtained with
G(nbest) = 0. To prevent the UAV from idling due to unreasonable area partitioning,
the partition constraint is disabled when the number of tree nodes NT exceeds a certain
threshold Nthreshold. Once NT > NMAX , the exploration is deemed to be completed. In each
iteration, the first segment of the BestBranch is considered the planned path. The weight w
can be updated using Equation (12) according to Equation (2). SinceWS is assumed to be
given and VWS is constant and known, it is omitted.

w = Ne/VE
PA ≈ Ne × Sampleloop/(VWS × NT). (12)

The algorithm presented in this paper is intended to be executed on each UAV inde-
pendently. The planner and the area partition calculation are interdependent, and a smaller
partition area can make it more difficult for the planner to generate an effective trajectory,
resulting in a smaller weight. In turn, a smaller weight can lead to a larger partition being
provided to the UAV during the partition area calculation.
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5. Evaluation in Simulation

To demonstrate the superiority of the proposed method, we compared it with three
representative algorithms. The first was the greedy method for group application, which
did not employ cooperative settings (referred to as “greedy” in this context). The second [11]
was the classic method that discounted the information gain based on the repeating area
(referred to as “coordination” in this context). In this method, the gain was reduced based
on the area within the sensor range of the current best nodes of other UAVs. The third
method [7] used dynamic Voronoi partitions to assign different target locations to individual
UAVs, minimizing duplicated exploration areas (referred to as “Voronoi” in this context).
All of the three algorithms were decentralized and used RRT to generate candidate points.

Simulation experiments were conducted using Gazebo. All of the methods were tested
with the same virtual UAVs and environmental settings. Each UAV was equipped with
a depth camera that had a field of view [60, 90]◦ in the vertical and horizontal directions.
For the indoor scenario, the camera was mounted with a downward pitch angle of 15◦.
For the outdoor scenario, it was mounted with a pitch angle of 35◦. For all of the simulation
experiments, the maximum velocity was set as ψ̇max = 0.5 rad/s and vmax = 0.25 m/s,
while the size of the collision detection box was assumed to be 0.5× 0.5× 0.3 m3.

5.1. Indoor Scenario

For the indoor scenario, a regular single-story space with limited furniture and weigh-
ing structures but no other obstacles was used with dimensions of 20× 12× 3 m3, as shown
in Figure 5a. The proposed method was tested 20 times on teams consisting of 2, 3, 4, and
5 UAVs with the same initial position, where the relative distances between UAVs were less
than 50 cm. Each UAV was equipped with a depth camera, and the maximum length of
RRT was set to 1 m, while the maximum sensor range was dsensor

max = 4 m. The partition con-
straint became invalid when iterative tree nodes reached a threshold, NT > Nthreshold = 30,
and exploration also stopped when NT > NMAX = 150. The minimum node number of
each RRT iteration was Ninit = 15, and the space within the maximum planner range of
dplanner

max = 2.5 m was used to calculate the gain, with the value of λ set to 0.5.
To evaluate efficiency, the exploration completion time was measured using a team

of 5 UAVs as shown in Figure 6a. The exploration completion degree was plotted over
time to reflect the exploration process, as depicted in Figure 6b. The results showed that
with an increase in the number of UAVs, the exploration time decreased for all of the
methods, albeit at a lower rate of decline for larger teams. For two UAVs, the proposed
and Voronoi methods show similar performance with mean values of 185.4 s and 191.8 s,
respectively. For a team of 5 UAVs, our proposed method outperformed other methods
with lower variance and mean values of 86.2 s, while the voronoi, coordination, and greedy
methods took 98 s, 125.5 s, and 185.4 s, respectively. The proposed method ensured efficient
exploration with fewer scan repetitions by spacing out UAVs, which led to less backtracking
and smaller variance. On the other hand, more space would be allocated to the UAVs that
detect fewer tasks in our method, thus resulting in overall efficiency.

In addition, Figure 6b showed a turning point during exploration, where the speed
of exploration began to differ at about 50 s. The proposed method experienced the explo-
ration bottleneck later than the voronoi, coordination, and greedy methods, respectively.
The greedy method failed to cooperate, leading to multiple UAVs exploring the same area,
and scan repetitions. Although the coordination method cooperated through a designed
gain, it could not avoid scan repetitions. The Voronoi-based partition method restricted
individual UAVs to their partitioned areas without considering detection efficiency for
unknown spaces, and this could cause UAVs to fall idle when such areas became fewer.
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(a) (b)

(c) (d)

Figure 5. Simulation environments and their exploration results. (a) A 20× 12× 3 m3 indoor scenario,
a regular single-story space; (b) a 40 × 40 × 9 m3 outdoor scenario, a typical urban community.
The colored points on the floor represent the initial positions of UAVs, with red indicating 2 UAVs,
orange for 3 UAVs, yellow for 4 UAVs, and green for 5 UAVs. (c,d) are the exploration results
for both scenarios. (The following figures in this paper have the same meaning, where the spatial
structure and depth information are depicted using grids of different colours.)
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Figure 6. Numerical analysis of indoor simulation. (a) shows the exploration time of a team with 2, 3,
4, and 5 UAVs. (b) shows the team of 5 UAVs in one trial. Three other algorithms are compared.
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5.2. Large Outdoor Scenario

The second scenario involves an outdoor space measuring 40× 40× 9 m3, which
is a typical urban community with multiple buildings and complex spatial structures,
including spatial dead ends, as shown in Figure 5b. Since the outdoor environment is
more extensive, the maximum length of the RRT planner is set to 3 m based on empirical
experiments. During the trials, many depth value frames exceeding 7 m were observed,
and the trial settings were adjusted to dsensor

max = 8.5 m with a mounting pitch of 35◦ to
obtain more ground measurements, where dplanner

max = 3.5 m with Ninit = 30, Nthreshold = 80,
and NMAX = 250.
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Figure 7. Numerical analysis of outdoor simulation. (a) shows the exploration time of the team with
2, 3, 4, and 5 UAVs. (b) shows the team of 5 UAVs in one trial. Three other algorithms are compared.

For each planner, 20 trials were conducted for teams consisting of 2, 3, 4, and 5 UAVs,
starting from the same initial position, where the relative distances between UAVs were
less than 100 cm. Similar to the indoor scenario, the results of the algorithms (indicated in
Figure 7) show that the proposed method outperforms the voronoi, coordination, and greedy
methods, with a mean completion time of 376.7 s for a team of 5 UAVs. In contrast,
the voronoi, coordination, and greedy methods gave mean completion times of 428.8 s,
657.8 s, and 771.5 s, respectively. The experiment also shows that as the scenario size
increases, the greedy method, without cooperation, becomes increasingly random and
unintelligent. The variance of the results is significantly larger in the outdoor scenario.

In both scenarios, the exploration completion rate exhibits a decreasing trend. This
trend can be attributed to the fact that at the start of the exploration, there were many
unknown areas, and the UAVs can find enough task points with fewer sampling times.
Regardless of the efficiency of the planning algorithm, the UAVs could detect unknown
spaces that were not pre-included in the planning, which could lead to efficient exploration
in the beginning. As the environment has been continuously explored, the unknown area
has decreased, and the time required to calculate the targets has become longer. Especially
with the use of the receding horizon method, the UAVs often re-visited those optimal targets
due to being confined to local optima, which would slow down the rate of exploration at
the later stage.

6. Evaluation in Practical Experiments

To further validate the proposed method, practical indoor experiments were con-
ducted with three self-assembly UAVs equipped with depth cameras flying in a room with
obstacles, as shown in Figure 8b. A 10× 8× 3 m3 bounding box was used to constrain the
space for exploration. Due to the UAV structure, the cameras could only be mounted with a
downward pitch angle of 5◦ on the front side, and the UAVs’ precise location was ensured
through the use of VICON, a motion capture system, for safe piloting. Parameter values for
the practical experiments were set based on the simulation experiments conducted for the
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indoor scenario. Although limitations such as hardware restrictions, network bandwidth,
and flight trajectory control were not the primary focus of this paper, multiple trials were
carried out to ensure the proposed method’s usability. Table 1 summarizes some of the
critical parameters employed in the practical experiments.

(a) (b)

Figure 8. The practical experiments. (a) shows the initial status of three UAVs; they are placed on the
same side of a room. (b) shows three UAVs are performing exploration in one trial; a 10× 8× 3 m3

virtual boundary is set to bound the exploring space.

Table 1. Important parameters in practical experiments.

Parameter Value Parameter Value

vmax 0.1 m/s ψ̇max 0.5 rad/s

dplanner
max 1.5 m dsensor

max 2.5 m

λ 0.5 MaxTreeLength 0.8 m

Ninit 10 NMAX 100

Nthreshold 30 Mounting pitch 5◦

The proposed algorithm was tested in a practical experiment involving a team of
three UAVs, as shown in Figure 8. The UAVs were initially positioned closely together on
the same side of the exploration area, which is typical for real deployments. The exploration
process was repeated 20 times, with a maximum exploration time of 232.2 s, a minimum of
194.6 s, and an average of 209.4 s. The decentralized nature of the planner ensures that the
UAVs can perform their tasks robustly, with interruptions to one UAV having no impact
on the work of others, as demonstrated in Figure 9. The effectiveness and usability of
the proposed method in a practical scenario are demonstrated by the exploration maps at
six different sampling times, as shown in Figure 10. The virtual centroid in three colors
dynamically changes during the exploration process, and the working area of each UAV
is partitioned reasonably and iteratively. The UAV denoted as the yellow on the left
moves gradually to the lower-left area after completing its task in the upper-left corner
and collaborates with the UAV in the lower-right section to adjust the task areas. In the
final map of Figure 10, the gap areas on the ground were detected, which were affected
by the range of the depth camera. We can assume that using more robust sensors such
as 3D LiDAR could alleviate this phenomenon, but such an approach requires greater
consideration of the comprehensiveness of the experimental system and its applicability to
different settings, which needs to be further considered in future research.
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(a) (b)

Figure 9. Robust coordination case. (a) shows UAV represented by the red arrow has stopped
exploring due to insufficient power at an early stage; (b) shows other UAVs continue to finish the
task. The yellow one helps the red to explore the bottom right corner of this environment.

Figure 10. The mapping process of one practical experiment. The sampling times display the
complete process of three UAVs collaborating on exploration, with each UAV’s designated area being
continuously updated. The UAV represented by the yellow icon on the left gradually moves towards
the lower region, collaborating with the other UAVs to adjust the exploration area. In the final map,
gaps on the ground were influenced by the depth camera’s perception range. It is assumed that using
more powerful sensors such as 3D LiDAR [29] may mitigate this phenomenon, but this approach
necessitates further consideration of the experimental system’s applicability.
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7. Conclusions and Future Work

To improve the efficiency and reliability of cooperative exploration in unknown envi-
ronments, a dynamic centroid-based area partition method has been implemented in this
study, which takes into account both position and task information throughout the process.
This method assigns more space to UAVs that detect fewer tasks, which ensures that each
UAV undertakes the exploration mission evenly. Additionally, an NBV exploration method
has been improved by sampling candidates in their partitioned area and formulating the
weight, which also quantifies the task. The proposed method has been compared to three
other methods in two simulation environments and found to be faster than traditional
methods. Practical experiments have also demonstrated the effectiveness of this approach.
However, the randomness of the sampling process introduces variability, which could
lead to local minima. This sampling uncertainty, resulting in an unreasonable partition,
prevents us from providing a stable and precise exploration process description in different
trials with the same setting. To address this issue, future research will investigate the use
of frontier-based methods that provide an accurate number of tasks, allowing for more
rational partitioning results. Additionally, alternative sensing methods or equipment could
be considered to enhance the perception of swarm UAVs.
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